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DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.
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Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the syntax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce l -notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL: higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

ix
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CCS, p: concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.
Part III introduces some basic material on process algebraic models and temporal

and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as p-calculus, are just overviewed. The material in Part III can be used
in conjunction with other textbooks, e.g., on model checking or p-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part IV outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:
Imperative

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Functional
Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Concurrent
Chapter 11

Chapter 12

Chapter 13

Chapter 11

Chapter 12

Chapter 13

Probabilistic
Chapter 11

Chapter 12

Chapter 13

lambda 
notation

induction 
and 

structural 
recursion

CPO and
fixpoint

LTS and 
bisimulation

HM logic

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.
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CPO and fixpoint: the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

Lambda-notation: l -notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

LTS and bisimulation: Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

HM-logic: Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at
the end of the book.

Pisa, Roberto Bruni
February 2016 Ugo Montanari
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This part focuses on models and logics for probabilistic and stochastic systems.
Chapter 14 presents the theory of random processes and Markov chains. Chapter 15
studies (reactive and generative) probabilistic models of computation with observ-
able actions and sources of non-determinism together with a specification logic.
Chapter 16 defines the syntax, operational and abstract semantics of PEPA, a well-
known high-level language for the specification and analysis of stochastic, interactive
systems.
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Chapter 14
Measure Theory and Markov Chains

The future is independent of the past, given the present. (Markov
property as folklore)

Abstract Future is largely unpredictable. Non-determinism accounts for modelling
some phenomena arising in reactive systems, but it does not allow a quantitative
estimation of how likely is one event w.r.t. another. We use the term random or prob-
ability to denote systems where the quantitative estimation is possible. In this chapter
we present well-studied models of probabilistic systems, called random processes
and Markov chains in particular. The second come in two flavours, depending on
the underlying model of time (discrete or continuous). Their key feature is called
Markov property and it allows to develop an elegant theoretical setting, where it can
be conveniently estimated, e.g., how long a system will sojourn in a given state, or
the probability of finding the system in a given state at a given time or in the long
run. We conclude the chapter by discussing how bisimilarity equivalences can be
extended to Markov chains.

14.1 Probabilistic and Stochastic Systems

In previous chapters we have exploited non-determinism to represent choices and
parallelism. Probability can be viewed as a refinement of non-determinism, where it
can be expressed that some choices are more likely or more frequent than others. We
distinguish two main cases: probabilistic and stochastic models.

Probabilistic models associate a probability to each operation. If many operations
are enabled at the same time, then the system uses the probability measure to choose
the action that will be executed next. As we will see in Chapter 15, models with
many different combinations of probability, non-determinism and observable actions
have been studied.

In stochastic models each event has a duration. The model binds a random variable
to each operation. This variable represents the time necessary to execute the operation.
The models we will study use exponentially distributed variables, associating a rate to
each event. Often in stochastic systems there is no explicit non-deterministic choice:
when a race between events is enabled, the fastest operation is actually chosen.

309
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We start this chapter by introducing some basic concepts of measure theory on
which we will rely in order to construct probabilistic and stochastic models. Then
we will present one of the most used stochastic models, called Markov chains. A
Markov chain, named after the Russian mathematician Andrey Markov (1856–1922),
is characterised by the the fact that the probability to evolve from one state to another
depends only on the current state and not on the sequence of events that preceded it
(e.g., it does not depend on the states traversed before reaching the current one). This
feature, called the Markov property, essentially states that the system is memoryless,
or rather that the relevant information about the past is entirely contained in the
present state. A Markov chain allows to predict important statistical properties about
the future behaviour of a system. We will discuss both the discrete time and the
continuous time variants of Markov chains and we will examine some interesting
properties which can be studied relying on probability theory.

14.2 Probability Space

A probability space accounts for modelling experiments with some degree of ran-
domness. It comprises a set W of all possible outcomes (called elementary events)
and a set A of events that we are interested in. An event is just a set of outcomes,
i.e., A ✓√(W), but in general we are not interested in the whole powerset √(W),
especially because when W is infinite, then we would not be able to assign reasonable
probabilities to all events in √(W). However, the set A should include at least the
impossible event ? and the certain event W . Moreover, since events are sets, it is
convenient to require that A is closed under the usual set operations. Thus if A and
B are events, then also their intersection A \ B, their union A [ B and complement
A should be event, so that we can express, e.g., probabilities about the fact that two
events will happen together, or about the fact that some event is not going to happen.
If this is the case, then A is called a field. We call it a s -field if it is also closed under
countable union of events. A s -field is indeed the starting point to define measurable
spaces and hence probability spaces.

Definition 14.1 (s -field). Let W be a set of elementary events and A ✓√(W) be a
family of subsets of W , then A is a s -field if all of the following hold:

1. ? 2 A (the impossible event is in A );
2. 8A 2 A ) (W \A) 2 A (A is closed under complement);
3. 8{An}n2N ✓ A .

S
i2N Ai 2 A (A is closed under countable union).

The elements of A are called events.

Remark 14.1. It is immediate to see that A must include the certain event (i.e.,
W 2 A , by 1 and 2) and that also the intersection of a countable sequence of
elements of A is in A , i.e.,

T
i2N Ai = W \ (

S
i2N(W \Ai)) (it follows by 2, 3 and the

De Morgan property).
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Let us illustrate the notion of s -field by showing a simple example over a finite
set of events.

Example 14.1. Let W = {a,b,c,d}, we define a s -field on W by setting A ✓√(W):

A = {?,{a,b},{c,d},{a,b,c,d}}

The smallest s -field associated with a set W is {?,W} and the smallest s -
field that includes an event A is {?,A,W \A,W}. More generally, given any subset
B ✓√(W) there is a least s -field that contains B.

s -fields fix the domain on which we define a particular class of functions called
measures, which assign a real number to each measurable set of the space. Roughly
a measure can be seen as a notion of size that we wish to attach to sets.

