Roberto Bruni, Ugo Montanari

Models of Computation

— Monograph —

May 16, 2016

Springer

Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.

Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’ Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the synfax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce A-notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL: ‘higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

X Preface

CCS, m: concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.

Part III introduces some basic material on process algebraic models and temporal
and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as m-calculus, are just overviewed. The material in-Part III can be used
in conjunction with other textbooks, e.g., on model checking or zz-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part I'V outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:

Imperative Functional
Chapter 3 Chapter 7
Chapter 4 structural Chapter 8
recursion 2

Chapter 5 Chapter 9
v
Chapter 6 Chapter 10
<X
CPO and
fixpoint

lambda
notation

B K
¢ LTS and Probabilisti
Chapter 11 | anc N Chapter 11
bisimulation
N
hapter 13

induction
and

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.

Preface

CPO and fixpoint:

Lambda-notation:

LTS and bisimulation:

HM-logic:

xi

the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

A-notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at

the end of the book.

Pisa,
February 2016

Roberto Bruni
Ugo Montanari

Acknowledgements

We want to thank our friend and colleague Pierpaolo Degano for encouraging us to
prepare this book and submit it to the EATCS monograph series. We thank Ronan
Nugent and all the people at Springer for their editorial work. We acknowledge all
the students of the course on Models of Computation (MOD) in Pisa for helping us
to refine the presentation of the material in the book and to eliminate many typos
and shortcomings from preliminary versions of this text. Last but not least, we thank
Lorenzo Galeotti, Andrea Cimino, Lorenzo Muti, Gianmarco Saba, Marco Stronati,
former students of the course on Models of Computation, who helped us with the
IXTEX preparation of preliminary versions of this book, in the form of lecture notes.

Xiii

Contents

Part I Preliminaries

1 Inmtroduction.......... 3
1.1 Structure and Meaning0..ee oo, 3
1.1.1 Syntax, Types and Pragmatics..........c............... 4

112 Semanticsoouuneeeiie et 4

1.1.3 Mathematical Models of Computation................... 6

1.2 A Taste of Semantics Methods: Numerical Expressions 9
1.3 Applications of Semanticscou. et eneenn.. 17
1.4 Key Topics and Techniqueso ..., 20
1.4.1 Induction and Recursion 20

1.4.2 Semantic Domainsc..... ... o i, 22

1.4.3 Bisimulation i 24

1.4.4 Temporal and Modal Logicsoiviinn... 25

1.4.5° Probabilistic Systems i, 25

1.5 Chapters Contents and Reading Guide 26
1.6 FurtherReading......... 28
Referenceso 30
2 Preliminaries 0. 33
2.1 NOTATOM &« . v ettt et e ettt e e e e e e e 33
2.1.1 BasicNotationccooiiiiiiiiiiinieinna.. 33
2.1.2 Signaturesand Termscouineiineiinnennn .. 34

2.1.3 Substitutions 35

2.1.4 Unification Problem 35

2.2 Inference Rules and Logical Systems 37
2.3 Logic Programmingcouuuuiiieiiiinneeennnnn... 45
Problems 47

Part I IMP: a simple imperative language

XV

Xvi

Contents

Operational Semanticsof IMP 53
3.1 Syntaxof IMP 53
3.1.1 Arithmetic Expressionsc.ooiioii.. 54

3.1.2 Boolean Expressionsoiiiiiiiiin. 54

313 Commands ...t 55

3.1.4 ADStract Syntaxoeiiiiii i 55

3.2 Operational Semanticsof IMP................................ 56
321 Memory Stateoutuunii et e 56

322 InferenceRules........., 57

323 Examples........oiiiii e 62

3.3 Abstract Semantics: Equivalence of Expressions and Commands ... 66
3.3.1 Examples: Simple Equivalence Proofs................... 67

3.3.2 Examples: Parametric Equivalence Proofs 69

3.3.3 Examples: Inequality Proofsc......... 71

3.3.4 Examples: Diverging Computationso..unooon. 73
Problems 75
Induction and Recursion0. e 79
4.1 Noether Principle of Well-founded Induction 79
4.1.1 Well-founded Relations oo .. 79
4.1.2 Noether Induction.0 a ... 85

4.1.3 Weak Mathematical Inductionc...c....... 86
4.1.4 Strong Mathematical Induction. 87

4.1.5 Structural Induction e 87

4.1.6 Induction on Derivationsc....... 90
4177 RuleInductionco i 91

4.2 Well-founded Recursion, 95
Problems . ..o 100
Partial Orders and Fixpointsou... 105
5.1 Orders and Continuous Functions 105
501 Orders 106

5.1.2. HasseDiagramsc.ouiiiiiiiinnneennnnn. 108

5.3 Chains ..o cut 112
5.1.4 Complete Partial Orders 113

5.2 Continuity and Fixpoints i ... 116
5.2.1 Monotone and Continuous Functions.................... 116

5.2.2 FIXPOINtS . .o ov ittt 118

5.3 Immediate Consequence Operator.c.c..vveeeennnn.... 121
5.3.1° The Operator Roovuueee e 122

532 FIXPOINtOF R ..ot 123

Problems 126

Contents
6 Denotational Semanticsof IMP
6.1 A-NOtAtionottt
6.1.1 A-Notation: MainIdeascccoevvn...
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution
6.2 Denotational Semanticsof IMP...........
6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function @
6.2.2 Denotational Semantics of Boolean Expressions: The
Function Zo i
6.2.3 Denotational Semantics of Commands: The Function %
6.3 Equivalence Between Operational and Denotational Semantics
6.3.1 Equivalence Proofs For Expressionsc............
6.3.2 Equivalence Proof for Commandsc..............
6.4 Computational Inductiono i,
Problems