Definition 14.2 (Measure). Let (W ,A ) be a s -field. A function µ : A ! [0,+•]
is a measure on (W ,A ) if all of the following hold:

1. µ(?) = 0;
2. for any countable collection {An}n2N ✓ A of pairwise disjoint sets we have

µ(
S

i2N Ai) = Âi2N µ(Ai).

A set contained in A is then called a measurable set, and the pair (W ,A ) is
called measurable space. We are interested to a particular class of measures called
probabilities. A probability is a essentially a “normalised” measure.

Definition 14.3 (Probability). A measure P on (W ,A ) is a probability if P(W) = 1.

It is immediate from the definition of probability that the codomain of P cannot
be the whole set R of real numbers but it is just the interval of reals [0,1].

Definition 14.4 (Probability space). Let (W ,A ) be a measurable space and P be a
probability on (W ,A ), then (W ,A ,P) is called a probability space.

14.2.1 Constructing a s -field

Obviously one can think that in order to construct a s -field that contains some sets
equipped with a probability it is enough to construct the closure of these sets (together
with top and bottom elements) under complement and countable union. But it comes
out from set theory that not all sets are measurable. More precisely, it has been shown
that it is not possible to define (in ZFC set theory) a probability for all the subsets
of W when its cardinality is1 2¿0 (i.e., there is no function P : √(R) ! [0,1] that
satisfies Definition 14.4). So we have to be careful in defining s -field on a set W of
elementary events that is uncountable.

The next example shows how this problem can be solved in a special case.

1 The symbol ¿0, called aleph zero, is the smallest infinite cardinal, i.e., it denotes the cardinality
of N. Thus 2¿0 is the cardinality of the powerset √(N) as well as of the continuum R.
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Example 14.2 (Coin tosses). Let us consider the classic coin toss experiment. We
have a fair coin and we want to model sequences of coin tosses. We would like to
define W as the set of infinite sequences of head (H) and tail (T ):

W = {H,T}•.

Unfortunately this set has cardinality 2¿0 . As we have just said a measure on uncount-
able sets does not exist. So we can restrict our attention to a countable set: the set C
of finite sequences of coin tosses. In order to define a s -field which can account for
almost all the events that we could express in words, we define the following set for
each a 2 C called the shadow of a:

[a] = { w 2 W | 9w 0 2 W . aw 0 = w }

The shadow of a is the set of infinite sequences of which a is a prefix. The right
hand side of Figure 14.1 shows graphically the set [a] of infinite paths corresponding
to the finite sequence a .

…

…

…

…

H

H

HT

T

T �

[�]

Fig. 14.1: The shadow of a

Now the s -field which we were looking for is the one generated by the shadows
of the sequences in C . In this way we can start by defining a probability measure
P on the s -field generated by the shadows of C , then we can assign a non-zero
probability to (all finite sequences and) some infinite sequences of coin tosses by
setting:

p(w) =

8
>><

>>:

P( [w] ) if w is finite

P

0

@ \

a2C , w2[a]

[a]

1

A if w is infinite

For the second case, remind that the definition of s -field ensures that countable
intersection of measurable sets is measurable. Measure theory results show that this
measure exists and is unique.
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Very often we have structures that are associated with a topology (e.g. there exists
a standard topology, called Scott topology, associated to each CPO) so it is useful to
define a standard method to obtain a s -field from a topology.

Definition 14.5 (Topology). Let T be a set and T ✓√(T ) be a family of subsets of
T . Then T is said to be a topology on T if:

• T,? 2 T ;
• A,B 2 T ) A\B 2 T , i.e., the topology is closed under finite intersection;
• let {Ai}i2I be any family of sets in T then

S
i2I Ai 2 T , i.e., the topology is closed

under finite and infinite union.

The pair (X ,T ) is said to be a topological space.

We call A an open set if it is in T and it is a closed set if T \A is open.

Remark 14.2. Note that in general a set can be open, closed, both or neither. For
example, T and ? are open and also closed sets. Open sets should not be confused
with measurable sets, because measurable sets are closed under complement and
countable intersection. This difference makes the notion of measurable function very
different from that of continuous function.

Definition 14.6 (Borel s -field). Let T be a topology, we call the Borel s -field of
T the smallest s -field that contains T .

It turns out that the s -field generated by the shadows which we have seen in the
previous example is the Borel s -field generated by the topology associated with the
CPO of sets of infinite paths ordered by inclusion.

Example 14.3 (Euclidean topology). The euclidean topology is a topology on real
numbers whose open sets are open intervals of real numbers:

]a,b[ = {x 2 R | a < x < b}

We can extend the topology to the correspondent Borel s -field, then associating to
each open interval its length we obtain the usual Lebesgue measure.

It is often convenient to work with a generating collection, because Borel s -fields
are difficult to describe directly.

14.3 Continuous Random Variables

Stochastic processes associate a(n exponentially distributed) random variable to
each event in order to represent its timing. So the concept of random variable and
distribution will be central to the development in this chapter.

Suppose that an experiment has been performed and its outcome w 2 W is known.
A (continuous) random variable associates a real number to w , e.g., by observing
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some of its features. For example, if w is a finite sequence of coin tosses, a random
variable X can count how many heads appear in w . Then we can try to associate a
probability measure on the possible values of X . However, it turns out that in general
we cannot define a function f : R ! [0,1] such that f (x) is the probability that X is
x, because the set {w | X(w) = x} is not necessarily an element of a measurable
space. We consider instead (measurable) sets of the form {w | X(w)  x}.