Part III HOFL: a higher-order functional language

7 Operational Semanticsof HOFL
7.1 Syntax of HOFL
711 Typed Termsot i

7.1.2 Typability and Typechecking

7.2 Operational Semanticsof HOFLc............
Problems

8 DomainTheory i,
8.1 The Flat Domain of Integer Numbers Z |

8.2 Cartesian Product of Two Domains...c........................

8.3 Functional Domainsc.0iiiiiiieiiinaa..

8.4 Lifting.t e

8.5 Function’s Continuity Theorems

8.6 Apply, Curryand Fix i,
Problems

9 Denotational Semantics of HOFL
9.1 HOFL Semantic Domainscooiiiiiineineenn..

9.2 HOFL Interpretation Function
0.2.1 CONStantSovte et e

0.2.2 Variables

9.2.3 Arithmetic Operatorsouueiiiunnneennnn..

924 Conditionalcc.iiiiiii e

9.2.5 Pairingt

9.2.6 Projections.coiiiiiiiiii i

9.2.7 Lambda Abstraction................oviiiiiernenn....

9.2.8 Function Applicationoiiiiiineeennn...

Xviii

10

Contents

9.2.9 ReCUISIONcoouuuiiiiiii i, 198
9.2.10 Eagersemanticsuiiiiiiiiiinaainnnnn. 198
9.2.11 Examples. ... 199

9.3 Continuity of Meta-language’s Functions....................... 200
9.4 Substitution Lemma and Other Properties 202
Problems 203
Equivalence between HOFL denotational and operational semantics . 207
10.1 HOFL: Operational Semantics vs Denotational Semantics. 207
10.2 COITECINESS . . « ¢ v vttt ettt e e e e et e e e e e e 208
10.3 Agreement on COnvergencec.couuuneeeeionn. .. 211
10.4 Operational and Denotational Equivalences of Terms............. 214
10.5 A Simpler Denotational Semantics oo ... 215
Problems 216

Part IV Concurrent Systems

11

CCS, the Calculus for Communicating Systems 223
11.1 From Sequential to Concurrent Systems........................ 223
11.2 Syntax of CCSo 229
11.3 Operational Semantics of CCSo ... 230
11.3.1 Inactive Processc.euiiiiuiinnuannnnnn. 230
11.3.2 Action Prefix oiime 230
11.3.3 ReStriction ou it i e 231
11.3.4 Relabellinguueeee it 231
11.3.5 ChOiCe ... v vt e 231
11.3.6 Parallel Composition0 ..o, 232
11.3.7 ReCUISIONottt 233
11.3.8 CCS with Value Passingc..... ..., 237
11.3.9 Recursive Declarations and the Recursion Operator. 238
11.4 Abstract Semantics Of CCS .oovv oot 239
11.4.1 GraphIsomorphismcoooiiiiiiana.. 239
11.4.2 Trace Equivalenceciiiiiniiennnn.. 241
11.4.3 Strong Bisimilarity, 243
11.5 Compositionalityueiiiuni ... 254
11.5.1 Strong Bisimilarity is a Congruence. 255
11.6 A Logical View to Bisimilarity: Hennessy-Milner Logic 257
11.7 Axioms for Strong Bisimilarity 261
11.8 Weak Semanticsof CCS....... i 263
11.8.1 Weak Bisimilarity................ .o, 264
11.8.2 Weak Observational Congruence 266
11.8.3 Dynamic Bisimilarity................ 267

Problems 268

Contents XiX

12 Temporal Logic and the yu-Calculus 273
12.1 Specification and Verification 273
12.2 Temporal Logicooou 274

12.2.1 Linear Temporal Logic, 275
12.2.2 Computation Tree Logic, 277
123 p-Calculus . .ooee e 280
12.4 Model Checkingt 284
Problems 286

13 7m-Calculus 289
13.1 Name Mobility 289
13.2 Syntax of the m-calculusot 293
13.3 Operational Semantics of the w-calculus 294

13.3.1 Inactive Process il 295
13.3.2 Action Prefix.. ... 295
13.3.3 Name Matching 0. ooiiiiiaa.. 296
13.34 ChOICe ... v vttt e 296
13.3.5 Parallel Compositionc..on.uiiitiiiiineeenn... 296
13.3.6 Restrictiont 297
13.3.7 Scope EXtrusionoouiiiiineneiinennn.n. 297
13.3.8 Replicationooiiiiiiiiii i, 298
13.3.9 A Sample Derivation c..oe. .t 298
13.4 Structural Equivalence of z-calculus. 299
13.4.1 Reduction semanticsoue...uehuuununnnnnn. 299
13.5 Abstract Semantics of the 7-calculuso oL 300
13.5.1 Strong Early Ground Bisimulations 301
13.5.2 Strong Late Ground Bisimulations 302
13.5.3 Compositionality and Strong Full Bisimilarities 303
13.5.4 Weak Early and Late Ground Bisimulations 304
Problems 305

Part V Probabilistic Systems

14 Measure Theory and Markov Chains 309
14.1 Probabilistic and Stochastic Systems 309
14.2 Probability Space:ttt 310

14.2.1 Constructingao-field 311
14.3 Continuous Random Variables................................ 313
14.3.1 Stochastic Processes.c.oouiiiiiiiinenn... 318
14.4 Markov Chainsottt 319
14.4.1 Discrete and Continuous Time Markov Chain 319
1442 DTMCasLTS. e 320
14.4.3 DTMC Steady State Distribution 323
1444 CTMCasLTS. e 324

14.4.5 Embedded DTMC of aCTMCccouunnn. 325

XX Contents

14.4.6 CTMC Bisimilarity i, 326

14.477 DTMC Bisimilaritycoo it 327

Problems 328

15 Markov Chains with Actions and Non-determinism 333
15.1 Discrete Markov Chains With Actions 333
15.1.1 Reactive DTMCooiiiiiie it 334

15.1.2 DTMC With Non-determinismc.coouun... 336

Problems 339

16 PEPA - Performance Evaluation Process Algebra 341
16.1 From Qualitative to Quantitative Analysiscc.o...... 341

16.2 CSP . . 342
16.2.1 Syntax of CSP. 342

16.2.2 Operational Semantics of CSPc........ 343

16.3 PEPA. ... 344
16.3.1 Syntax of PEPA0 . . . oo 344

16.3.2 Operational Semanticsof PEPA 346

Problems e 351
GloSSarY e 355

Solutions e 357

Acronyms

2

|
U
Q
S

IR 2 11
<

2 2
= ™

l

l

Q|
Ny~

{
RS

]

ack
Aexp

Bexp

CCS
Com
CPO
CPO |
CSP
CTL
CTMC
DTMC

operational equivalence in IMP (see Definition 3.3)
denotational equivalence in HOFL (see Definition 10.4)
operational equivalence in HOFL (see Definition 10.3)
CCS strong bisimilarity (see Definition 11.5)

CCS weak bisimilarity (see Definition 11.16)

CCS weak observational congruence (see Section 11.8.2)
CCS dynamic bisimilarity (see Definition 11.18)

m-calculus strong early bisimilarity (see Definition 13.3)
m-calculus strong late bisimilarity (see Definition 13.4)
m-calculus strong early full bisimilarity (see Section 13.5.3)
m-calculus strong late full bisimilarity (see Section 13.5.3)
n-calculus weak early bisimilarity (see Section 13.5.4)
n-calculus weak late bisimilarity (see Section 13.5.4)
interpretation function for the denotational semantics of IMP arithmetic
expressions (see Section 6.2.1)

Ackermann function (see Example 4.18)

set of IMP arithmetic expressions (see Chapter 3)
interpretation function for the denotational semantics of IMP boolean
expressions (see Section 6.2.2)

set of IMP boolean expressions (see Chapter 3)

set of booleans

interpretation function for the denotational semantics of IMP com-
mands (see Section 6.2.3)

Calculus of Communicating Systems (see Chapter 11)

set of IMP commands (see Chapter 3)

Complete Partial Order (see Definition 5.11)

Complete Partial Order with bottom (see Definition 5.12)
Communicating Sequential Processes (see Section 16.2)
Computation Tree Logic (see Section 12.2.2)

Continuous Time Markov Chain (see Definition 14.15)
Discrete Time Markov Chain (see Definition 14.14)

XXi

xxii

Env
fix
FIX
gcd
HML
HM-Logic
HOFL
IMP
int
Loc
LTL
LTS
lub

PEPA
Pf

PI
PO
PTS

Tf
Var

Acronyms

set of HOFL environments (see Chapter 9)

(least) fixpoint (see Definition 5.2.2)

(greatest) fixpoint

greatest common divisor

Hennessy-Milner modal Logic (see Section 11.6)
Hennessy-Milner modal Logic (see Section 11.6)

A Higher-Order Functional Language (see Chapter 7)

A simple IMPerative language (see Chapter 3)

integer type in HOFL (see Definition 7.2)

set of locations (see Chapter 3)

Linear Temporal Logic (see Section 12.2.1)

Labelled Transition System (see Definition 11.2)

least upper bound (see Definition 5.7)

set of natural numbers

set of closed CCS processes (see Definition 11.1)
Performance Evaluation Process Algebra (see Chapter 16)
set of partial functions on natural numbers (see Example 5.13)
set of partial injective functions on natural numbers (see Problem 5.12)
Partial Order (see Definition 5.1)

Probabilistic Transition System (see Section 14.4.2)

set of real numbers

set of HOFL types (see Definition 7.2)

set of total functions from N to N (see Example 5.14)
set of HOFL variables (see Chapter 7)

set of integers

Part IV
Concurrent Systems

S
Q
i3

N

This part focuses on models and logics for concurrent, interactive systems. Chap-
ter 11 defines the syntax, operational semantics and abstract semantics of CCS, a
calculus of communicating systems. Chapter 12 introduces several logics for the
specification and verification of concurrent systems, namely LTL, CTL and the u-
calculus. Chapter 13 studies the 7-calculus, an enhanced version of CCS, where new
communication channels can be created dynamically and communicated to other
processes.

Chapter 12
Temporal Logic and the y-Calculus

Formal methods will never have a significant impact until they
can be used by people that don’t understand them. (Tom Melham)

Abstract As we have briefly discussed in the previous chapter, modal logic is a
powerful tool that allows to check important behavioural properties of systems. In
Section 11.6 the focus was on Hennessy-Milner logic, whose main limitation is due
to its finitary structure: a formula can express properties of states up to a finite number
of steps ahead and thus only local properties can be investigated. In this chapter we
show some extensions of Hennessy-Milner logic that increase the expressiveness of
the formulas by defining properties about finite and infinite computations. The most
expressive language that we present is the u-calculus, but we start by introducing
some other well-known logics for program verification, called temporal logics.

12.1 Specification and Verification

Reactive systems, such as those composed by parallel and distributed processes, are
characterised by non-terminating and highly nondeterministic behaviour. Reactive
systems have become widespread in our daily activities, from banking to healthcare,
and in software-controlled safety critical systems, from railways control systems
to space craft control systems. Consequently, gaining maximum confidence about
their trustworthiness has become an essential, primary concern. Intensive testing
can facilitate the discovery of bugs, but cannot guarantee their absence. Moreover,
developing test suites that grant full coverage of possible behaviours is difficult in
the case of reactive systems, due to their above mentioned intrinsic features.
Fuelled by impressive, world fame disaster stories of software failures' that
(maybe) could have been avoided if formal methods would have been employed, over

! Top famous stories include the problems with the Therac 25 radiation therapy engine that in the
period 1985-1987 caused the death of several patients by releasing massive overdoses of radiation;
the floating-point division bug in the Intel Pentium P5 processor due to an incorrectly coded lookup
table and discovered in 1994 by Professor Thomas R. Nicely at Lynchburg College; and the launch
failure in Ariane 5.01 maiden flight due to an overflow in data conversion that caused a hardware
exception and finally led to self-destruction.