Definition 14.7 (Random variable). Let (W ,A ,P) be a probability space, a func-
tion X : W ! R is said to be a random variable if

8x 2 R. {w 2 W | X(w)  x} 2 A .

The condition expresses the fact that for each real number x, we can assign a
probability to the set {w 2 W | X(w)  x}, because it is included in a measurable
space. Notice that if we take as (W ,A ) the measurable space of the real numbers
with the Lebesgue measure, the identity id : R ! R satisfies the above condition. As
another example, we can take sequences of coin tosses, assign the digit 0 to head and
1 to tail and see the sequences as binary representations of decimals in [0,1).

Random variables can be classified by considering the set of their values. We call
discrete a random variable that has a numerable or finite set of possible values. We
say that a random variable is continuous if the set of its values is continuous. In the
remainder of this section we will consider mainly continuous variables.

A random variable is completely characterised by its probability law which
describes the probability that the variable will be found in a value less than or equal
to the parameter.

Definition 14.8 (Cumulative distribution function). Let S = (W ,A ,P) be a prob-
ability space, X : W !R be a continuous random variable over S. We call cumulative
distribution function (also probability law) of X the image of P through X and denote
it by FX : R ! [0,1], i.e.:

FX (x) def
= P({w 2 W | X(w)  x}).

Note that the definition of random variable guarantees that, for any x 2 R, the set
{w 2 W | X(w)  x} is assigned a probability. Moreover, if x < y then FX (x)  FX (y).

As a matter of notation, we write P(X  a) to mean FX (a), from which we derive:

P(X > a)
def
= P({w 2 W | X(w) > a}) = 1�FX (a)

P(a < X  b)
def
= P({w 2 W | a < X(w)  b}) = FX (b)�FX (a).

The other important function which describes the relative probability of a continu-
ous random variable to take a specified value is the probability density.

Definition 14.9 (Probability density). Let X : W ! R be a continuous random
variable on the probability space (W ,A ,P). We call the integrable function fX :
R ! [0,•) the probability density of X if:
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Fig. 14.3: Exponential density distributions with different rates l

8a,b 2 R. P(a < X  b) =
Z b

a
fX (x)dx

So we can define the probability law FX of a variable X with density fX as follows:

FX (a) =
Z a

�•
fX (x)dx

Note that P(X = a)
def
= P({w | X(w) = a}) is usually 0 when continuous random

variables are considered. In case X is a discrete random variable, then its distribution
function has jump discontinuities and the function fX : R ! [0,1] given by fX (x) def

=
P(X = x) is called probability mass function.

We are particularly interested in exponentially distributed random variables.

Definition 14.10 (Exponential distribution). A continuous random variable X is
said to be exponentially distributed with parameter l if its probability law and density
function are defined as follows:

FX (x) =

⇢
1� e�lx if x > 0

0 x < 0 fX (x) =

⇢
le�lx if x > 0

0 x < 0
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The parameter l is called the rate of X and it characterises the expected value
(mean) of X , which is 1/l , and the variance of X , which is 1/l 2. Some plottings of
the functions FX and fX associated with exponential distributions with different rates
are illustrated in Figure 14.2 and 14.3.

One of the most important features of exponentially distributed random variables
is that they are memoryless, meaning that the current value of the random variable
does not depend on the previous values.

Example 14.4 (Radioactive Atom). Let us consider a radioactive atom, which due to
its instability can easily loose energy. It turns out that the probability that an atom
will decay is constant over the time. So this system can be modelled by using an
exponentially distributed, continuous random variable whose rate is the decay rate of
the atom. Since the random variable is memoryless we have that the probability that
the atom will decay at time t0 + t knowing that it is not decaying yet at time t0 is the
same for any choice of t0, as it depends just on t.

In the following we denote by P(A | B) the conditional probability of the event A
given the event B, with

P(A | B)
def
=

P(A\B)

P(B)
.

Theorem 14.1 (Memoryless). Let X be an exponentially distributed (continuous)
random variable with rate l . Then:

P(X  t0 + t | X > t0) = P(X  t).

Proof. Since X is exponentially distributed, its probability law is:

FX (t) =
Z t

0
le�lxdx

so we need to prove:

P(t0 < X  t0 + t)
P(X > t0)

=

R t0+t
t0 le�lxdx
R •

t0 le�lxdx
?
=

Z t

0
le�lxdx = P(X  t)

Since
R b

a le�lxdx =
⇥
�e�lx⇤b

a =
⇥
e�lx⇤a

b it follows that:

R t0+t
t0 le�lxdx
R •

t0 le�lxdx
=

⇥
e�lx⇤t0

t0+t⇥
e�lx

⇤t0
•

=
e�l t0 � e�l t · e�l t0

e�l t0
=

���e�l t0(1� e�l t)

���e�l t0
= 1� e�l t

We conclude by:
Z t

0
le�lxdx =

h
e�lx

i0

t
= 1� e�l t .

ut
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Another interesting feature of exponentially distributed random variables is the
easy way in which we can compose information in order to find the probability
of more complex events. For example if we have two random variables X1 and
X2 which represent the delay of two events e1 and e2, we can try to calculate the
probability that either of the two events will be executed before a specified time t.
As we will see it happens that we can define an exponentially distributed random
variable whose cumulative probability is the probability that either e1 or e2 executes
before a specified time t.

Theorem 14.2. Let X1 and X2 be two exponentially distributed continuous random
variables with rate respectively l1 and l2 then:

P(min{X1,X2}  t) = 1� e�(l1+l2)t

Proof. We recall that for any two events (not necessarily disjoint) we have:

P(A[B) = P(A)+P(B)�P(A\B)

and that for two independent events we have

P(A\B) = P(A)⇥P(B).