273

274 12 Temporal Logic and the p-Calculus

the years, formal methods have provided an extremely useful support in the design of
reliable reactive systems and in gaining high confidence that their behaviour will be
correct. The application of formal logics and model checking is nowadays common
practice in the early and advanced stages of software development, especially in the
case of safety-critical industrial applications. While disaster stories do not prove,
by themselves, that failures could have been avoided, in the last three decades
many success stories can be found in several different areas, such as, e.g., that of
mobile communications and security protocols, chip manufacturing, air-traffic control
systems, nuclear plants emergency systems.

Formal logics serve to write down unambiguous specifications about how a
program is supposed to behave and to reason about system correctness. Classically,
we can divide the properties to be investigated in three categories:

safety: properties expressing that something bad will not happen;
liveness: properties expressing that something good will happen;
fairness: properties expressing that something good will happen infinitely often.

The first step in extending HM-logic is to introduce the concept of time, which
was present only in a primitive form in the modal operators. This will extend the
expressiveness of modal logic, making it able to talk about concepts like “at the next
instant of time”, “always”,“never” or “sometimes”. When several options are possible,
we will also use path quantifiers, meaning “for all possible future computations” and
“for some possible future computation”. In order to represent the concept of time in
our logics we have to model it in some mathematical fashion. In our discussion we
assume that the time is discrete and infinite.

We start by introducing temporal logics and then present the pt-calculus, which
comes equipped with least and greatest fixpoint operators. Notably, most modal
and temporal logics can be defined as fragments of the p-calculus, which in turn
provides an elegant and uniform framework for comparison and system verification.
Translations from temporal logics to the p-calculus are of practical relevance, because
not only they allow to re-use algorithms for the verification of p-calculus formulas
to check if temporal logics are satisfied, but also because temporal logic formulas are
often more readable than specifications written directly in the p-calculus.

12.2 Temporal Logic

Temporal logic shares similarities with HM-logic, but:

e temporal logic is based on a set of atomic propositions whose validity is associated
with a set of states, i.e., the observations are taken on states and not on (actions
labelling the) arcs;
temporal operators allow to look further than the “next” operator of HM-logic;
as we will see, the choice of representing the time as linear (linear temporal logic)
or as a tree (computation tree logic) will lead to different types of logic, that
roughly correspond to the trace semantic view vs the bisimulation semantics view.

12.2 Temporal Logic 275

12.2.1 Linear Temporal Logic

In the case of Linear Temporal Logic (LTL) the time is represented as a line. This
means that the evolutions of the system are linear, they proceed from a state to
another without making any choice. The formulas of LTL are based on a set P of
atomic propositions p, which can be composed using the classical logic operators
together with the following temporal operators:

O: is called next operator. The formula O¢ means that ¢ is true in the next state
(i.e., in the next instant of time). Some literature uses X or N in place of O.

F: iscalled finally operator. The formula F'¢ means that ¢ is true sometime in the
future.

G: The formula G¢ means that ¢ is always (globally) valid in the future.

U: is called until operator. The formula ¢oU ¢; means that ¢ is true until the first
time that ¢ is true.

LTL is also called Propositional Temporal Logic (PTL).

Definition 12.1 (LTL formulas). The syntax of LTL formulas is defined as follows:

¢ = true | false | =9 | goA¢1 [GV |
PlOO|FO[Go|dU 0

where p € P is any atomic proposition.

In order to represent the state of the system while the time elapses we introduce
the following mathematical structure.

Definition 12.2 (Linear structure). A linear structure is a pair (S, P), where P is
a set of atomic propositions and S : P — (N).is a function assigning to each
proposition p € P the set of time instants in which it is valid; formally:

Vp e P S(p) = {n € N|n satisfies p}

In a linear structure, the natural numbers 0, 1,2. .. represent the time instants, and
the states in them, and S represents, for every proposition, the states where it holds,
or, alternatively, it represents for every state the propositions it satisfies. The temporal
operators of LTL allows to quantify (existentially and universally) w.r.t. the traversed
states. To define the satisfaction relation, we need to check properties on future states,
like some sort of “time travel.” To this aim we define the following shifting operation
on S.

Definition 12.3 (Shifting). Let (S, P) be a linear structure. For any natural number &
we let (S¥,P) denote the linear structure where:

VpeP SK(p)={n—k|n>k AneS(p)}

As done for the HM-logic, we define the a notion of satisfaction |= as follows.

276 12 Temporal Logic and the p-Calculus

Definition 12.4 (LTL satisfaction relation). Given a linear structure (S, P) we de-
fine the satisfaction relation |= for LTL formulas by structural induction:

S = true

SE ¢ if it is not true that S = ¢
SE ¢ if S|=¢pand S = ¢
S)Z(P()\/(Pl ifS)Z(poOI‘S':(Pl

SEp if 0 € S(p)
SEO0¢ if S' = ¢
SEF¢ if 3k € N such that $* = ¢
SEGY if Vk € N it holds S* |= ¢

S ¢oU ¢ if Ik € N such that S¥ |= ¢; and Vi < k. S |= ¢

Two LTL formulas ¢ and y are called equivalent, written ¢ = v if for any S
we have S |= ¢ iff S |= y. From the satisfaction relation it is easy to check that the
operators F and G can be expressed in terms of the until operator as follows:

F¢=trueU ¢
Go=—(F-¢) = (truelU —¢)

In the following we let
def
$o= 01 = 61V o

denote the logical implication.
Other commonly used operators are weak until (W), release (R) and before (B).
They can be derived as follows:

W: The formula ¢9 W ¢y is analogous to the ordinary “until” operator except for
the fact that ¢o W ¢ is also true when ¢ holds always, i.e., ¢o U ¢; requires
that ¢; holds sometimes in the future, while this is not necessarily the case for
¢o W ¢y. Formally, we have:

def

QoW o= (9Ud1)V G

R: The formula ¢y R ¢; asserts that ¢; must be true until and including the point
where ¢y becomes true. As in the case of weak until, if ¢y never becomes true,
then ¢; must hold always. Formally, we have:

oo R ¢1 &f o1 W (o1 A ¢o)

B: The formula ¢y B ¢; asserts that ¢y holds sometime before ¢; holds or ¢; never
holds. Formally, we have:

00 B 1 & ¢ R ¢y

We can graphically represent a linear structure S as a diagram like

12.2 Temporal Logic 277
O—=1—-—=k—--

where additionally each node can be tagged with some of the formulas it satisfies:
we write kg, g, if S* = @1 A+ A @y

For example, given p,q € P, we can visualise the linear structures that satisfy
some basic LTL formulas as follows:

Xp 0—=1,—=2—--
Fp 0— = (k—1)—=k,— (k+1)—---
Gp 0p =1y = —ky—---
pUgq 0, = 1,—-—=(k—=1)) = kg— (k+1)—---

W 0p =1, == (k=1), = kg— (k+1)=---
PW 4 0p = 1p— o= kp— -

R 0= 1g—- = (k=1)g = kpg = (k+1)— -
prtq Oy = 1= —kyg—---

B Oy —=1og——=(k—1)g—=koygp— (k+1)—---
P>4 Og—=1og— = kg —---

We now show some examples that illustrate the expressiveness of LTL.

Example 12.1. Consider the following LTL formulas:

G —p: p will never happen, so it is a safety property.

p = F q: if p happens now then also ¢ will happen sometime in the future.

GF p: p happens infinitely many times in the future, so it is a fairness property.
F G p: p will hold from some time in the future onward.

Finally, G(req = (req U grant)) expresses the fact that whenever a request is
made it holds continuously until it is eventually granted.

12.2.2 Computation Tree Logic

In this section we introduce CTL and CTL*, two logics which use trees as models
of time: computation is no longer deterministic along time, but at each instant some
possible futures can be taken. CTL and CTL* extend LTL with two operators which
allow to express properties on paths over trees. The difference between CTL and
CTL* is that the former is a restricted version of the latter. So we start by introducing
the more expressive logic CTL*.

278 12 Temporal Logic and the p-Calculus

12.2.2.1 CTL*

CTL* still includes the temporal operators O, F, G and U': they are called linear
operators. However, it introduces two new operators, called path operators:

E: The formula E ¢ (to be read “possibly ¢”’) means that there exists some path
that satisfies ¢. In the literature it is sometimes written 3 ¢.

A: The formula A ¢ (to be read “inevitably ¢”) means that each path of the tree
satisfies ¢, i.e., that ¢ is satisfied along all paths. In the literature it is sometimes
written V ¢.

Definition 12.5 (CTL* formulas). The syntax of CTL* formulas is as follows:

¢ = true | false | =¢ | poA¢1 | doV ¢1 |
plOO[Fo|Go| ¢oU |
E¢|A¢

where p € P is any atomic proposition.

In the case of CTL*, instead of using linear structures, the computation of the
system over time is represented by using infinite trees as explained below.

We recall that a (possibly infinite) tree 7 = (V, —) is a directed graph with vertices
in V and directed arcs given by —C V %V, where there is one distinguished vertex
vo € V (called root) such that there is exactly one directed path from vy to any other
vertex v € V.

Definition 12.6 (Infinite tree). Let 7 = (V,—) be a tree, with V the set of nodes, vo
the root and —C V X V_the parent-child relation. We say that T is an infinite tree if
— is total on V, namely if every node has a child:

YweV.dweV.yv —>w

Definition 12.7 (Branching structure). A branching structure is a triple (T,S, P),
where P-is a set of atomic propositions, T = (V,—) is an infinite tree and S : P —
(V) is a function from the atomic propositions to subsets of nodes of V defined as
follows:

Vp e P.S(p) ={x €V |xsatisfies p}

In CTL* computations are described as infinite paths on infinite trees.

Definition 12.8 (Infinite paths). Let 7 = (V,—) be an infinite tree and = = vg, vy, ...
be an infinite sequence of nodes in V. We say that 7 is an infinite path over T if

Vie N.vi = v

Of course, we can view an infinite path 7 = vg,vy,... as a function 7 : N - V
such that (i) = v; for any i € N. As for the linear case, we need a shifting operators
on paths.

12.2 Temporal Logic 279

Definition 12.9 (Path shifting). Let 7 = vy, vy,... be an infinite path over T and
k € N. We let the infinite path % be defined as follows:

k
T = Vi, Vi15---

In other words, for an infinite path 7 : N — V we let ¥ : N = V be the function
defined as 7% (i) = m(k+1i) for all i € N.

Definition 12.10 (CTL" satisfaction relation). Let (7,5, P) be a branching struc-
ture and @ = v, v},Vvy, ... be an infinite path. We define the satisfaction relation =
inductively as follows:

e state operators:

S, = true

S, = o if it is not true that S, 7 |= ¢
S,ﬂ"Z(P()/\(P] ifS,TE'Z(P()aIldS,TC):(P]
S7ﬂ'.|:¢0\/¢1 ifSa”|:¢00rSa7r|:¢l

SStEPp ifvg € S(p)
StEO0¢ if S, ! = ¢
SSTEF¢ if 3i € N such that S, 7' |= ¢
S,t=G¢ if Vi € N it holds S, 7' = ¢

S,k ¢oU ¢; if Ji € Nsuchthat S, 7' = ¢ and Vj <i. S,/ |= ¢
e path operators:?

S,m=E¢ if there exists 7' = v, |, v}, ... such that S, 7’ |= ¢
S,m = A¢ if for all paths #’ =vy,Vv],5,... we have S, " |= ¢

Two CTL* formulas ¢ and y are called equivalent, written ¢ = y if for any S, 7
we have S, =9 iff S, @ = y.

Example 12.2. Consider the following CTL* formulas:

E O ¢: is analogous to the HM-logic formula ¢ ¢.

AGp: means that p happens in all reachable states.

EF p: means that p happens in some reachable state.

AF p: means that on every path there exists a state where p holds.

E (pUq): means that there exists a path where p holds until g.
AGEF p: inevery future exists a successive future where p holds.

12.2.2.2 CTL

The formulas of CTL are obtained by restricting CTL*. Let {O, F,G,U } be the set
of linear operators, and {E,A} be the set of path operators.