Then:

P(min{X1,X2}  t) = P(X1  t _X2  t)
= P(X1  t)+P(X2  t)�P(X1  t ^X2  t)
= P(X1  t)+P(X2  t)�P(X1  t)⇥P(X2  t)

= (1� e�l1t)+(1� e�l2t)� (1� e�l1t)(1� e�l2t)

= 1� e�l1t e�l2t

= 1� e�(l1+l2)t

ut

Thus X = min{X1,X2} is also an exponentially distributed random variable, whose
rate is l1 + l2. We will exploit this property to define, e.g., the sojourn time in
continuous time Markov chains (see Section 14.4.4).

A second important value that we can calculate is the probability that an event will
be executed before another. This corresponds in our view to calculate the probability
that X1 will take a value smaller than the one taken by X2, namely that the action
associated with X1 is chosen instead of the one associated with X2.

Theorem 14.3. Let X1 and X2 be two exponentially distributed, continuous random
variables with rate respectively l1 and l2 then:

P(X1 < X2) =
l1

l1 +l2



DRAFT

318 14 Measure Theory and Markov Chains

Proof. Imagine you are at some time t and neither of the two variables has fired.
The probability that X1 fires in the infinitesimal interval dt while X2 fires in any
successive instant is

l1e�l1t
✓Z •

t
l2e�l2t2dt2

◆
dt

From which we derive:

P(X1 < X2) =
Z •

0
l1e�l1t1

✓Z •

t1
l2e�l2t2dt2

◆
dt1

=
Z •

0
l1e�l1t1

h
e�l2t2

it1

•
dt1

=
Z •

0
l1e�l1t1 · e�l2t1dt1

=
Z •

0
l1e�(l1+l2)t1dt1

=


l1

l1 +l2
e�(l1+l2)t

�0

•

=
l1

l1 +l2
.

ut

We will exploit this property when presenting the process algebra PEPA, in
Chapter 16.

As a special case, when the rates of the two variables are equal, i.e., l1 = l2, then
P(X1 < X2) = 1/2.

14.3.1 Stochastic Processes

Stochastic processes are a very powerful mathematical tool that allows us to describe
and analyse a wide variety of systems.

Definition 14.11 (Stochastic process). Let (W ,A ,P) be a probability space and T
be a set, then a family {Xt}t2T of random variables over W is said to be a stochastic
process.

A stochastic process can be identified with a function X : W ⇥T ! R such that:

8t 2 T. X(·, t) : W ! R is a random variable.

Usually the values in R that each random variable can take are called states and
the element of T are interpreted as times.

Obviously the set T strongly characterises the process. A process in which T is
N or a subset of N is said to be a discrete time process; on the other hand if T = R
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(or T = [0,•)) then the process is a continuous time process. The same distinction
is usually done on the value that each random variable can assume: if this set has a
countable or finite cardinality then the process is discrete; otherwise it is continuous.
We will focus only on discrete processes with both discrete and continuous time.
When the set S = {x | 9w 2 W , t 2 T.X(w, t) = x} of states is finite, with cardinality
N, without loss of generality, we can assume that S = {1,2, ...,N} is just the set of
the first N positive natural numbers and we read Xt = i as “the stochastic process X
is in the ith state at time t”.

14.4 Markov Chains

Stochastic processes studied by classical probability theory often involve only in-
dependent variables, namely the outcomes of the process are totally independent
from the past. Markov chains extend the classic theory by dealing with processes
where each variable is influenced by the previous one. This means that in Markov
processes the next outcome of the system is influenced only by the previous state.
One could think to extend this theory in order to allow general dependencies between
variables, but it turns out that it is very difficult to prove general results on processes
with dependent variables. We are interested in Markov chains since they provide an
expressive mathematical framework to represent and analyse important interleaving
and sequential systems.

Definition 14.12 (Markov chain). Let (W ,A ,P) be a probability space, T be a
totally ordered set and {Xt}t2T be a stochastic process. Then, {Xt}t2T is said to be a
Markov chain if for each sequence t0 < ... < tn < tn+1 of times in T and for all states
x,x0,x1, ...,xn 2 R:

P(Xtn+1 = x | Xtn = xn, . . . ,Xt0 = x0) = P(Xtn+1 = x | Xtn = xn).

The previous proposition is usually referred to as Markov property.

An important characteristic of a Markov chain is the way in which it is influenced
by the time. We have two types of Markov chains, inhomogeneous and homogeneous.
In the first case the state of the system depends on the time, namely the probability
distribution changes over time. In homogeneous chains on the other hand the time
does not influence the distribution, i.e., the transition probability does not change
during the time. We will consider only the simpler case of homogeneous Markov
chains, gaining the possibility to shift the time axis back and forward.

Definition 14.13 (Homogeneous Markov chain). Let {Xt}t2T be a Markov chain;
it is homogeneous if for all states x,x0 2 R and for all times t, t 0 2 T with t < t 0 we
have:

P(Xt 0 = x0|Xt = x) = P(Xt 0�t = x0|X0 = x).

In what follows we use the term “Markov chain” as a synonym for “homogeneous
Markov chain”.
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14.4.1 Discrete and Continuous Time Markov Chain

As we said, one of the most important things about stochastic processes in general,
and about Markov chains in particular, is the choice of the set of times. In this section
we will introduce two kinds of Markov chains, those in which T = N, called discrete
time Markov chain (DTMC), and those in which T = R, referred to as continuous
time Markov chain.

Definition 14.14 (Discrete time Markov Chain (DTMC)). Let {Xt}t2N be a stochas-
tic process; then, it is a discrete time Markov chain (DTMC) if for all n 2 N and for
all states x,x0,x1, ...,xn 2 R :

P(Xn+1 = x | Xn = xn, . . . ,X0 = x0) = P(Xn+1 = | Xn = xn).