2 Note that in the case of path operators, only the first node v of 7 is relevant.

280 12 Temporal Logic and the p-Calculus

Definition 12.11 (CTL formulas). A CTL* formula is a CTL formula if all of the
followings hold:

1. each path operator appear only immediately before a linear operator;
2. each linear operator appears immediately after a path operator.

In other words, CTL allows only the combined use of path operators with linear
operators, like in £O, AO, EF, AF, etc. It is evident that CTL and LTL are both?
subsets of CTL*, but they are not equivalent to each other. Without going into the
detail, we mention that:

e no CTL formula is equivalent to the LTL formula F' G p;
e no LTL formula is equivalent to the CTL formula AG (p = (EOgAEO —q)).

Moreover, fairness is not expressible in CTL.

Finally, we note that all CTL formulas can be written in terms of the minimal set
of operators true, =, V, EG, EU, EO. In fact, for the remaining (combined) operators
we have the following logical equivalences:

EF(]) E(true U ¢)
~(EO—9)
AG¢ = —(EF—¢) = —E(true U —¢)
AF$ = A(trueU ¢) = —(EG—¢)
AU @) =~(E(-@U=(¢V9))VEG-9)

Example 12.3. All the CTL* formulas in Example 12.2 are also CTL formulas.

12.3 u-Calculus

Now we introduce the u-calculus. The idea is to add the least and greatest fixpoint
operators to modal logic. We remark that HM-logic was introduced not so much as a
language to write down system specifications, but rather as an aid to understanding
process equivalence from a logical point of view. As a matter of fact, many interesting
properties of reactive systems can be conveniently expressed as fixpoints. The two
operators that we introduce are the following:

ux. @: is the least fixpoint of the equation x = ¢.
vx. ¢: is the greatest fixpoint of x = ¢.

As a rule of thumb, we can think that least fixpoints are associated with liveness
properties, while greatest fixpoints with safety properties.

3 An LTL formula ¢ is read as the CTL* formula A¢. Namely, the structure where a LTL formula is
evaluated corresponds to a CTL* tree consisting of a set of traces.

12.3 p-Calculus 281

Definition 12.12 (u-calculus formulas). The syntax of p-calculus formulas is:

¢ == true | false | QoNQ1 | doV @1 |
plop[x][00[D¢ | px ¢ | vx o

where p € P is any atomic proposition and x € X is any predicate variable.

In the following, we let .% denote the set of p-calculus formulas. To limit the
number of parentheses and ease readability of formulas, we tacitly assume that modal
operators have higher precedence than logical connectives, and that fixpoint operators
have lowest precedence, meaning that the scope of a fixpoint variable extends as far
to the right as possible.

The idea is to interpret formulas over a transition system (with vacuous transition
labels): to each formula we associate the set of states of the transition system where
the formula holds true. Then, the least and greatest fixpoint corresponds quite nicely to
the notion of smallest and largest set of states where the formulas holds, respectively.

Since the powerset of the set of states is a complete lattice, in order to apply
the fixpoint theory we require that the semantics of any formula ¢ is defined using
monotone transformation functions This is the reason why we do not include general
negation in the syntax, but only in the form —p for p an atomic proposition. This way,
provided that all recursively defined variables are distinct, the p-calculus formulas
we use are said to be in positive normal form. Alternatively, we can allow general
negation and then require that in well-formed formulas any occurrence of a variable
x is preceded by an even number of negations. Then, any such formula can be put in
positive normal form by using De Morgan’s laws, double negation (——¢ = ¢) and
dualities:

~0p=0-9 —0P=0-¢ —px.¢=ve -9[*/] v ¢=px-9[*/]

Let (V,—) be an LTS (with vacuous transition labels), X be the set of predicate
variables and P be a set of propositions, we introduce a function p : PUX — g(V)
which associates to each proposition and to each variable a subset of states of the
LTS. Then we define the denotational semantics of p-calculus which maps each
U-calculus formula ¢ to the subset of states [@] p in which it holds (according to p).

Definition 12.13 (Denotational semantics of the p-calculus). We define the inter-
pretation function [-] : & — (PUX — #(V)) — (V) by structural recursion on
formulas as follows:

282 12 Temporal Logic and the p-Calculus

[true]p =V

[false] p = @
[9on¢ilp = [dolpNd:]p
[¢oV ei]p = [¢olpUle1]p

[plp = p(p)
[=rlp =V\p(p)
[x]p = px

[Oolp = {vI €[9]lp.v—V}
[Oo]p = {v[W.v=v=ve[9]p}
[ux. ¢]p = fix AS. [¢]p[*/]
[vx. ¢]p = FIX AS. [9]p[*/.]

where FIX denotes the greatest fixpoint.

The definitions are straightforward. The only equations that need some comments
are those related to the modal operators (¢ and [J¢: in the first case, we take as
[O¢] p the set of states v that have (at least) one transition toa state v that satisfies
¢; in the second case, we take as [(J¢] p the set of states v such that all outgoing
transitions lead to some states V' that satisfy ¢. Note that, as a particular case, a
state with no outgoing transitions trivially satisfy the formula (¢ for any ¢. For
example the formula [lfalse is satisfied by all and only deadlock states; vice versa
Otrue is satisfied by all and only non-deadlock states. Intuitively, we can note that the
modality ¢ ¢ is somewhat analogous to the CTL formula EO ¢, while the modality
O can play the role of AO ¢.

Fixpoints are computed in the CPO, of sets of states, ordered by inclusion:
((V),C). Union and intersections are of course monotone functions. Also the
functions associated with modal operators

AS v €S v} AS. {v|W.v=V=VeS}

are monotone. The least fixpoint of a function f : (V) — @(V) can then be com-
puted by taking the limit |J,cy /" (@), while for the greatest fixpoint, we take
Nuen S (V). In fact, when f is monotone, we have:

oCfl@)Cf(o)c--Cf(@)C--
V2SV)2 V)22 f"(V) 2
Example 12.4 (Basic examples). Let us consider the following formulas:

wx. x: [ux. x| p Ll fix 15. 5= .
In fact, let us approximate the result in the usual way:

So=9 N :(AS. S)S():S()

12.3 p-Calculus 283

VXx. Xx:

ux. Qx:

ux. Ox:

vx. Ox:

ux. pVvox:

[vx. x]p £ FIX AS.S=V.
In fact, we have

So=V S =(AS.5)So=So

[ux. Ox] p L fix AS. | esSv=Vi=0.
In fact, we have:

So=9 Si={v|Peagrv=Vi=0

[ux. Ox] p Ll fix As. {v|W.v=v =V eS}
By successive approximations, we get:
So =0
Si={|W.ov=V=Veal={|lvi}
= {v | v has no outgoing arc}
S ={v|W.v=vV=VeES}
= {v | v has outgoing paths of length at most 1}

Sp={v|W.v=V=VeS, |}
= {v| v has outgoing paths of length at most n — 1}

We can conclude that [px. Ox]| p = U;en Si is the set of vertices whose
outgoing paths have all finite length.

[vx. Ox]p LIRIX AS. {v|Woy—=Vv=Vest=V.

In fact, we have:
So=V Si={|W.voV=VeVvi=V

[ux. pVv Ox] p ©ix 28, p(p)u{v|I eS.v—=V}
Let us compute some approximations:
So =9
S1 = p(p)
Sy =p(p)Uiv[I ep(p).v—V}
= {v| v canreach some V' € p(p) in less than one step}

S, = {v|v canreach some V' € p(p) in less than n— 1 steps}

U S, = {v|v has a finite path to some V' € p(p)}
neN

284 12 Temporal Logic and the p-Calculus

Thus, the formula is similar to the CTL formula EF p, meaning that
some node in p(p) is reachable.

The p-calculus is more expressive than CTL* (and consequently than CTL and
LTL), in fact all CTL* formulas can be translated to p-calculus formulas. This
makes the p-calculus probably the most studied of all temporal logics of programs.
Unfortunately, the increase in expressive power we get from p-calculus is balanced
in an equally great increase in awkwardness: we invite the reader to check by
her/himself how relatively easy is to write down short t-calculus formulas whose
intended meanings remain obscure after several attempts to decipher them. Still,
many correctness properties can be expressed in a very concise and elegant way in
the p-calculus. The full translation from CTL* to u-calculus is quite complex and
we do not account for it here.

Example 12.5 (More expressive examples). Let us now briefly discuss some more
complicated examples:

ux. (pAOx)Vag: it corresponds to the CTL formula E(p U q).

ux. (pAOxAQx)Vgq: it corresponds to the LTL/CTL formula A(p U ¢). Note
that in this case the sub-formula ¢ x is necessary to discard
deadlock states.

vx. wy. (p AOx)V Qy: it corresponds to the CTL* formula EGF p: given a path,
wy. (p AOx)V.Oy means that after a finite number of steps
you find a vertex where both: (1) p holds, and (2) you can
reach a vertex where the property recursively holds.

Without increasing the expressive power of u-calculus, formulas can be extended
to deal with labelled transitions, in the style of extending HM-logic with recursion
(see Problem 12.10).

12.4 Model Checking

The problem of model checking consists in the exaustive, possibly automatic, verifi-
cation of whether a given model of a system meets or not a given logic specification
of the properties the system should satisfy, like absence of deadlocks.

The main ingredients of model checking are:

e an LTS M (the model) and a vertex v (the initial state);
e aformula ¢ (in temporal or modal logic) you want to check.

The problem of model checking is: does v in M satisfy ¢ ?
The result of model checking should be either a positive answer or some coun-
terexample explaining one possible reason why the formula is not satisfied.
Without entering in the details, one successful approach to model checking con-
sists of: 1) computing a finite LTS M-, that is to some extent equivalent to the
negation of the formula ¢ under inspection; roughly, each state in the constructed

12.4 Model Checking 285

LTS represents a set of LTL formulas that hold from that state; 2) computing some
form of product between the model M and the computed LTS M-4; roughly, this
corresponds to solving a non-emptiness problem for the intersection of (the languages
associated with) M and M-; 3) if the intersection is non-empty, then a finite witness
can be constructed that offers a counterexample to the validity of the formula ¢ in M.

In the case of u-calculus formulas, fixpoint theory gives a straightforward (itera-
tive) implementation for a model checker by computing the set of all and only states
that satisfy a formula by successive approximations. In model checking algorithms,
it is often convenient to proceed by evaluating formulas with the aid of dynamic
programming. The idea is to work in a bottom-up fashion: starting from the atomic
predicates that appear in the formula, we mark all the states with the sub-formulas
they satisfy. When a variable is encountered, a separate activation of the procedure is
allocated for computing the fixpoint of the corresponding recursive definition.

For computing a single fixpoint, the length of the iteration is in general transfinite
but is bounded at worst by the cardinal after cardinality of the lattice and in the
special case of (V) by the cardinal after the cardinality of V. In practice, many
systems can be modelled, at some level of abstraction, as finite state systems, in
which case a finite number of iterations (|V| + 1 at worst) suffices. When two or
more fixpoints of the same kind are nested within each other, then we can exploit
monotonicity to avoid restarting the computation of the innermost fixpoint at each
iteration of the outermost one. However, when least and greatest fixpoints are nested
in alternation, this optimisation is no longer possible and the time needed to model
check the formula is exponential w.r.t. the so called alternation depth of fixpoints in
the formula.

From a purely theoretical perspective, the hierarchy obtained by considering
formulas ordered according to the alternation depth of fixpoint operators gives more
expressive power as the alternation depth increases: model checking in the p-calculus
is proved to be in NP N coNP (u-calculus is closed under complementation).