Since we are restricting our attention to homogeneous chains then we can refor-
mulate the Markov property as follows:

P(Xn+1 = x | Xn = xn, . . . ,X0 = x0) = P(X1 = x | X0 = xn)

Assuming the possible states are 1, ...,N, the DTMC is entirely determined by the
transition probabilities ai, j = P(X1 = j | X0 = i) for i, j 2 {1, ...,N}.

Definition 14.15 (Continuous time Markov Chain (CTMC)). Let {Xt}t2R be a
stochastic process; then, it is a continuous time Markov chain (CTMC) if for all states
x,x0, ...,xn, for any Dt 2 [0,•) and any sequence of times t0 < ... < tn we have:

P(Xtn+Dt = x | Xtn = xn, . . . ,Xt0 = x0) = P(Xtn+Dt = x | Xtn = xn).

As for the discrete case, the homogeneity allows to reformulate the Markov
property as follows:

P(Xtn+Dt = x | Xtn = xn, . . . ,Xt0 = x0) = P(XDt = x | X0 = xn).

Assuming the possible states are 1, ...,N, the CTMC is entirely determined by the
rates li, j that govern the probability P(X1 = j | X0 = i) = 1� e�li, jt .

We remark that the exponential random variable is the only continuous random
variable with the memoryless property, i.e., CTMC are necessarily exponentially
distributed.

14.4.2 DTMC as LTS

A DTMC can be viewed as a particular LTS whose labels are probabilities. Usually
such LTS are called probabilistic transition systems (PTS).

A difference between LTS and PTS is that in LTS we can have structures like
the one shown in Figure 14.4(a), with two transitions that are co-initial and co-final
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and carry different labels. In PTS we cannot have this kind of situation since two
different transitions between the same pair of states have the same meaning of a
single transition labeled with the sum of the probabilities, as shown in Figure 14.4(b).

p
**

q
44

(a)

p+q //

(b)

Fig. 14.4: Two equivalent DTMCs

The PTS (S,a) associated with a DTMC has a set of states S and a transition
function a : S ! (D(S) + 1) where D(S) denotes the set of discrete probability
distributions over S and 1 = {⇤} is a singleton used to represent the deadlock states.
We recall that a discrete probability distribution over a set S is a function D : S ! [0,1]
such that Âs2S D(S) = 1.

Definition 14.16 (PTS of a DTMC). Let {Xt}t2N be a DTMC whose set of states is
S. Its corresponding PTS has set of states S and transition function a : S ! (D(S)+1)
defined as follows:

a(s) =

⇢
l s0. P(X1 = s0 | X0 = s) if s is not a deadlock state
⇤ otherwise.

Note that for each non-deadlock state s it holds:

Â
s02S

a(s)(s0) = 1.

Usually the transition function is represented through a matrix P whose indices
i, j represent states si,s j and each element ai, j is the probability that knowing that
the system is in the state i it would be in the state j in the next time instant, namely
8i, j  |S|. ai, j = a(si)(s j), note that in this case each row of P must sum to one. This
representation allows us to study the system by relaying on linear algebra. In fact we
can represent the present state of the system by using a row vector p(t) = [p(t)

i ]i2S

where p(t)
i represents the probability that the system is in the state si at the time t.

If we want to calculate how the system will evolve (i.e., the next state distribution)
starting from this state we can simply multiply the vector with the matrix which
represents the transition function, as the following example of a three state system
shows:

p(t+1) = p(t)P =
���p(t)

1 p(t)
2 p(t)

3

���

������

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

������
=

�������

a1,1p(t)
1 +a2,1p(t)

2 +a3,1p(t)
3

a1,2p(t)
1 +a2,2p(t)

2 +a3,2p(t)
3

a1,3p(t)
1 +a2,3p(t)

2 +a3,3p(t)
3

�������

T
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where the resulting row vector is transposed for space matter.
For some special class of DTMCs we can prove the existence of a limit vector for

t ! •, that is to say the probability that the system is found in a particular state is
stationary in the long run (see Section 14.4.3).

1
1/5 //

4/5

◆◆
2

2/3
��

1/3

↵↵

3

1

^^

Fig. 14.5: A DTMC

Example 14.5 (DTMC). Let us consider the DTMC in Figure 14.5. We represent the
chain algebraically by using the following matrix:

P =

������

4/5 1/5 0
0 1/3 2/3
1 0 0

������

Now suppose that we do not know the state of the system at time t, thus we assume
the system has equal probability 1

3 of being in any of the three states. We represent
this situation with the following vector:

p(t) =
��1/3 1/3 1/3

��

Now we can calculate the state distribution at time t +1 as follows:

p(t+1) =
��1/3 1/3 1/3

��

������

4/5 1/5 0
0 1/3 2/3
1 0 0

������
=
��3/5 8/45 2/9

��

Notice that the sum of probabilities in the result 3/5+8/45+2/9 is again 1. Obvi-
ously we can iterate this process in order to simulate the evolution of the system.

Since we have represented a Markov chain by using a transition system it is quite
natural to ask for the probability of a finite path.

Definition 14.17 (Finite path probability). Let {Xt}t2N be a DTMC and s1 · · ·sn a
finite path of its PTS (i.e., 8i. 1  i < n ) a(si)(si+1) > 0) we define the probability
P(s1 · · ·sn) of the path s1 · · ·sn as follows:

P(s1 · · ·sn) =
n�1

’
i=1

a(si)(si+1) =
n�1

’
i=1

ai,i+1.
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Example 14.6 (Finite paths). Let us consider the DTMC of Example 14.5 and take
the path 1 2 3 1. We have:

P(1 2 3 1) = a1,2 ⇥a2,3 ⇥a3,1 =
1
5

⇥ 2
3

⇥1 =
2
15

Note that if we consider the sequence of states 1 1 3 1:

P(1 1 3 1) = a1,1 ⇥a1,3 ⇥a3,1 =
4
5

⇥0⇥1 = 0

In fact there is no transition allowed from state 1 to 3.

Note that it would make no sense to define the probability of infinite paths as
the product of the probabilities of all choices, because any infinite sequence would
have a null probability. We can overcome this problem by using the Borel s -field
generated by the shadows, as seen in Example 14.2.

14.4.3 DTMC Steady State Distribution

In this section we will present a special class of DTMCs which guarantees that the
probability that the system is found in a state can be estimated on the long term.
This means that the probability distribution of each state of the DTMC (i.e., the
corresponding value in the vector p(t)) reaches a steady state distribution which does
not change in the future, namely if pi is the steady state distribution for the state i, if
p(0)

i = pi then p(t)
i = pi for each t > 0.

Definition 14.18 (Steady state distribution). We define the steady state distribution
(or stationary distribution) p =

��p1 . . .pn
�� of a DTMC as the limit distribution:

8i 2 [1,n]. pi = lim
t!•

p(t)
i

when such limit exists.

In order to guarantee that the limit exists we will restrict our attention to a subclass
of Markov chains.

Definition 14.19 (Ergodic Markov chain). Let {Xt}t2T be a Markov chain then it
is said to be ergodic if it is both:

irreducible: each state is reachable from each other; and
aperiodic the greatest common divisor (gcd) of the lengths of all paths from any

state to itself must be 1.

Theorem 14.4. Let {Xt}t2T be an ergodic (homogeneous) Markov chain. Then the
steady state probability p always exists and it is independent from the initial state
probability distribution.
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The steady state probability distribution p can be computed by solving the system
of linear equations:

p = p P

where P is the matrix associated to the chain, under the additional constraint that the
sum of all probabilities is 1.

Example 14.7 (Steady state distribution). Let us consider the DTMC of Example 14.5.
It is immediate to check that it is ergodic. To find the steady state distribution we
need to solve the following linear system:

��p1 p2 p3
��

������

4/5 1/5 0
0 1/3 2/3
1 0 0

������
=
��p1 p2 p3

��

The corresponding system of linear equations is
8
>><

>>:

4
5 p1 +p3 = p1

1
5 p1 + 1

3 p2 = p2

2
3 p2 = p3

Note that the equations express the fact that the probability to be in the state i is given
by the sum of the probabilities to be in any other state j weighted by the probability
to move from j to i. By solving the system of linear equations we obtain the solution:

��10p2/3 p2 2p2/3
��

i.e., p1 = 10
3 p2 and p3 = 2

3 p2.
Now by imposing p1 +p2 +p3 = 1 we have p2 = 1/5 thus:

p =
��2/3 1/5 2/15

��

So, independently from the initial state, in the long run it is more likely to find the
system in the state 1 than in states 2 or 3, because the steady state probability of
being in state is much larger than the other two probabilities.

14.4.4 CTMC as LTS

Also continuous time Markov chains can be represented as LTSs, but in this case
the labels are rates and not probabilities. We have two equivalent definitions for the
transition function:

a : S ! S ! R or a : (S ⇥S) ! R
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where S is the set of states of the chain and any real value l = a(s)(s0) (or l =

a(s1,s2)) represents the rate which labels the transition s l�! s0. Also in this case,
likewise DTMC, we have that two different transitions between the same two states
are merged in a single transition whose label is the sum of the rates. We write li, j for
the rate a(si,s j) associated with the transition from state si to state s j. A difference
here is that the self loops can be ignored: this is due to the fact that in continuous
time we allow the system to sojourn in a state for a period and staying in a state is
indistinguishable from moving to the same state via a loop.

The probability that some transition happens from state si in some time t can be
computed by taking the minimum of the continuous random variables associated
with the possible transitions: by Theorem 14.2 we know that such probability is also
exponentially distributed and has a rate that is given by the sum of rates of all the
transitions outgoing from si.

Definition 14.20 (Sojourn time). Let {Xt} a CTMC. The probability that no transi-
tion happens from a state si in some (sojourn) time t is 1 minus the probability that
some transition happens:

8t 2 (0,•). P(Xt = si | X0 = si) = e�l t with l = Â
j 6=i

li, j.

As for DTMCs we can represent a CTMC by using linear algebra. In this case
the matrix Q which represents the system is defined by setting qi, j = a(si,s j) = li, j
when i 6= j and qi,i = �Â j 6=i qi, j. This matrix is usually called infinitesimal generator.
This definition is convenient for steady state analysis, as explained by the end of the
next section.

14.4.5 Embedded DTMC of a CTMC

Often the study of a CTMC results very hard particularly in term of computational
complexity. So it is useful to have a standard way to discretise the CTMC by synthe-
sising a DTMC, called embedded DTMC, in order to simplify the analysis.

Definition 14.21 (Embedded DTMC). Let aC be the transition function of a CTMC.
Its embedded DTMC has the same set of states S and transition function aD defined
by taking:

aD(si)(s j) =

( ac(si,s j)

Âs6=si ac(si,s)
if si 6= s j

0 otherwise.

As we can see, the previous definition simply normalises to 1 the rates in order to
calculate a probability.

While the embedded DTMC completely determines the probabilistic behaviour of
the system, it does not fully capture the behaviour of the continuous time process
because it does not specify the rates at which transitions occur.
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Regarding the steady state analysis, since in the infinitesimal generator matrix Q
describing the CTMC we have qi,i = �Â j 6=i qi, j for any state index i, the steady state
distribution can equivalently be computed by solving the system of (homogeneous,
normalised) linear equations p Q = 0 (see Problem 14.11).

14.4.6 CTMC Bisimilarity

Obviously, since Markov chains can be seen as a particular type of LTS, one could
think to modify the notion of bisimilarity in order to study the equivalence between
stochastic systems.

Let us start by revisiting the notion of LTS bisimilarity in a slightly different way
from that seen in Chapter 11.

Definition 14.22 (Reachability predicate). Given and LTS (S,L,!), we define a
function g : S ⇥ L ⇥√(S) ! {true, false} which takes a state p, an action ` and a
set of states I and returns true if there exists a state q 2 I reachable from p with a
transition labelled by `, and false otherwise. Formally, given an equivalence class of
states I we define:

g(p,`, I) def
= 9q 2 I. p `�! q.

Suppose we are given a (strong) bisimulation relation R. We know that its induced
equivalence relation ⌘R is also a bisimulation. Let I be an equivalence classes induced
by R. By definition of bisimulation we have that taken any two states s1,s2 2 I if
s1

`�! s0
1 for some ` and s0

1 then it must be the case that there exists s0
2 such that

s2
`�! s0

2 and s0
2 is in the same equivalence class I0 as s0

1 (and vice versa).
Now consider the function F :√(S) !√(S) defined by letting:

p F(R) q def
= ( 8` 2 L, I 2 R. g(p,µ, I) , g(q,µ, I) )

where I ranges over the equivalence classes induced by the relation R. Then, by the
argument above, a (strong) bisimulation is just a relation such that R ✓ F(R) and the
largest bisimulation is the bisimilarity relation

' def
=

[

R✓F(R)

R.

The construction F can be extended to the case of CTMCs. The idea is that
equivalent states will fall into the same equivalence class and that if a state has
multiple transitions with rates l1, ...,ln to different states s1, ...,sn that are in the same
equivalence class, then we can represent all such transitions by a single transitions
that carries the rate Ân

i=1 li. To this aim, we define a function gC : S ⇥√(S) ! R
simply by extending the transition function to sets of states as follows:

gC(s, I) = Â
s02I

a(s,s0)
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As we have done above for LTSs, we define the function F :√(S) !√(S) by:

s1 F(R) s2
def
= 8I 2 S/⌘R . gC(s1, I) = gC(s2, I)

meaning that the total rate of reaching any equivalence class of R from s1 is the same
as that of s2.

Definition 14.23 (CTMC bisimilarity). A CTMC bisimulation is a relation R such
that R ✓ F(R) and the CTMC bisimilarity is the relation

' def
=

[

R✓F(R)

R.

Let us show how this construction works with an example. Abusing the notation,
in the following we write a(s, I) instead of gC(s, I).

b1

2

��
a1

0.2

??

0.2
��

c1
0.8 // d1

b2

2

??

a2
0.4 // b3

2 // c2
0.8 // d2

Fig. 14.6: CTMC bisimilarity

Example 14.8. Let us consider the two CTMCs in Figure 14.6. We argue that the
following equivalence relation R identifies bisimilar states:

R = { {a1,a2},{b1,b2,b3},{c1,c2},{d1,d2} }.

Let us show that R is a CTMC bisimulation: whenever two states are related, we
must check that the sum of the rates from them to the states on any equivalence class
coincide. For a1 and a2, we have

a(a1,{a1,a2}) = a(a2,{a1,a2}) = 0
a(a1,{b1,b2,b3}) = a(a2,{b1,b2,b3}) = 0.4

a(a1,{c1,c2}) = a(a2,{c1,c2}) = 0
a(a1,{d1,d2}) = a(a2,{d1,d2}) = 0.
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For b1,b2,b3 we have

a(b1,{c1,c2}) = a(b2,{c1,c2}) = a(b3,{c1,c2}) = 2.

Note that we no longer mention all remaining trivial cases concerned with the
other equivalence classes, where a returns 0, because there are no transitions to
consider.

Finally, we have one last non trivial case to check:

a(c1,{d1,d2}) = a(c2,{d1,d2}) = 0.8.

14.4.7 DTMC Bisimilarity

One could think that the same argument about bisimilarity that we have exploited
for CTMCs can be also extended to DTMCs. It is easy to show that if a DTMC has
no deadlock states, in particular if it is ergodic, then bisimilarity becomes trivial
(see Problem 14.1). This does not mean that the concept of bisimulation on ergodic
DTMCs is useless, in fact these relations (finer than bisimilarity) can be used to
factorise the chain (lumping) in order to study particular properties.

If we consider DTMCs with some deadlock states, then bisimilarity can be non
trivial. Let us define the function gD : S !√(S) ! (R+1) as follows:

gM(s)(I) =

⇢
⇤ if a(s) = ⇤
Âs02I a(s)(s0) otherwise

Correspondingly, we set F :√(S) !√(S) to be defined as:

s1 F(R) s2
def
= 8I 2 S/⌘R . gD(s1)(I) = gD(s2)(I).

In this case any two deadlock states s1,s2 are bisimilar, because

8I. gD(s1)(I) = gD(s2)(I) = ⇤

and they are separated from any non deadlock state s, as

8I. gD(s1)(I) = ⇤ 6= gD(s)(I) 2 R.

Problems

14.1. Prove that the bisimilarity relation in a DTMC a : S ! (D(S)+ 1) without
deadlock states (and in particular, when it is ergodic) is always the universal relation
S ⇥S.
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14.2. A mouse runs through the maze shown below.

    

11.5. MEAN FIRST PASSAGE TIME 467

2 43

65

1

Figure 11.7: Maze for Exercise 7.

6 For the Land of Oz example (Example 11.1), make rain into an absorbing
state and find the fundamental matrix N. Interpret the results obtained from
this chain in terms of the original chain.

7 A rat runs through the maze shown in Figure 11.7. At each step it leaves the
room it is in by choosing at random one of the doors out of the room.

(a) Give the transition matrix P for this Markov chain.

(b) Show that it is an ergodic chain but not a regular chain.

(c) Find the fixed vector.

(d) Find the expected number of steps before reaching Room 5 for the first
time, starting in Room 1.

8 Modify the program ErgodicChain so that you can compute the basic quan-
tities for the queueing example of Exercise 11.3.20. Interpret the mean recur-
rence time for state 0.

9 Consider a random walk on a circle of circumference n. The walker takes
one unit step clockwise with probability p and one unit counterclockwise with
probability q = 1 � p. Modify the program ErgodicChain to allow you to
input n and p and compute the basic quantities for this chain.

(a) For which values of n is this chain regular? ergodic?

(b) What is the limiting vector w?

(c) Find the mean first passage matrix for n = 5 and p = .5. Verify that
mij = d(n � d), where d is the clockwise distance from i to j.

10 Two players match pennies and have between them a total of 5 pennies. If at
any time one player has all of the pennies, to keep the game going, he gives
one back to the other player and the game will continue. Show that this game
can be formulated as an ergodic chain. Study this chain using the program
ErgodicChain.

At each step it stays in the room or it leaves the room by choosing at random one
of the doors (all choices have equal probability).

1. Draw the transition graph and give the matrix P for this DTMC.
2. Show that it is ergodic and compute the steady state distribution.
3. Assuming the mouse is initially in room 1, what is the probability that it is in

room 6 after three steps?

14.3. Show that the DTMC described by the matrix
������

1
4 0 3

4
0 1 0
0 0 1

������

has more than one stationary distribution. Explain why it is so.

14.4. With the Markov chain below we intend to represent the scenario where Mario,
a taxi driver, is looking for costumers. In state s1, Mario is in the parking place
waiting for costumers, which arrive with probability b. Then Mario moves to the
busy state s3, with probabilities c of staying there and 1 � c of moving back to s1.
Alternatively, Mario may decide, with probability s, of moving around (state s2),
driving in the busiest streets of town looking for clients, which may show up with
probability g.

s1

1�s�b
↵↵

s

  

b

~~
s3

c

KK

1�c

33

s2

1�g

SSg
oo

1. Check that the Markov chain above is ergodic.
2. Compute the steady state probabilities p1, p2 and p3 for the three states s1, s2 and

s3 as functions of the parameters b, c, g and s.
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3. Evaluate the probabilities for suitable values of the parameters, e.g.,

b = 0.5, c = 0.5, g = 0.8, s = 0.3

4. Prove that, when it is very likely to find costumers on the streets (i.e., when g = 1),
in order to maximise p3, Mario must always move around (i.e., he must choose
s = 1�b).

14.5. A state si of a Markov chain is called absorbing if a(si)(si) = 1, and a Markov
chain is absorbing if it has at least one absorbing state. Can an absorbing Markov
chain be ergodic? Explain.

14.6. A machine can be described as being in three different states: (R) under repair,
(W) waiting for a new job, (O) operating.

• While the machine is operating the probability to break down is 1
20 = 0.05 and

the probability to finish the task (and go to waiting) is 1
10 = 0.1.

• If the machine is under repair there is a 1
10 = 0.1 probability to get repaired, and

then the machine will become waiting.
• A broken machine is never brought directly (in one step) to operation.
• If the machine is waiting, there is a 9

10 = 0.9 probability to get into operation.
• A waiting machine does not break.

1. Describe the system as a DTMC, draw the corresponding transition system and
define the transition probability matrix. Is it ergodic?

2. Assume that the machine is waiting at time t. What is the probability to be
operating at time t +1? Explain.

3. What is the probability that the machine is operating after a long time? Explain.

14.7. A certain calculating machine uses only the digits 0 and 1. It is supposed to
transmit one of these digits through several stages. However, at every stage, there is
a probability p that the digit that enters this stage will be changed when it leaves and
a probability q = 1� p that it won’t.

1. Form a Markov chain to represent the process of transmission. What are the states?
What is the matrix of transition probabilities?

2. Assume that the digit 0 enters the machine: what is the probability that the
machine, after two stages, produces the digit 0? For which value of p is this
probability minimal?

14.8. Consider a CTMC with state space S = {0,1}. The only possible transitions
are described by the rates q0,1 = l and q1,0 = µ . Compute the following:

1. the embedded DTMC;
2. the state probabilities p(t) in terms of the initial distribution p(0);
3. the steady state probability distribution.
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14.9. Consider a CTMC with N +1 states representing the number of possible active
instances of a service, from 0 to a maximum N. Let i denote the number of currently
active instances. A new instance can be spawn with rate

li
def
= (N � i)⇥l

for some fixed l , i.e., the rate decreases as there are more instances already running,2
while an instance is terminated with rate

µi
def
= i⇥ µ

for some fixed µ , i.e., the rate increases as there are more active instances to be
terminated.

1. Model the system as a CTMC;
2. Compute the infinitesimal generator matrix;
3. Find the steady state probability distribution.

14.10. Let us consider the CTMC

s0
l1

44

l1

⌫⌫

s1

l2
tt

s2

l1
**

l1

UU

s3
l2

jj

1. What is the probability to sojourn in s0 for some time t?
2. Assume l2 > 2l1: are there some bisimilar states?

14.11. Prove that computing the steady state distribution of a CTMC by solving the
system of (homogeneous, normalised) linear equations p Q = 0 gives the same result
as computing the steady state distribution of the embedded DTMC.

2 Imagine the number of client is fixed, when i instances of the service are already active to serve i
clients, then the number of clients that can require a new instance of the service is decreased by i.
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