From a pragmatic perspective, any reasonable specification requires at most
alternation depth 2 (i.e., it is unlikely to find correctness properties that require
alternation depth equal or higher than 3). Moreover, the dominant factor in the
complexity of model checking is typically the size of the model rather than the size of
the formula, because specifications are often very short: sometimes even exponential
growth in the specification size can be tolerable. For these reasons, in many cases, the
before mentioned, complex translation from CTL* formulas to p-calculus formulas
is able to guarantee competitive model checking.

In the case of reactive systems, the LTS is often given implicitly, as the one
associated with a term of some process algebra, because in this way the structure of
the system is handled more conveniently. However, as noted in the previous chapter,
even for finite processes, the size of their actual LTS can explode.

When it becomes unfeasible to represent the whole set of states, one approach is
to use abstraction techniques. Roughly, the idea is to devise a smaller, less detailed
model by suppressing inessential data from the original, fully detailed model. Then,
as far as the correctness of the larger model follows from the correctness of the
smaller model, we are guaranteed that the abstraction is sound.

286 12 Temporal Logic and the p-Calculus

One possibility to tackle the state explosion problem is to minimise the system
according to some suitable equivalence. Note that minimisation can take place also
while combining subprocesses and not just at the end. Of course, this technique is
viable only if the minimisation preserves all properties to be checked. For example,
the validity of any u-calculus formula is invariant w.r.t. bisimulation, thus we can
minimise LTSs up to bisimilarity before model checking them.

Another important technique to succinctly represent large systems is to take a
symbolic approach, like representing the sets of states where formulas are true in
terms of their boolean characteristic functions, expressed as ordered Binary Decision
Diagrams (BDDs). This approach has been very successful for the debugging and
verification of hardware circuits, but, for reasons not well understood, software
verification has proved more elusive, probably because programs lack some form of
regularity that commonly arises in electronic circuits. In the worst case, also symbolic
techniques can lead to intractably inefficient model checking.

Problems

12.1. Suppose there are two processes p; and p; that can access a single shared
resource r. We are given the following atomic propositions, fori = 1,2:

reg;: holds when process p; is requesting access to 7;
use;: holds when process p; has had access to r;
rel;: holds when process p; has released r.

Use LTL formulas to specify the following properties:

1. mutual exclusion: 7 is accessed by only one process at a time;

2. release: every time r is accessed by p;, it is released after a finite amount of time;

3. priority: whenever both p; and p; require access to r, p; is granted access first;

4. absence of starvation: whenever p; requires access to r, it is eventually granted
access to it.

12.2. Consider an elevator system serving three floors, numbered 0 to 2. At each
floor there is an elevator door that can be open or closed, a call button, and a light
that is on when the elevator has been called. Define a set of atomic propositions, as
small as possible, to express the following properties as LTL formulas:

.-adoor in not open if the elevator is not present at that floor;

. every elevator call will be served;

. every time the elevator serves a floor the corresponding light is turned off;
. the elevator will always return to floor O;

. arequest at the top floor has priority over all the other requests.

DN AW -

12.3. Consider the CTL* formula ¢ LAF G (pV O q). Explain the property associ-
ated with it and define a branching structure where it is satisfied. Is it a LTL formula?
Is it a CTL formula?

12.4 Model Checking 287

12.4. Prove that if the CTL* formula AO ¢ is satisfied, then also the formula O A ¢
is satisfied. Is the converse true?

12.5. Is it true that the CTL* formulas A G ¢ and G A ¢ are logically equivalent?

12.6. Given the p-calculus formula:

) Ly, (pVOx)A(gVDOx)

compute its denotational semantics and evaluate it on the LTS below:

CO—C)—) ¢

E)—5) P
12.7. Given the p-calculus formula ¢ . Qx, compute its denotational semantics,
spelling out what are the states that satisfy ¢, and evaluate it on the LTS below:

E— 09

12.8. Write a p-calculus formula ¢ representing the statement:
‘p is always true along any path leaving the current state.’

Write the denotational semantics of ¢ and evaluate it over the LTS below:

pq
pp,q

12.9. Write a p-calculus formula ¢ representing the statement:
‘there is some path where p holds until eventually g holds.’

Write the denotational semantics of ¢ and evaluate it over the LTS below:

p @‘

12.10. Let us extend the p-calculus with the formulas (A)¢ and [A]¢, where A is
a set of labels: they represent, respectively, the ability to perform a transition with
some label a € A and reach a state that satisfies ¢, and the necessity to reach a state
that satisfies ¢ after performing any transition with label a € A.

288 12 Temporal Logic and the p-Calculus

1. Define the semantics [(A)¢] p and [[A]¢] p.
2. Letus write (a1, ...,a,)¢ and [ay, ...,a,] @ in place of ({ay,...,a,})¢ and [{ay,...,a, }]0,
respectively. Compute the denotational semantics of the formulas

01 . (({@)true A (b)true) V p) A [a,b]x) (03 &f ux. pVa,b)x

and evaluate them on the LTS below:

	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax, Types and Pragmatics
	Semantics
	Mathematical Models of Computation

	A Taste of Semantics Methods: Numerical Expressions
	Applications of Semantics
	Key Topics and Techniques
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide
	Further Reading
	References

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems

	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of R"0362R

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems

	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Apply, Curry and Fix
	Problems

	Denotational Semantics of HOFL
	HOFL Semantic Domains
	HOFL Interpretation Function
	Constants
	Variables
	Arithmetic Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion
	Eager semantics
	Examples

	Continuity of Meta-language's Functions
	Substitution Lemma and Other Properties
	Problems

	Equivalence between HOFL denotational and operational semantics
	HOFL: Operational Semantics vs Denotational Semantics
	Correctness
	Agreement on Convergence
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems

	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	From Sequential to Concurrent Systems
	Syntax of CCS
	Operational Semantics of CCS
	Inactive Process
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Strong Bisimilarity

	Compositionality
	Strong Bisimilarity is a Congruence

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and the -Calculus
	Specification and Verification
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Inactive Process
	Action Prefix
	Name Matching
	Choice
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Compositionality and Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems

	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Probability Space
	Constructing a -field

	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions

