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DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.
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Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the syntax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce l -notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL: higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

ix
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CCS, p: concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.
Part III introduces some basic material on process algebraic models and temporal

and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as p-calculus, are just overviewed. The material in Part III can be used
in conjunction with other textbooks, e.g., on model checking or p-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part IV outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:
Imperative

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Functional
Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Concurrent
Chapter 11

Chapter 12

Chapter 13

Chapter 11

Chapter 12

Chapter 13

Probabilistic
Chapter 11

Chapter 12

Chapter 13

lambda 
notation

induction 
and 

structural 
recursion

CPO and
fixpoint

LTS and 
bisimulation

HM logic

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.
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CPO and fixpoint: the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

Lambda-notation: l -notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

LTS and bisimulation: Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

HM-logic: Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at
the end of the book.

Pisa, Roberto Bruni
February 2016 Ugo Montanari
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This part focuses on models and logics for concurrent, interactive systems. Chapter 11
defines the syntax, operational semantics and abstract semantics of CCS, a calculus
of communicating systems. Chapter 12 introduces several logics for the specification
and verification of concurrent systems, namely LTL, CTL and the µ-calculus. Chap-
ter 13 studies the p-calculus, an enhanced version ofCCS, where new communication
channels can be created dynamically and communicated to other processes.
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Chapter 11
CCS, the Calculus for Communicating Systems

I think it’s only when we move to concurrency that we have
enough to claim that we have a theory of computation which is
independent of mathematical logic or goes beyond what logicians
have studied, what algorithmists have studied. (Robin Milner)

Abstract In the case of sequential paradigms like IMP and HOFL we have seen
that all computations are deterministic and that any two non-terminating programs
are equivalent. This is not necessary the case for concurrent, interacting systems,
which can exhibit different observable behaviours while they compute, also along
infinite runs. Consider, e.g., the software governing a web server or the processes
of an operating system. In this chapter we introduce a language, called CCS, whose
focus is the interaction between concurrently running processes. CCS can be used
both as an abstract specification language and as a programming language, allowing
seamless comparison between system specifications (desired behaviour) and con-
crete implementations. We shall see that non-determinism and non-termination are
desirable semantics features in this setting. We start by presenting the operational
semantics of CCS in terms of a labelled transition system. Then we define some ab-
stract equivalences between CCS terms, and investigate their properties with respect
to compositionality and algebraic axiomatisation. We also define a suitable modal
logic, called Hennessy-Milner logic, whose induced logical equivalence is shown
to coincide with a milestone abstract equivalence, called strong bisimilarity. Finally,
we characterise strong bisimilarity as a fixpoint of a monotone operator and explore
some alternative abstract equivalences where internal, invisible actions are abstracted
away.

11.1 From Sequential to Concurrent Systems

In the last decade computer science technologies have boosted the growth of large
scale concurrent and distributed systems. Their formal study introduces several
aspects which are not present in the case of sequential programming languages like
those studied in previous chapters. In particular, it emerges the necessity to deal with:

Non-determinism: Non-determinism is needed to model time races between dif-
ferent signals and to abstract away from programming details
which are irrelevant for the interaction behaviour of systems.

223
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Parallelism: Parallelism allows agents to perform tasks independently. For
our purposes, this will be modelled by using non-deterministic
interleaving of concurrent transitions.

Interaction: Interaction allows us to describe the behaviour of the system
from an abstract point of view (e.g., the behaviour that the
system exhibits to an external observer).

Infinite runs: Accounting for different non-terminating behaviours at the
semantic level allows us to distinguish different classes of non-
terminating processes, when they have different interaction
capabilities.

Accordingly, some additional efforts must be spent to extend in a proper way the
semantics of sequential systems to that of concurrent systems.

In this chapter we introduce CCS, a specification language which allows to
describe concurrent communicating systems. Such systems are composed of agents
(also processes) that communicate through channels.

The semantics of sequential languages can be given by defining functions. In the
presence of non-deterministic behaviour functions do not seem to provide the right
tool to abstract the behaviour of concurrent systems. As we will see, this problem
is worked out by modelling the system behaviour as a labelled transition system,
i.e., as a set of states equipped with a transition relation which keeps track of the
interactions between the system and its environment. Transitions are labelled with
symbolic actions that model the kind of computational step that is performed. In
addition, recall that the denotational semantics is based on fixpoint theory over CPOs,
while it turns out that several interesting properties of non-deterministic systems with
non-trivial infinite behaviours are not inclusive (as it is the case of fairness, described
in Example 6.9), thus the principle of computational induction does not apply to such
properties. As a consequence, defining a satisfactory denotational semantics for CCS
is far more complicated than for the sequential case.

Non-terminating sequential programs, as expressed in IMP and HOFL are assigned
the same semantics, For example, we recall that, in the denotational semantics, any
sequential program that does not terminate is assigned the denotation ? (e.g., the
IMP command while true do skip and the HOFL term rec x. x), hence all diverging
programs are considered as equivalent. Labelled transition systems allow to assign
different semantics to non-terminating concurrent programs.

Last, but not least, labelled transition systems are often equipped with a modal
logic counterpart, which allows to express and prove the relevant properties of the
modelled system.

Let us show how CCS works with an example.

Example 11.1 (Dynamic concurrent stack). Let us consider the problem of modelling
an extensible stack. The idea is to represent the stack as a collection of cells that are
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dynamically created and disposed and that communicate by sending and receiving
data over some channels:1

• the send operation of data v over channel a is denoted by av;
• the receive operation of data x over channel a is denoted by ax.

We have one process (or agent) for each cell of the stack. Each process can
store one incoming value or send a stored value to other processes. All processes
involved in the implementation of the extensible stack follow essentially the same
communication pattern. We represent graphically one of such processes as follows:

CELL

� �

� �

The figure shows that a CELL has four channels a,b ,g,d that can be used to
communicate with other cells. A stack is obtained by aligning the necessary cells in a
sequence. In general, a process can perform bidirectional operations on its channels.
Instead, in this particular case, each cell will use each channel for either input or
output operations (but not both) as suggested by the arrows in the above figure:

Channel a: is the input channel to receive data from either the external environ-
ment or the left neighbour cell;

Channel g: is the channel used to send data to either the external environment or
the left neighbour cell;

Channel b : is the channel used to send data to the right neighbour cell and to
manage the end of the stack;

Channel d : is the channel used to receive data from the right neighbour cell and
to manage the end of the stack.

In the following, we specify the possible states (CELL0, CELL1, CELL2 and
ENDCELL) that a cell can have, each corresponding to some specific behaviour.
Note that some states are parametric to certain values that represent, e.g., the particular
values stored in that cell. The four possible states are described below.

CELL0
def
= dx. if x = $ then ENDCELL else CELL1(x)

The state CELL0 represents the empty cell. The agent CELL0 waits for some data
from the channel d and stores it in x. When a value is received the agent checks if it
is equal to a special termination character $. If the received data is $ this means that
the agent is becoming the last cell of the stack, so it switches to the ENDCELL state.
Otherwise, if x is a valid value, the agent moves to the state CELL1(x).

1 In the literature, alternative notations for send and receive operations can be found, such as a!v
for sending the value v over a and a?(x) or just a(x) for receiving a value over a and binding it to
the variable x.
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CELL1(v)
def
= ay.CELL2(y,v) + gv.CELL0

The state CELL1(v) represents a cell that contains the value v. In this case the cell
can non-deterministically wait for new data on a or send the stored data v on g . In
the first case, the cell stores the new value in y and passes the old value v to the agent
that models the cell on its right: this task is performed by CELL2(y,v). The second
case happens when the stored value v is extracted from the cell; then the cell sends
the value v on g and it becomes empty by switching to the state CELL0. Note that the
operator + represents a non-deterministic choice performed by the agent. However a
particular choice could be forced on a cell by the behaviour of its neighbours.

CELL2(u,v) def
= bv.CELL1(u)

The cell in state CELL2(u,v) carries two parameters u (the last received value) and v
(the previously stored value). The agent must cooperate with its neighbours to shift
the data to the right. To this aim, the agent communicates to the right neighbour the
old stored value v on b and enters the state CELL1(u).

ENDCELL def
= az.(CELL1(z) _

^ ENDCELL| {z }
a new bottom cell

) + g$.nil

The state ENDCELL represents the bottom of the stack. An agent in this state can
perform two actions in a non-deterministic way. First, if a new value is received on
a (in order to perform a right-bound shift), then the new data is stored in z and the
agent moves to state CELL1(z). At the same time, a new agent is created, whose
initial state is ENDCELL, that becomes the new bottom cell of the stack. Note that
we want the newly created agent ENDCELL to be able to communicate with its
neighbour CELL1(z) only. We will explain later how this can be achieved, when
giving the exact definition of the linking operation _

^ (see Example 11.3). Informally,
the b and d channels of CELL1(z) are linked, respectively, to the a and g channels
of ENDCELL and the communication over them is kept private with respect to the
environment: only the channels a and g of CELL1(z) will be used to communicate
with neighbours cells and all the other communications are kept local. The second
alternative is that the agent can send the special symbol $ to the left neighbour cell,
provided it is able to receive this value. This is possible only if the left neighbour
cell is empty (see state CELL0) and after receiving the symbol $ on its channel
d it becomes the new ENDCELL. Then the present agent concludes its execution
becoming the inactive process nil.

Now we will show how the stack works. Let us start from an empty stack. We
have only one cell in the state ENDCELL, whose channels b and d are made private,
written ENDCELL\b\d : no neighbour will be linked to the right side of the cell.

Suppose we want to perform a push operation in order to insert the value 1 in
the stack. This can be achieved by sending the value 1 on the channel a to the cell
ENDCELL (see Figure 11.1).
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�

�

ENDCELL

�1

Fig. 11.1: ENDCELL\b\d receiving the value 1 on channel a

Once the cell receives the new value it generates a new bottom process ENDCELL
for the stack and changes its state to CELL1(1). The result of this operation is the
configuration shown in Figure 11.2.

�

�

CELL1(1) ENDCELL

�3

Fig. 11.2: (CELL1(1) _
^ ENDCELL)\b\d receiving the value 3 on channel a

When the stack is stabilised we can perform another push operation, say with
value 3. In this case the first cell moves to state CELL2(3,1) in order to perform a
right-bound shift of the previously stored value 1 (see Figure 11.3).

�

�

ENDCELLCELL2(3, 1)

1

Fig. 11.3: (CELL2(3,1) _
^ ENDCELL)\b\d before right-shifting the value 1

Then, when the rightmost cell (ENDCELL) receives the value 1 on its channel
a , privately connected to the channel b of the leftmost cell (CELL2(3,1)) via the
linking operation _

^, it will change its state to CELL1(1) and will spawn a new
ENDCELL, while the leftmost cell moves from the state CELL2(3,1) to the state
CELL1(3) (see Figure 11.4).

Now suppose we perform a pop operation, which will return the last value pushed
into the stack (i.e., 3). The corresponding operation is an output to the environment
(on channel g) of the leftmost cell. In this case the leftmost cell changes its state
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�

�

CELL1(1) ENDCELLCELL1(3)

�3

Fig. 11.4: CELL1(3) _
^ CELL1(1) _

^ ENDCELL\b\d before a pop operation

to CELL0, and waits for a value through its channel d (privately connected to the
channel g of the middle cell). The situation is depicted in Figure 11.5.

�

�

CELL1(1) ENDCELLCELL0

$1

Fig. 11.5: (CELL0
_
^ CELL1(1) _

^ ENDCELL)\b\d before left-shifting value 1

When the middle cell sends the value 1 to the leftmost cell, it changes its state to
CELL0, and waits for the value sent from the rightmost cell. Then, since the received
value from ENDCELL is $, the middle cell changes its state to ENDCELL, while
the rightmost cell reduces to nil, as illustrated in Figure 11.6 (where the nil agent is
just omitted).

�

�

CELL1(1) ENDCELL

Fig. 11.6: (CELL1(1) _
^ ENDCELL _

^ nil)\b\d

The above example shows that processes can synchronise in pairs, by perform-
ing dual (input/output) operations. In this chapter, we focus on a pure version of
CCS, where we abstract away from the values communicated on channels. The
correspondence with value passing CCS is briefly discussed in Section 11.3.8.
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11.2 Syntax of CCS

The CCS was introduced by Turing awarded Robin Milner (1934–2010) in the early
eighties. We fix the following notation:

D = {a,b , ...}: denotes the set of channels and, by coercion, input actions;
D = {a,b , ...}: denotes the set of output actions, with D \D = ?;
L = D [D : denotes the set of observable actions;
t 62 L : denotes a distinguished, unobservable action (also called silent).

We extend the “bar” operation to all the elements in L by letting a = a for all
a 2 D . As we have seen in the dynamic stack example, pairs of dual actions (e.g., a
and a) are used to synchronise two processes. The unobservable action t denotes
a special action that is internal to some agent and that can no longer be used for
synchronisation. Moreover we will use the following conventions:

µ 2 L [{t} : denotes a generic action;
l 2 L : denotes a generic observable action;
l 2 L : denotes the dual action of l ;
f : D ! D : denotes a generic permutation of channel names, called a relabelling.

We extend f to all actions by letting:

f(a)
def
= f(a) f(t)

def
= t.

Now we are ready to present the syntax of CCS.

Definition 11.1 (CCS agents). A CCS agent (also process) is a term generated by
the grammar:

p,q ::= x | nil | µ.p | p\a | p[f ] | p+q | p | q | rec x. p

We shortly comment the various syntactic elements:

x: represents a process name;
nil: is the empty (inactive) process;
µ.p: denotes a process p prefixed by the action µ , the process µ.p can execute

µ and become p;
p\a: is a restricted process, making the channel a private to p, the process

p\a allow synchronisation on a that are internal to p, but disallow
external interaction on a;

p[f ]: is a relabelled process that behaves like p after having renamed its
channels as indicated by f .

p+q: is a process that can choose non-deterministically to behave as p or q;
once the choice is made, the other alternative is discarded;

p | q: is the process obtained as the parallel composition of p and q; the actions
of p and q can be interleaved and also synchronised;

rec x. p: is a recursively defined process, that binds the occurrences of x in p.
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As usual, we consider only the closed terms of this language, i.e., all processes such
that any process name x always occur under the scope of some recursive definition
for x. We name P the set of closed CCS processes.

11.3 Operational Semantics of CCS

The operational semantics of CCS is defined by a suitable labelled transition system.

Definition 11.2 (Labelled transition system). A labelled transition system (LTS) is
a triple (P,L,!), where P is the set of states of the system, L is the set of labels and
!✓ P⇥L⇥P is the transition relation. We write p1

l�! p2 for (p1, l, p2) 2!.

The LTS that defines the operational semantics of CCS has agents as states and
has transitions labelled by actions in L [{t}, denoted by µ . Formally, the LTS is
given by (P,L [{t},!), where the transition relation ! is the least one generated
by a set of inference rules. The LTS is thus defined by a rule system whose formulas
take the form p1

µ�! p2 meaning that the process p1 can perform the action µ and
reduce to p2. We call p1

µ�! p2 a µ-transition of p1
While the LTS is unique for all CCS processes, when we say “the LTS of a process

p” we mean the restriction of the LTS to consider only the states that are reachable
from p by a sequence of (oriented) transitions. Although a term can be the parallel
composition of many processes, its operational semantics is represented by a single
global state in the LTS. Next we introduce the inference rules for CCS.

11.3.1 Inactive Process

There is no rule for the inactive process nil: it has no outgoing transition.

11.3.2 Action Prefix

There is only one axiom in the rule system and it is related to action prefix.

(Act)
µ.p

µ�! p

It states that the process µ.p can perform the action µ and reduce to p. For

example, we have transitions a.b .nil a�! b .nil and b .nil b�! nil.
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11.3.3 Restriction

If the process p is executed under a restriction ·\a , then it can perform only actions
that do not carry the restricted name a as a label.

(Res)
p

µ�! q
µ 6= a,a

p\a µ�! q\a

Note that this restriction does not affect the communication internal to the pro-
cesses, i.e., when µ = t the move is not blocked by the restriction. For example, the

process (a.nil)\a is deadlock, while (b .nil)\a b�! nil\a .

11.3.4 Relabelling

Let f be a permutation of channel names. The µ-transitions of p are renamed to
f(µ)-transitions by p[f ].

(Rel)
p

µ�! q

p[f ]
f(µ)���! q[f ]

We remind that the silent action cannot be renamed by f , i.e., f(t) = t for any f .

For example, if f(a) = b , then (a.nil)[f ]
b�! nil[f ].

11.3.5 Choice

The next pair of rules deals with non-deterministic choice.

(Sum)
p

µ�! p0

p+q
µ�! p0

q
µ�! q0

p+q
µ�! q0

Process p + q can choose to behave like either p or q. However, note that the
choice can be performed only when an action is performed, e.g., in order to discard
the alternative q, the process p must be capable of performing some action µ . For
example, if f(a) = g , f(b ) = b and p def

= ((a.nil+b .nil)[f ]+a.nil)\a we have

p
g�! nil[f ]\a and p

b�! nil[f ]\a but not p a�! nil\a.
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11.3.6 Parallel Composition

Also in the case of parallel composition some form of non-determinism appears.
Unlike the case of sum, where non-determinism is a characteristic of the modelled
system, here non-determinism is a characteristic of the semantic style that allows p
and q to interleave their actions in p | q, i.e., non-determinism is exploited to model
the parallel behaviour of the system.

(Par)
p

µ�! p0

p | q
µ�! p0 | q

q
µ�! q0

p | q
µ�! p | q0

The two rules above allows p and q to evolve independently in p | q. There is
also a third rule for parallel composition, which allows processes to perform internal
synchronisations.

(Com) p1
l�! p2 q1

l�! q2

p1 | q1
t�! p2 | q2

The processes p1 and p2 communicate by using the channel l in complementary
ways. The name of the channel is not shown in the label after the synchronisation by
recording the action t instead.

In general, if p1 and p2 can perform a and a , respectively, then their parallel
composition can perform a , a or t . When parallel composition is used in combina-
tion with the restriction operator, like in (p1 | p2)\a , then synchronisation on a , if
possible, is forced. For example, the LTS for p def

= (a.nil+b .nil) | (a.nil+g.nil) is:

p
g &&

a
88

b

⌧⌧

a

⇥⇥

t

##

(a.nil+b .nil) | nil

a

⌧⌧

b

⇥⇥
nil | (a.nil+g.nil)

a &&

g
88

nil | nil

while the LTS for process q def
= p\a is:



DRAFT

11.3 Operational Semantics of CCS 233

q
g ''

b

⌧⌧

t

$$

((a.nil+b .nil) | nil)\a

b

⇥⇥
(nil | (a.nil+g.nil))\a

g
77

(nil | nil)\a

When comparing the LTSs for p and q, it is evident that the transitions with labels a
and a are not present in the LTS for q. Still the t-labelled transition q t�! (nil | nil)\a
that originated from an internal synchronisation over a is present in the LTS of q.

11.3.7 Recursion

The rule for recursively defined processes is similar to the one seen for HOFL terms.

(Rec)
p[rec x. p/x]

µ�! q

rec x. p
µ�! q

The recursive process rec x. p can perform all and only the transitions that the
process p[rec x. p/x] can perform, where p[rec x. p/x] denotes the process obtained
from p by replacing all free occurrences of the process name x with its full recursive
definition rec x. p (of course, the substitution is capture-avoiding). For example, the
possible transitions of the recursive process rec x. a.x are the same ones as those of
(a.x)[rec x. a.x/x] = a.rec x. a.x, i.e., since

a.rec x. a.x a�! rec x. a.x

is the only transition of a.rec x. a.x, there is exactly one transition

rec x. a.x a�! rec x. a.x.

It is interesting to compare the LTSs for the processes below (see Figure 11.7):

p def
= (rec x. a.x)+(rec x. b .x) q def

= rec x. (a.x+b .x) r def
= rec x. (a.x+b .nil)

In the first case, p can execute either a sequence of only a-transitions or a sequence
of b -transitions. In the second case, q can execute any sequence made of a- and
b -transitions. Finally, r admits only sequences of a actions, possibly concluded by a
b action. Note that p and q are non-terminating.
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p

a

⌅⌅

b

⇢⇢
rec x. a.x

a

ZZ rec x. b .x

b

XX

qa :: bdd r acc

b

✏✏
nil

Fig. 11.7: The LTSs of three recursively defined processes

Remark 11.1 (Guarded agents). The form of recursion allowed in CCS is very gen-
eral. As it is common, we restrict our attention to the class of guarded agents, namely
agents where, for any recursive sub-terms rec x. p, each free occurrence of x in
p occurs under an action prefix (like in all the examples above). This allows us to
exclude terms like rec x. (x | p) which can lead (in one step) to an unbounded number
of parallel repetitions of the same agent, making the LTS infinitely branching (see
Examples 11.12 and 11.13). Formally, given a process p and a set of process names
X that must occur guarded in p, we define the predicate G(p,X) as follows:

G(nil,X)
def
= true G(p\a,X) = G(p[f ],X)

def
= G(p,X)

G(x,X)
def
= x 62 X G(p+q,X) = G(p | q,X)

def
= G(p,X)^G(q,X)

G(µ.p,X)
def
= G(p,?) G(rec x. p,X)

def
= G(p,X [{x})

The predicate G(p,X) is true if all process names in X and all recursively defined
names in p occur guarded in p. A (closed) process p is guarded if G(p,?) holds
true. It can be proved that, for any process p and set of process names X :

1. for any process name x: G(p,X [ {x}) ) G(p,X), so that, as a particular case,
G(p,X) implies G(p,?); moreover, G(p,X) ) G(p,X [{x}) is x does not occur
free in p;

2. guardedness is preserved by substitution, namely, for all processes p1, ..., pn and
process names x1, ...,xn:

G(p,X)^
^

i2[1,n]

G(pi,X) ) G(p[p1/x1 , · · · ,
pn /xn ],X);

3. guardedness is preserved by transitions, namely, for any process q and action µ:

G(p,X)^ p
µ�! q ) G(q,?).

The proof of items 1 and 2 is by structural induction on p, while the proof of item 3
is by rule induction on p

µ�! q.

Example 11.2 (Derivation). We show an example of the use of the derivation rules
we have introduced. Let us take the (guarded) CCS process: ((p | q) | r)\a , where:
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p def
= rec x. (a.x+b .x) q def

= rec x. (a.x+ g.x) r def
= rec x. a.x.

First, let us focus on the behaviour of the simpler, deterministic agent r. We have:

rec x. a.x a�! r0 -Rec a.(rec x. a.x) a�! r0

-Act, r0=rec x. a.x ⇤

where we have annotated each derivation step with the name of the applied rule.
Thus, r a�! r and since there are no other rules applicable during the above derivation,
the LTS associated with r consists of a single state and one looping arrow with
label a . Correspondingly, the agent is able to perform the action a indefinitely.
However, when embedded in the larger system above, then the action a is blocked
by the topmost restriction ·\a . Therefore, the only opportunity for r to execute a
transition is by synchronising on channel a with either one or the other of the two
(non-deterministic) agents p and q. In fact the synchronisation on a produces an
action t which is not blocked by ·\a . Note that p and q are also available to interact
with some external agent on other non-restricted channels (b or g).

By using the rules of the operational semantics of CCS we have, e.g.:

((p | q) | r)\a µ�! s -Res, s=s0\a (p | q) | r
µ�! s0, µ 6= a,a

-Com, µ=t, s0=s00 | r1 p | q l�! s00, r l�! r1

-Par, s00=p | q1 q l�! q1, r l�! r1

-Rec a.q+ g.q l�! q1, r l�! r1

-Sum a.q l�! q1, r l�! r1

-Act, l=a, q1=q r a�! r1

-Rec a.r a�! r1

-Act, r1=r ⇤

From which we derive:

r1 = r = rec x. a.x
q1 = q = rec x. a.x+ g.x

s00 = p | q1 = (rec x. a.x+b .x) | rec x. a.x+ g.x
s0 = s00 | r1 = ((rec x. a.x+b .x) | (rec x. a.x+ g.x)) | rec x. a.x

s = s0\a = (((rec x. a.x+b .x) | (rec x. a.x+ g.x)) | rec x. a.x)\a
µ = t

and thus:
((p | q) | r)\a t�! ((p | q) | r)\a
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Fig. 11.8: Graphically illustration of the concatenation operator p _
^ q

Note that during the derivation we had to choose several times between different
rules which could have been applied; while in general it may happen that wrong
choices can lead to dead ends, our choices have been made so to complete the
derivation satisfactorily, avoiding any backtracking. Of course other transitions are
possible for the agent ((p | q) | r)\a : we leave it as an exercise to identify all of them
and draw the complete LTS (see Problem 11.1).

Example 11.3 (Dynamic stack: linking operator). Let us consider again the extensible
stack from Example 11.1. We show how to formalise in CCS the linking operator _

^.
We need two new channels J and h , which will be private to the concatenated cells.
Then, we let:

p _
^ q = (p[fb ,d ] | q[fa,g ])\J\h

where fb ,d is the relabelling that sends b to J , d to h and is the identity otherwise,
while fa,g sends a to J , g to h and is the identity otherwise. Notably, J and h are
restricted, so that their scope is kept local to p and q, avoiding any conflict on channel
names from the outside. For example, messages sent on b by p are redirected to
J and must be received by q that views J as a . Instead, messages sent on b by q
are not redirected to J and will appear as messages sent on b by the whole process
p _

^ q (see Figure 11.8).

11.3.8 CCS with Value Passing

Example 11.1 considers i/o operations where values can be received and transmitted.
This would correspond to extend the syntax of processes to allow action prefixes like
a(x).p, where p can use the value x received on channel a and av.p, where v is the
value sent on channel a . Note that, in this case, x is bound in p. Assuming a set of
possible values V as fixed, the corresponding operational semantics rules are:
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(In)
v 2 V

a(x).p av�! p[v/x]
(Out)

av.p av�! p

However, when the set V is finite, we can encode the behaviour of a(x).p and av.p
just by introducing as many copies av of each channel a as the possible values v 2 V .
If V = {v1, ...,vn} then:

• an output avi.p is represented by the process avi .p
• an input a(x).p is represented by the process

av1 .p[v1/x]+av2 .p[v2/x]+ ...+avn .p[vn/x].

We can also represent quite easily an input followed by a test (for equality) on
the received value, like the one used in the encoding of CELL0 in the dynamic stack
example: a process like

a(x). if x = vi then p else q

can be represented by the CCS process

av1 .q[v1/x]+ ...+avi�1 .q[vi�1/x]+avi .p[vi/x]+avi+1 .q[vi+1/x]+ ...+avn .q[vn/x]

Example 11.4. Suppose that V = {true, false} is the set of booleans. Then a process
that waits to receive true on the channel a before executing p, can be written as

rec x. (atrue.p+afalse.x)

11.3.9 Recursive Declarations and the Recursion Operator

In Example 11.1, we have also used recursive declarations, one for each possible
state of the cell. They can be expressed in CCS using the recursion operator rec. In
general, suppose we are given a series of recursive declarations, like:

8
>>><

>>>:

X1
def
= p1

X2
def
= p2
· · ·

Xn
def
= pn

where the symbols X1, ...,Xn can appear as constants in each of the terms p1, ..., pn.
For any i 2 {1, ...,n}, let

qi
def
= rec Xi. pi

be the process where all occurrences of Xi in pi are bound by the recursive operator
(while the instances of Xj occurs freely if i 6= j). Then, we can let
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rn
def
= qn

rn�1
def
= qn�1[

rn/Xn ]

· · ·
ri

def
= qi[

rn/Xn ]...[
ri+1/Xi+1 ]

· · ·
r1

def
= q1[

rn/Xn ]...[
r2/X2 ]

so that in ri all occurrences of Xj occur under a recursion operator rec Xj if j � i.
Then r1 is a closed CCS process that corresponds to X1. If we switch the order in
which the recursive declarations are listed, the same procedure can be applied to find
CCS processes that correspond to the other symbols X2, ...,Xn.

Example 11.5 (From recursive declarations to recursive processes). For example,
suppose we are given the recursive declarations:

X1
def
= a.X2 X2

def
= b .X1 + g.X3 X3

def
= d .X2.

Then we have

q1
def
= rec X1. a.X2 q2

def
= rec X2. (b .X1 + g.X3) q3

def
= rec X3. d .X2

From which we derive

r3
def
= q3 = rec X3. d .X2

r2
def
= q2[

r3/X3 ] = rec X2. (b .X1 + g.rec X3. d .X2)

r1
def
= q1[

r3/X3 ][
r2/X2 ] = rec X1. a.rec X2. (b .X1 + g.rec X3. d .X2)

11.4 Abstract Semantics of CCS

In the previous section we have defined a mapping from CCS agents to LTSs, i.e., to
a special class of labelled graphs. It is easy to see that such operational semantics
is much more concrete and detailed than the semantics studied for IMP and HOFL.
For example, since the states of the LTS are named by agents it is evident that two
syntactically different processes like p | q and q | p are associated with different
graphs, even if intuitively one would expect that both exhibit the same behaviour.
Analogously for p+q and q+ p or for p+nil and p. Thus it is important to find a
good notion of equivalence, able to provide a more abstract semantics for CCS. As
it happens for the denotational semantics of IMP and HOFL, an abstract semantics
defined up to equivalence should abstract away from the syntax and execution details,
focusing on some external, visible behaviour. To this aim we can focus on the LTSs
associated with agents, disregarding the identity of agents. Another important aspect
to be taken into account is compositionality, i.e., the ability to replace any process
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with an equivalent one inside any context without changing the semantics. Formally,
this amounts to define equivalences that are preserved by all the operators of the
algebra: they are called congruences.

In this section, we first show that neither graph isomorphism nor trace equivalence
offer fully satisfactory abstract semantics for CCS. Next, we introduce a more appro-
priate abstract semantics of CCS by defining a relation, called strong bisimilarity,
that captures the ability of processes to simulate each other. Finally, we discuss
some positive and negative aspects of strong bisimilarity and present some possible
alternatives.

11.4.1 Graph Isomorphism

It is quite obvious to require that two agents are equivalent if their (LTSs) graphs are
isomorphic. Recall that two labelled graphs are isomorphic if there exists a bijection
f between the nodes of the graphs that preserves the graph structure, i.e., such that
v a�! v0 iff f (v) a�! f (v0).

Example 11.6 (Isomorphic agents). Let us consider the agents a.nil | b .nil and
a.b .nil+b .a.nil. Their LTSs are as follows:

a.nil | b .nil
a

{{

b

##

a.b .nil+b .a.nil
a

{{

b

##
nil | b .nil

b ##

a.nil | nil

a
{{

b .nil

b
##

a.nil

a
{{

nil | nil nil

The two graphs are isomorphic, as shown by the bijective correspondence repre-
sented with dotted lines, thus the two agents should be considered as equivalent. This
result is surprising, since they have a rather different structure. In fact, the example
shows that concurrency can be reduced to non-determinism by graph isomorphism.
This is due to the interleaving of the actions performed by processes that are com-
posed in parallel, which is a peculiar characteristic of the operational semantics
which we have presented.

Graph isomorphism is a very simple and natural equivalence relation, but still leads
to an abstract semantics that is too concrete, i.e., graph isomorphism distinguishes
too much. We show this fact in the following examples.

Example 11.7 (Non-isomorphic agents). Let us consider the (guarded) recursive
agents rec x. a.x, rec x. a.a.x and a.rec x. a.x, whose LTSs are in Figure 11.9:
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rec x. a.x

a

DD rec x. a.a.x

a
!!

a.rec x. a.a.x

a

`` a.rec x. a.x

a
✏✏

rec x. a.x

a

DD

Fig. 11.9: Three non-isomorphic agents

The three graphs are not isomorphic, but it is hardly possible to distinguish
between the agents according to their behaviour: they all are able to execute any
sequence of a-transitions.

Example 11.8 (Buffers). Let us denote by Bn
k a buffer of capacity n of which k

positions are busy. For example, for representing a buffer of capacity 1 in CCS one
could let (using recursive definitions):

B1
0

def
= in.B1

1 B1
1

def
= out.B1

0

The corresponding LTS is

B1
0

in
55 B1

1

out
uu

Analogously, for a buffer of capacity 2, one could let:

B2
0

def
= in.B2

1 B2
1

def
= out.B2

0 + in.B2
2 B2

2
def
= out.B2

1

Another possibility for obtaining an (empty) buffer of capacity 2 is to use two (empty)
buffers of capacity 1 composed in parallel: B1

0 | B1
0. However the LTSs of B2

0 and
B1

0 | B1
0 are not isomorphic, because they have a different number of states:

B2
0

in
""
B2

1

in
""

out
bb

B2
2

out
bb

B1
0 | B1

0
in

��

in

⌘⌘
B1

1 | B1
0

in
//

out

88

B1
0 | B1

1

in
oo

out

ff

B1
1 | B1

1

out
ff

out
88

The LTS of B2
0 offers a minimal realisation of the behaviour of the buffer: the three

states B2
0, B2

1 and B2
2 cannot be identified, because they exhibit different behaviours

(e.g., B2
2 cannot perform an in action, unlike B2

1 and B2
0, while B2

0 can perform two
in actions in a row, unlike B2

1 and B2
2). Instead, the LTS of B1

0 | B1
0 has two different

states that should be considered as equivalent, namely B1
1 | B1

0 and B1
0 | B1

1 (in our
case, it does not matter which position of the buffer is occupied).
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11.4.2 Trace Equivalence

A second approach, called trace equivalence, observes the set of traces of an agent,
namely the set of sequences of actions labelling all paths in its LTS. Trace equivalence
is analogous to language equivalence for ordinary automata, except for the fact that
in CCS there are no accepting states.

Formally, A finite trace of a process p is a sequence of actions µ1 · · ·µk (for k � 0)
such that there exists a sequence of transitions

p = p0
µ1�! p1

µ2�! · · · µk�1���! pk�1
µk�! pk

for some processes p1, ..., pk. Two agents are (finite) trace equivalent if they have the
same set of possible (finite) traces. Note that the set of traces associated with one
process p is prefix-closed, in the sense that if the trace µ1 · · ·µk belongs to the set
of traces of p, then any of its prefixes µ1 · · ·µi with i  k also belongs to the set of
traces of p.2 For example, the empty trace e belongs to the semantics of any process.

Trace equivalence is strictly coarser than equivalence based on graph isomorphism,
since isomorphic graphs have the same traces. Conversely, Examples 11.7 and 11.8
show agents which are trace equivalent but whose graphs are not isomorphic. The
following example shows that trace equivalence is too coarse: it is not able to capture
the choice points within agent behaviour. In the example we exploit the notion of a
context.

Definition 11.3 (Context). A context is a term with a hole which can be filled by
inserting any other term of our language.

We write C[·] to indicate a context and C[p] to indicate the context C[·] whose
hole is filled with p.

Example 11.9. Let us consider the following agents:

p def
= a.(b .nil+g.nil) q def

= a.b .nil+a.g.nil

Their LTSs are as follows:

a.(b .nil+g.nil)

a
✏✏

b .nil+g.nil

b
  

g
~~

nil

a.b .nil+a.g.nil
a

{{

a

##
b .nil

b ##

g.nil

g
{{

nil

2 A variant of trace equivalence, called completed trace semantics, is not prefix-closed and will be
discussed in Example 11.15.
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The agents p and q are trace equivalent: their set of traces is {e,a,ab ,ag}.
However the agents make their choices at different points in time. In the second
agent q the choice between b and g is made when the first transition is executed, by
selecting one of the two outbound a-transitions. In the first agent p, on the contrary,
the choice is made on a second time, after the execution of the unique a-transition.

The difference is evident if we consider, e.g., that an agent

r def
= a.b .d .nil

is running in parallel, with p or with q, with actions a , b and g restricted on top:
compare

(p | r)\a\b\g with (q | r)\a\b\g.

The agent p is always able to carry out the complete interaction with r, because
after the synchronisation on a it is ready to synchronise on b ; vice versa, the agent q
is only able to carry out the complete interaction with r if the left choice is performed
at the time of the first interaction on a , as otherwise g.nil and b .d .nil cannot interact.
Formally, if we consider the context

C[·] = (· | a.b .d .nil)\a\b\g

we have that C[p] and C[q] are trace equivalent, but C[q] can deadlock before execut-
ing d , while this is not the case for C[p]. Figure out how embarrassing could be the
difference if a would mean for a computer to ask the user if a file should be deleted,
and b ,g were the user’s yes/no answer: p would behave as expected, while q could
decide to delete the file in the first place, and then deadlock if the the user decides
otherwise. As another example, assume that p and q are possible alternatives for the
control of a vending machine, where a models the insertion of a coin and b and
g model the supply of a cup of coffee or a cup of tea: p would let the user choose
between coffee and tea, while q would choose for the user. We will consider again
processes p and q in Example 11.15, when discussing compositionality issues.

Given all the above, we can argue that neither graph isomorphism nor trace
equivalence are good candidates for our behavioural equivalence relation. Still, it
is obvious that: 1) isomorphic agents must be retained as equivalent; 2) equivalent
agents must be trace equivalent. Thus, our candidate equivalence relation must be
situated in between graph isomorphism and trace equivalence.

11.4.3 Strong Bisimilarity

In this section we introduce a class of relations between agents called strong bisim-
ulations and we define a behavioural equivalence relation between agents, called
strong bisimilarity, as the largest strong bisimulation. This equivalence relation is
shown to identify only those agents which intuitively have the same behaviour.

Let us start with an example that illustrates how bisimulation works.
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Example 11.10 (Bisimulation game). In this example we use game theory in order to
show that the agents of the Example 11.9 should not be considered as behaviourally
equivalent. Imagine that two opposite players are arguing about the fact that a system
satisfies (or not) a given property. One of them, the attacker, argues that the system
does not satisfy the property. The other player, the defender, believes that the system
satisfies the property. If the attacker has a winning strategy this means that the system
does not satisfy the property. Otherwise, the defender wins, meaning that the system
satisfies the property.

The game is turn-based and, at any turn, we let the attacker move first and the
defender play back. In the case of bisimulation, the system is composed by two
processes p and q and the attacker wants to prove that they are not equivalent, while
the defender wants to convince the opponent that p and q are equivalent. Let Alice
be the attacker and Bob the defender. The rules of the game are very simple.

Alice starts the game. At each turn:

• Alice chooses one of the processes and executes one of its outgoing transitions.
• Bob must then execute an outgoing transition of the other process, matching the

action label of the transition chosen by Alice.
• At the next turn, if any, the game will start again from the target processes of the

two transitions selected by Alice and Bob.

If Alice cannot find a move, then Bob wins, since this means that p and q are both
deadlock, and thus obviously equivalent. Alice wins if she can make a move that Bob
cannot imitate; or if she has a move that, no matter which is the answer by Bob, will
lead to a situation where she can make a move that Bob cannot imitate; and so on
for any number of moves. Bob wins if Alice has no such a (finite) strategy. Note that
the game does not necessarily terminate: also in this case Bob wins, because Alice
cannot disprove that p and q are equivalent.

From example 11.9, let us take

p def
= a.(b .nil+g.nil) q def

= a.b .nil+a.g.nil .

We show that Alice has a winning strategy. Alice starts by choosing p and by
executing its unique a-transition p a�! b .nil+g.nil. Then, Bob can choose one of
the two a-transitions leaving from q. Suppose that Bob chooses the a-transition q a�!
b .nil (but the case where Bob chooses the other transition leads to the same result
of the game). So the processes for the next turn of the game are b .nil+g.nil and
b .nil. At the second turn, Alice chooses the process b .nil+g.nil and the transition
b .nil+g.nil g�! nil, and Bob can not simulate this move from b .nil. Since Alice has
a winning, two-moves strategy, the two agents are not equivalent.

Now we define the same relation in a more formal way, as originally introduced
by Robin Milner. It is important to notice that the definition is not specific to CCS; it
applies to a generic LTS (P,L,!). The labelled transition systems whose states are
CCS agents is just a special instance. Below, for R ✓ P ⇥P a binary relation on
agents, we use the infix notation s1 R s2 to mean (s1,s2) 2 R.
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Definition 11.4 (Strong Bisimulation). Let R be a binary relation on the set of states
of an LTS; then it is a strong bisimulation if

8s1,s2. s1 R s2 )
(

8µ,s0
1. if s1

µ�! s0
1 then 9s0

2 such that s2
µ�! s0

2 and s0
1 R s0

2

8µ,s0
2. if s2

µ�! s0
2 then 9s0

1 such that s1
µ�! s0

1 and s0
1 R s0

2.

Trivially, the empty relation is a strong bisimulation and it is easy to check that
the identity relation

Id def
= {(p, p) | p 2 P}

is a strong bisimulation. Interestingly, graph isomorphism defines a strong bisimula-
tion and the union R1 [R2 of two strong bisimulation relations R1 and R2 is also a
strong bisimulation relation. The inverse R�1 = {(s2,s1) | (s1,s2) 2 R} of a strong
bisimulation R is also a strong bisimulation. Moreover, given the composition of
relations defined by

R1 �R2
def
= {(p,q) | 9r. p R1 r ^ r R2 q}

it can be shown that the relation R1 �R2 is a strong bisimulation whenever R1 and R2
are such (see Problem 11.4).

Definition 11.5 (Strong bisimilarity '). Let s1 and s2 be two states of an LTS, then
they are said to be strong bisimilar, written s1 ' s2 if and only if there exists a strong
bisimulation R such that s1 R s2.

The relation ' is called strong bisimilarity and is defined as follows:

' def
=

[

R is a strong bisimulation
R

Remark 11.2. In the literature, strong bisimilarity is often denoted by ⇠. We use the
symbol ' to make explicit that it is a congruence relation (see Section 11.5).

To prove that two processes p and q are strong bisimilar it is enough to define a
strong bisimulation that contains the pair (p,q).

Example 11.11. Examples 11.7 and 11.8 show agents which are trace equivalent but
whose graphs are not isomorphic. Here we show that they are also strong bisimilar.
In the case of the agents in Examples 11.7, let us consider the relations

R1
def
= {(rec x. a.x,rec x. a.a.x) , (rec x. a.x,a.rec x. a.a.x)}

R2
def
= {(rec x. a.x,a.rec x. a.x) , (rec x. a.x,rec x. a.x)}.

In the case of the agents in Example 11.8, let us consider the relation

R def
= {(B2

0,B
1
0 | B1

0) , (B
2
1,B

1
1 | B1

0) , (B
2
1,B

1
0 | B1

1) , (B
2
2,B

1
1 | B1

1)}.

We invite the reader to check that they are indeed strong bisimulations.
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Theorem 11.1 proves that strong bisimilarity ' is an equivalence relation on CCS
processes. Below we recall the definition of equivalence relation.

Definition 11.6 (Equivalence Relation). Let ⌘ be a binary relation on a set X , then
we say that it is an equivalence relation if it has the following properties:

reflexivity: 8x,y 2 X . x ⌘ x;
symmetry: 8x,y 2 X . x ⌘ y ) y ⌘ x.
transitivity: 8x,y,z 2 X . x ⌘ y^ y ⌘ z ) x ⌘ z;

The equivalence induced by a relation R is the least equivalence that contains R: it
is denoted by ⌘R and is defined by the inference rules below

x R y
x ⌘R y x ⌘R x

x ⌘R y
y ⌘R x

x ⌘R y y ⌘R z
x ⌘R z

Note that, in general, a strong bisimulation R is not necessarily reflexive, symmet-
ric or transitive (see, e.g., Example 11.11). However, given any strong bisimulation
R, its induced equivalence relation ⌘R is also a strong bisimulation.

Theorem 11.1. Strong bisimilarity ' is an equivalence relation.

We omit the proof of Theorem 11.1: it is based on the above mentioned properties
of strong bisimulations (see Problem 11.5).

Theorem 11.2. Strong bisimilarity ' is the largest strong bisimulation.

Proof. We need just to prove that ' is a strong bisimulation: by definition it contains
any other strong bisimulation. By Theorem 11.1, we know that ' is symmetric, so it
is sufficient to prove that if s1 ' s2 and s1

µ�! s0
1 then we can find s0

2 such that s2
µ�! s0

2

and s0
1 ' s0

2. Let s1 ' s2 and s1
µ�! s0

1. Since s1 ' s2, by definition of ', there exists a
strong bisimulation R such that s1 R s2. Therefore, there is s0

2 such that s2
µ�! s0

2 and
s0

1 R s0
2. Since R ✓ ' we have s0

1 ' s0
2. ut

We can then give a precise characterisation of strong bisimilarity.

Theorem 11.3. For any states s1 and s2 we have:

s1 ' s2 ,
(

8µ,s0
1. if s1

µ�! s0
1 then 9s0

2 such that s2
µ�! s0

2 and s0
1 ' s0

2

8µ,s0
2. if s2

µ�! s0
2 then 9s0

1 such that s1
µ�! s0

1 and s0
1 ' s0

2.

Proof. One implication ()) follows directly from Theorem 11.2.
The other implication (() is sketched here. Take s1 and s2 such that

8µ,s0
1. if s1

µ�! s0
1 then 9s0

2 such that s2
µ�! s0

2 and s0
1 ' s0

2

8µ,s0
2. if s2

µ�! s0
2 then 9s0

1 such that s1
µ�! s0

1 and s0
1 ' s0

2.

We want to show that s1 ' s2. This is readily done by showing that the relation
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R def
= {(s1,s2)}[ '

is a strong bisimulation. By Theorem 11.2, all pairs in ' satisfy the requirement
fro strong bisimulation. We leave to the reader the task to check that also the pair
(s1,s2) 2 R satisfies the condition. ut

Checking that a relation is a strong bisimulation requires checking that all the
pairs in it satisfy the condition in Definition 11.4. So it is very convenient to exhibit
relations that are as small as possible, e.g., we can avoid to add reflexive, symmetric
and transitive pairs, unless needed.

In the following, when we will consider relations that are equivalences, instead of
listing all pairs of processes in the relation, we will list just the induced equivalence
classes for brevity, i.e., we will work with quotient sets.

Definition 11.7 (Equivalence classes and quotient sets). Given an equivalence re-
lation ⌘ on X and an element x 2 X we call the equivalence class of x the subset
[x]⌘ ✓ X defined as follows:

[x]⌘
def
= {y 2 X | x ⌘ y}

The set X/⌘ containing all the equivalence classes generated by a relation ⌘ on the
set X is called quotient set.

11.4.3.1 Strong Bisimilarity as a Fixpoint

Now we re-use fixpoint theory, which we have introduced in the previous chapters,
in order to define strong bisimilarity in a more effective way. Using fixpoint theory
we will construct, by successive approximations, the coarsest (largest, i.e.. that
distinguishes as least as possible) strong bisimulation between the states of an LTS.

As usual, we define the CPO? on which the approximation function works. The
CPO? is defined on the set √(P ⇥P), namely the powerset of the pairs of CCS
processes. We know that, for any set S, the structure (√(S),✓) is a CPO?, but it is
not exactly the one we are going to use.

Then we define a monotone function F that maps relations to relations and such
that any strong bisimulation is a pre-fixpoint of F. However we would like to take the
largest relation, not the least one, because strong bisimilarity distinguishes as least as
possible. Therefore, we need a CPO? in which a set with more pairs is considered
“smaller” than one with fewer pairs. This way, we can start from the coarsest relation,
which considers all the states equivalent and, by using the approximation function,
we can compute the relation that identifies only strong bisimilar agents.

We define the order relation v on √(P ⇥P) by letting

R v R0 , R0 ✓ R.

Notably, the bottom element is not the empty relation, but the universal relation
P ⇥P . The resulting CPO? (P(P⇥P),v) is represented in Figure 11.10.
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R0 = P ⇥ P

R1 = �(R0)

R2 = �(R1)

Rn = �(Rn)

�

✓

v

bisimilarity

bisimulations�(R) v R

Fig. 11.10: The CPO? (√(P ⇥P),v)

Now we define the transformation function F :√(P ⇥P) !√(P ⇥P).

p F(R) q def
=

(
8µ, p0. p

µ�! p0 implies 9q0. q
µ�! q0 and p0 R q0

8µ,q0. q
µ�! q0 implies 9p0. p

µ�! p0 and p0 R q0

Note that F maps relations to relations.

Lemma 11.1 (Strong bisimulation as a pre-fixpoint). Let R be a relation in
√(P ⇥P). It is a strong bisimulation if and only if it is a pre-fixpoint of F, i.e., if
and only if F(R) v R (or equivalently, R ✓ F(R)).

Proof. Immediate, by definition of strong bisimulation. ut

It follows from Lemma 11.1 that an alternative definition of strong bisimilarity is:

' def
=

[

F(R)vR

R.

Theorem 11.4. Strong bisimilarity if the least fixpoint of F.

Proof. By Theorem 11.3 it follows that strong bisimilarity is a fixpoint of F. Then,
the thesis follows immediately by Lemma 11.1 and by the fact that strong bisimilarity
is the largest strong bisimulation. ut

We would like to exploit the fixpoint theorem to compute strong bisimilarity. All
we need to check is that F is monotone and continuous.
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Theorem 11.5 (F is monotone). The function F is monotone.

Proof. For all relations R1,R2 2√(P ⇥P), we need to prove that

R1 v R2 ) F(R1) v F(R2).

Assume R1 v R2, i.e., R2 ✓ R1. We want to prove that F(R1) v F(R2), i.e., that
F(R2) ✓ F(R1). Suppose s1 F(R2) s2; we want to show that s1 F(R1) s2. Take µ,s0

1

such that s1
µ�! s0

1. Since s1 F(R2) s2, there exists s0
2 such that s2

µ�! s0
2 and s0

1 R2 s0
2.

But since R2 ✓ R1, we have s0
1 R1 s0

2. Analogously for the case when s2
µ�! s0

2. ut
Unfortunately, the function F is not continuous in general, as there are pathologi-

cal processes that show that the limit of the chain {Fn(P ⇥P)}n2N is not a strong
bisimulation. As a consequence, we cannot directly apply Kleene’s fixpoint theorem.

Example 11.12. To see an example of CCS processes p and q that are not strong
bisimilar but that are related by all relations in the chain {Fn(P ⇥P)}n2N, the
idea is the following. For simplicity let us focus on processes that can only perform
t-transitions. Let r def

= rec x. t.x; it can only execute infinitely many t-transitions.
Now, for n 2 N, let pn

def
= t....t| {z }

n times

.nil be the process that can execute n consecutive

t-transitions. Obviously r and pn are not strongly bisimilar for any n. Then, we take
as p a process that can choose between infinitely many alternatives, each choice
leading to the execution of finitely many t-transitions. Informally,

p = p1 + p2 + ...+ pn + ...

Finally, we take q = p+ r. Clearly p and q are not strong bisimilar, because, in the
bisimulation game, Alice the attacker has a winning strategy: she chooses to execute
q t�! r, then Bob the defender can only reply by executing a transitions of the form
p t�! pn for some n 2 N, and we know that r 6' pn. Of course, infinite summations
are not available in the syntax of CCS. However we can define a recursive process
that exhibits the same behaviour as p. Concretely, we let f be a permutation such
that f(a) = b and take p = (p0 | a.nil)\a , where:

p0 def
= rec X . a.nil+(b .a.nil | X [f ])\b

Now, for any n 2 N, let 'n
def
= Fn(P ⇥ P). By definition we have, that '0=

P ⇥P and 'n+1= F('n) for any n 2N. It can be proved by mathematical induction
on n 2 N that pn 'n r and that for any s 2 P it holds s 'n s. Now we prove that
p 'n q for any n 2 N. The proof is by mathematical induction on n. The base case
follows immediately since '0

def
= P ⇥P . For the inductive case, we want to prove

that p 'n+1 q. We observe that any transition p t�! pn of p can be directly simulated
by the corresponding move q t�! pn of q (and vice versa). The interesting case is when
we consider the transition q t�! r of q. Then, p can simulate the move by executing
the transition p t�! pn, as we know that pn 'n r. Hence p F('n) r, i.e., p 'n+1 r.
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However, if we restrict to consider (relations over) finitely branching processes,
then the function F is continuous. Let P f ✓ P denote the set of finitely branching
processes.

Theorem 11.6 (Strong bisimilarity as the least fixpoint). Let us consider only rela-
tions over finitely branching processes. Then the function F is continuous. Moreover,
it holds:

' =
G

n2N
Fn(P f ⇥P f )

Proof. To prove that F is continuous, we need to prove that for any chain {Rn}n2N
of relations over finitely branching processes:

F

 
G

n2N
Rn

!
=
G

n2N
F(Rn)

We prove the two inclusions separately.

✓: Take (p,q) 2 F(
F

n2N Rn); we want to prove that (p,q) 2
F

n2N F(Rn). This
amounts to prove that 8n 2 N. (p,q) 2 F(Rn). Take a generic k 2 N, we want
to prove that (p,q) 2 F(Rk). Let p

µ�! p0 of p, we want to find a transition
q

µ�! q0 of q such that (p0,q0) 2 Rk. Since (p,q) 2 F(
F

n2N Rn), we know that
there exists a transition q

µ�! q0 of q such that (p0,q0) 2
F

n2N Rn. Therefore
(p0,q0) 2 Rk. The case when q moves is analogous.

◆: Take (p,q) 2
F

n2N F(Rn), i.e., 8n 2 N. (p,q) 2 F(Rn); we want to prove that
(p,q) 2 F(

F
n2N Rn). Take any transition p

µ�! p0 of p. We want to find a
transition q

µ�! q0 of q such that (p0,q0) 2
F

n2N Rn. This amounts to require
that 8n 2 N. (p0,q0) 2 Rn. Since 8n 2 N. (p,q) 2 F(Rn), we know that for
any n 2 N there exists a transition q

µ�! qn such that (p0,qn) 2 Rn. Moreover,
since {Rn}n2N is a chain, then (p0,qn) 2 Rk for any k  n. Since q is finitely
branching, the set {q0 | q

µ�! q0} is finite. Therefore there is some index m 2 N
such that the set {n | qn = qm} is infinite, i.e., such that (p,qm) 2 Rn for all
n 2 N. We take q0 = qm and we are done. The case when q moves is analogous.

The second part of the theorem, the one about ' follows by continuity of F, by
Kleene’s fixpoint Theorem 5.6 and Theorem 11.4. ut

Example 11.13 (Infinitely branching process). Let us consider the recursive agent

p def
= rec x. (x | a.nil).

The agent p is not guarded, because the occurrence of x in the body of the recursive
process is not prefixed by an action: G(p,?) = G(x | a.nil,{x}) = G(x,{x}) ^
G(a.nil,{x}) = x 62 {x}^G(nil,?) = false^ true = false. By using the rules of the
operational semantics of CCS we have, e.g.:
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rec x. (x | a.nil) µ�! q -Rec (rec x. (x | a.nil)) | a.nil µ�! q

-Par, q=q1 | a.nil rec x. (x | a.nil) µ�! q1

-Rec (rec x. (x | a.nil)) | a.nil µ�! q1

-Par, q1=q2 | a.nil rec x. (x | a.nil) µ�! q2

-Rec ...

... rec x. (x | a.nil) µ�! qn

-Rec (rec x. (x | a.nil)) | a.nil µ�! qn

-Par, qn=(rec x. (x | a.nil)) | q0 a.nil µ�! q0

-Act, µ=a, q0=nil ⇤

It is then evident that for any n 2 N we have:

rec x. (x | a.nil) a�! (rec x. (x | a.nil)) | nil | a.nil | · · · | a.nil| {z }
n

.

The problem with the processes considered in Examples 11.12 and 11.13 is that
they are not guarded (see Remark 11.1), i.e. they have recursively defined names that
occur unguarded (not nested under some action prefix) in the body of the recursive
definition. The following lemma ensures that the LTS of any guarded term is finitely
branching and we know already from Remark 11.1 that all states reachable from
guarded processes are also guarded. As a corollary, strong bisimilarity of two guarded
processes can be studied by computing the least fixpoint as in Theorem 11.6.

Lemma 11.2 (Guarded processes are finitely branching). Let p be a guarded
process. Then, for any action µ the set {q | p

µ�! q} is finite.

Proof. We want to prove that G(p,?) implies that the set {q | p
µ�! q} is fi-

nite. We prove the stronger property that for any finite set X = {x1, ...,xn} pro-
cess names and processes p1, ..., pn, then G(p,X) ^

V
i2[1,n] G(pi,X) implies that

{q | p[p1/x1 , ...,
pn /xn ]

µ�! q} is finite. The proof is by structural induction on p. For
brevity, let s denote the substitution [p1/x1 , ...,

pn /xn ]. We only shows a few cases.

nil: The case where p = nil is trivial as nils = nil and {q | nil µ�! q} =?.
var: If p = x, then there are two possibilities. If x 2 X , then the premise

G(x,X) is falsified and therefore the implication holds trivially. If x 62 X
then xs = x and {q | x

µ�! q} = ?.
prefix: If p = µ.p0, then {q | (µ.p0)s µ�! q} = {p0s} is a singleton.
restriction: If p = p0\a such that G(p0,X), then there are two cases. If µ 2 {a,a}

then {q | (p0\a)s µ�! q} = ?. Otherwise the set

{q | (p0\a)s µ�! q} = {q0\a | p0s µ�! q0}
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is finite because {q0 | p0s µ�! q0} is finite by inductive hypothesis.
sum: If p = p0

0 + p0
1 such that G(p0

0,X) and G(p0
1,X), then the set

{q | (p0
0 + p0

1)s
µ�! q} = {q0

0 | p0
0s µ�! q0

0}[{q0
1 | p0

1s µ�! q0
1}

is finite because the sets {q0
0 | p0

0s µ�! q0
0} and {q0

1 | p0
1s µ�! q0

1} are
finite by inductive hypothesis.

recursion: If p = rec x. p0 such that G(p0,X [{x}),3 then the set

{q | (rec x. p0)s µ�! q} = {q | p0s [rec x. p0
/x]

µ�! q}

is finite by inductive hypothesis. ut

When we want to compare two processes p and q for strong bisimilarity it is
not necessary to compute the whole relation '. Instead, we can just focus on the
processes that are reachable from p and q. If the number of reachable states is
finite, then the calculation is effective, but possibly quite complex if the number of
states is large. In fact, the size of the LTS can explode for concise processes, due to
the interleaving of concurrent actions: if we have n processes p1, ..., pn running in
parallel, each with k possibly reachable states, then the process ((p1 | p2) | ...pn) can
have up to kn reachable states.

Example 11.14 (Strong bisimilarity as fixpoint). Let us consider the Example 11.9
which we have already approached with game theory techniques. Now we illustrate
how to apply the fixpoint technique to the same system. Remind that:

p def
= a.(b .nil+g.nil) q def

= a.b .nil+a.g.nil

Let us focus on the set of reachable states S and represent the relations by showing
the equivalence classes which they induce (over reachable processes). We start with
the coarsest relation, where any two processes are related (just one equivalence class).
At each iteration, we refine the relation by applying the operator F.

R0 = F0(?√(S⇥S)) = ?√(S⇥S) = { {p , q , b .nil+g.nil , b .nil , g.nil , nil} }
R1 = F(R0) = { {p,q} , {b .nil+g.nil} , {b .nil} , {g.nil} , {nil} }
R2 = F(R1) = { {p} , {q} , {b .nil+g.nil} , {b .nil} , {g.nil} , {nil} }

Initially, according to R0, any process is related with any other process, i.e., we
have a unique equivalence class.

After the first iteration (R1), we distinguish the processes on the basis of their
possible transitions. Note that, as all the target states are related by R0, we can only
discriminate by looking at the labels of transitions. For example, b .nil and g.nil must

3 Without loss of generality, it can be assumed that x 62 X and that x does not appear free in any
pi, as otherwise we can just a-rename x in p0. Then, for any i 2 [1,n] we have G(pi,X [{x}) (see
Remark 11.1).
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be distinguished because b .nil has an outgoing b -transition, while g.nil does not
have a b -transition. Similarly b .nil+g.nil must be distinguished from g.nil because
it has a b -transition and from b .nil because it has a g-transition. Moreover, the
inactive process nil is clearly distinguished from any other (non deadlock) process.
Only p and q are related by R1, because both can execute only a-transitions.

At the second iteration we focus on the unique equivalence class {p,q} in R1
which is not a singleton, as we cannot split any further the other equivalence classes.
Now let us consider the transition q a�! b .nil. Process p has a unique a-transition
that can be used to simulate the move of q, namely p a�! b .nil+g.nil, but b .nil and
b .nil+g.nil are not related by R1, therefore p and q must be distinguished by R2.

Note that R2 is a fixpoint, because each equivalence class is a singleton and cannot
be split any further. Hence p and q fall in different equivalence classes and they are
not strong bisimilar.

We conclude by studying strong bisimilarity of possibly unguarded processes.
Even in this case the least fixpoint exists, as granted by Knaster-Tarski’s fixpoint
Theorem 11.7 which ensures the existence of least and greatest fixpoints for monotone
functions over complete lattices.

Definition 11.8 (Complete lattice). A partial order (D,v) is a complete lattice if
any subset X ✓ D has a least upper bound and a greatest lower bound, denoted byF

X and
d

X , respectively.

Note that any complete lattice has a least element ? =
d

D and a greatest element
> =

F
D. Any powerset ordered by inclusion defines a complete lattice, hence the

set √(P ⇥P) of all relations over CCS processes is a complete lattice.
The next important result is named after Bronislaw Knaster who proved it for the

special case of lattices of sets and Alfred Tarski who generalised the theorem to its
current formulation.4

Theorem 11.7 (Knaster-Tarski’s fixpoint theorem). Let (D,v) a complete lattice
and f : D ! D a monotone function. Then f has a least fixpoint and a greatest
fixpoint, defined respectively as follows:

dmin
def
=

l
{d 2 D | f (d) v d} dmax

def
=
G

{d 2 D | d v f (d)}.

Proof. It can be seen that dmin is defined as the greatest lower bound of the set of
pre-fixpoints. To prove that dmin is the least fixpoint, we need to prove that:

1. dmin is a fixpoint, i.e., f (dmin) = dmin;
2. for any other fixpoint d 2 D of f we have dmin v d.

We split the proof of point 1, in two parts: f (dmin) v dmin and dmin v f (dmin).
For conciseness, let Pre f

def
= {d 2 D | f (d) v d}. By definition of dmin, we have

dmin v d for any d 2 Pre f . Since f is monotone, f (dmin) v f (d) and by transitivty

4 The theorem is actually stronger than what is presented here, because it asserts that the set of
fixpoints of a monotone function on a complete lattice forms a complete lattice itself.
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f (dmin) v f (d) v d

Thus, also f (dmin) is a lower bound of the set {d 2 D | f (d) v d}. Since dmin is the
greatest lower bound, we have f (dmin) v dmin.

To prove the converse, note that by the previous property and monotonicity of f
we have f ( f (dmin)) v f (dmin). Therefore f (dmin) 2 Pre f and since dmin is a lower
bound of Pre f it must be dmin v f (dmin).

Finally, any fixpoint d 2 D of f is also a pre-fixpoint, i.e., d 2 Pre f and thus
dmin v d because dmin is a lower bound of Pre f .

The proof that dmax is the greatest fixpoint is analogous and thus omitted. ut

We have already seen that F is monotone, hence Knaster-Tarski’s fixpoint theorem
guarantees the existence of the least fixpoint, and hence strong bisimilarity, also
when infinitely branching processes are considered.

11.5 Compositionality

In this section we focus on compositionality issues of the abstract semantics which
we have just introduced. For an abstract semantics to be practically relevant it is
important that any process used in a system can be replaced with an equivalent process
without changing the semantics of the system. Since we have not used structural
induction in defining the abstract semantics of CCS, no kind of compositionality
is ensured w.r.t. the possible ways of constructing larger systems, i.e., w.r.t. the
operators of CCS.

Definition 11.9 (Congruence). An equivalence ⌘ is said to be a congruence (with
respect to a class of contexts) if:

8C[·]. p ⌘ q ) C[p] ⌘ C[q]

In order to guarantee the compositionality of CCS we must show that strong
bisimilarity is a congruence relation.

Let us now see an example of a relation which is not a congruence.

Example 11.15 (Completed trace semantics). Let us consider the processes p and q
from Example 11.9. Take the following context:

C[·] def
= ( · | a.b .d .nil)\a\b\g

Now we can fill the hole in C[·] with the processes p and q:

C[p] = (a.(b .nil+g.nil) | a.b .d .nil)\a\b\g

C[q] = ((a.b .nil+a.g.nil) | a.b .d .nil)\a\b\g
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Obviously C[p] and C[q] generate the same set of traces, however one of the processes
can “deadlock” before the interaction on b takes place, but not the other:

C[p]

t
✏✏

C[q]

t

⌅⌅

t
✏✏

((b .nil+g.nil) | b .d .nil)\a\b\g

t
✏✏

(g.nil | b .d .nil)\a\b\g

(nil | d .nil)\a\b\g

d
✏✏

(b .nil | b .d .nil)\a\b\gt
oo

(nil | nil)\a\b\g

The difference can be formalised if we consider the so-called completed trace
semantics. Let us write p 6! for the predicate ¬(9µ. 9q. p

µ�! q). A completed trace
of a process p is a sequence of actions µ1 · · ·µk (for k � 0) such that there exists a
sequence of transitions

p = p0
µ1�! p1

µ2�! · · · µk�1���! pk�1
µk�! pk 6!

for some p1, ..., pk. The completed traces of a process characterise the sequences
of actions that can lead the system to a deadlocked configuration, where no further
action is possible.

The completed trace semantics of p is the same as that of q, namely { ab , ag }.
However, the completed traces of C[p] and C[q] are { ttd } and { ttd , t }, respec-
tively. We can thus conclude that the completed trace semantics is not a congruence.

11.5.1 Strong bisimilarity is a Congruence

In order to show that strong bisimilarity is a congruence w.r.t. all contexts it is enough
to prove that the property holds for all the operators of CCS. So we need to prove
that, for any p, p0, p1,q,q0,q1 2 P:

• if p ' q, then 8µ. µ.p ' µ.q;
• if p ' q, then 8a. p\a ' q\a;
• if p ' q, then 8f . p[f ] ' q[f ];
• if p0 ' q0 and p1 ' q1, then p0 + p1 ' q0 +q1;
• if p0 ' q0 and p1 ' q1, then p0 | p1 ' q0 | q1.

The congruence property is important, because it allows to replace any process
with an equivalent one in any context preserving the overall behaviour.
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Here we give the proof only for parallel composition, which is an interesting case
to consider. The other cases follow by similar arguments and are left as an exercise
(see Problem 11.7)

Lemma 11.3 (Strong bisimilarity is preserved by parallel composition). For any
p0, p1,q0,q1 2 P , if p0 ' q0 and p1 ' q1, then p0 | p1 ' q0 | q1.

Proof. As usual we assume the premise p0 ' q0 ^ p1 ' q1 and we would like to
prove that p0 | p1 ' q0 | q1, i.e., that:

9R. (p0 | p1) R (q0 | q1) ^ R ✓ F(R)

Since p0 ' q0 and p1 ' q1 we have:

p0 R0 q0 for some strong bisimulation R0 ✓ F(R0)
p1 R1 q1 for some strong bisimulation R1 ✓ F(R1)

Now let us consider the relation:

R def
= {(r0 | r1 , s0 | s1) | r0 R0 s0 ^ r1 R1 s1}

By definition it holds (p0 | p1) R (q0 | q1). Now we show that R is a strong bisimu-
lation (i.e., that R ✓ F(R)). Let us take a generic pair (r0 | r1 , s0 | s1) 2 R and let
us consider a transition r0 | r1

µ�! r, we need to prove that there exists s such that
s0 | s1

µ�! s with (r,s) 2 R. (The case where s0 | s1 executes a transition that r0 | r1
must simulate is completely analogous.) There are three rules whose conclusions
have the form r0 | r1

µ�! r.

• The first case is when we have applied the first (Par) rule. So we have r0
µ�! r0

0
and r = r0

0 | r1 for some r0
0. Since r0 R0 s0 and R0 is a strong bisimulation relation,

then there exists s0
0 such that s0

µ�! s0
0 and (r0

0,s
0
0) 2 R0. Then, by applying the

same inference rule we get s0 | s1
µ�! s0

0 | s1. Since (r0
0,s

0
0) 2 R0 and (r1,s1) 2 R1,

we have (r0
0 | r1,s0

0 | s1) 2 R and we conclude by taking s = s0
0 | s1.

• The second case is when we have applied the second (Par) rule. So we have
r1

µ�! r0
1 and r = r0 | r0

1 for some r0
1. By a similar argument to the previous case

we prove the thesis.
• The last case is when we have applied the (Com) rule. This means that r0

l�! r0
0,

r1
l�! r0

1, µ = t and r = r0
0 | r0

1 for some observable action l and processes r0
0,r

0
1.

Since r0 R0 s0 and R0 is a strong bisimulation relation, then there exists s0
0 such that

s0
l�! s0

0 and (r0
0,s

0
0) 2 R0. Similarly, since r1 R1 s1 and R1 is a strong bisimulation

relation, then there exists s0
1 such that s1

l�! s0
1 and (r0

1,s
0
1) 2 R1. Then, by applying

the same inference rule we get s0 | s1
t�! s0

0 | s0
1. Since (r0

0,s
0
0) 2 R0 and (r0

1,s
0
1) 2 R1,

we have (r0
0 | r0

1,s
0
0 | s0

1) 2 R and we conclude by taking s = s0
0 | s0

1. ut
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11.6 A Logical View to Bisimilarity: Hennessy-Milner Logic

In this section we present a modal logic introduced by Matthew Hennessy and Robin
Milner. Modal logic allows to express concepts as “there exists a next state such that”,
or “for all next states”, some property holds. Typically, model checkable properties
are stated as formulas in some modal logic. In particular, Hennessy-Milner modal
logic is relevant for its simplicity and for its close connection to strong bisimilarity.
As we will see, in fact, two strong bisimilar agents satisfy the same set of modal logic
formulas. This fact shows that strong bisimilarity is at the right level of abstraction.

Definition 11.10. The formulas of Hennessy-Milner logic (HM-logic) are generated
by the following grammar:

F ::= true | false |
^

i2I
Fi |

_

i2I
Fi | ⌃µ F | ⇤µ F

We write L for the set of the HM-logic formulas (HM-formulas for short).
The formulas of HM-logic express properties over the states of an LTS, i.e., in

our case, of CCS agents. The meanings of the logic operators are the following:

true: is the formula satisfied by every agent. This operator is sometimes written
tt or just T.

false: is the formula never satisfied by any agent. This operator is sometimes
written ff or just F.V

i2I Fi: corresponds to the conjunction of the formulas in {Fi}i2I . Notice that true
can be considered as a shorthand for an indexed conjunction where the set
I of indexes is empty.W

i2I Fi: corresponds to the disjunction of the formulas in {Fi}i2I . Notice that false
can be considered as a shorthand for an indexed disjunction where the set
I of indexes is empty.

⌃µ F : it is a modal operator; an agent p satisfies this formula if there exists a
µ-labelled transition from p to some state q that satisfies and the formula
F . This operator is sometimes written hµiF .

⇤µ F : it is a modal operator; an agent p satisfies this formula if for any q such
that there is a µ-labelled transition from p to q the formula F is satisfied
by q. This operator is sometimes written [µ]F .

As usual, logical satisfaction is defined as a relation |= between formulas and
their models, which in our case are CCS processes, seen as states of the LTS defined
by the operational semantics.

Definition 11.11 (Satisfaction relation). The satisfaction relation |= ✓ P ⇥L is
defined as follows (for any p 2 P , F 2 L and {Fi}i2I ✓ L ):
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p |= true
p |=

V
i2I Fi iff 8i 2 I. p |= Fi

p |=
W

i2I Fi iff 9i 2 I. p |= Fi

p |= ⌃µ F iff 9p0. p
µ�! p0 ^ p0 |= F

p |= ⇤µ F iff 8p0. p
µ�! p0 ) p0 |= F

If p |= F we say that the process p satisfies the HM-formula F .

Notably, if p cannot execute any µ-transition, then p |= ⇤µ F for any formula F .
For example, the formula ⌃a true is satisfied by all processes that can execute an
a-transition, and the formula ⇤b false is satisfied by all processes that cannot execute
a b -transition. Then the formula ⌃a true^⇤b false is satisfied by all processes that
can execute an a-transition but not a b -transition, while the formula ⌃a⇤b false is
satisfied by all processes that can execute an a-transition to reach a state where no
b -transition can be executed. Can you guess by which processes are satisfied the
formulas ⌃a false and ⇤b true? And the formula ⇤b⌃a true?

HM-logic induces an obvious equivalence on CCS processes: Two agents are
logically equivalent if they satisfy the same set of formulas.

Definition 11.12 (HM-logic equivalence). Let p and q be two CCS processes. We
say that p and q are HM-logic equivalent, written p ⌘HM q if

8F 2 L . p |= F , q |= F.

Example 11.16 (Non-equivalent agents). Let us consider two CCS agents p and q
whose LTSs are below:

p

a
✏✏
·

a

⌥⌥
a
⌫⌫

a

��
·

b

��
g
⌫⌫

·
b
✏✏

·
g
✏✏

· · · ·

q
a

��

a

��
·

a
✏✏

·
a

��
a

��
·

b

��
g
��

·
b
✏✏

·
g
✏✏

· · · ·
We would like to show a formula F which is satisfied by one of the two agents and
not by the other. For example, if we take

F = ⌃a⇤a(⌃b true^⌃g true) we have p 6 |=F and q |= F.

The agent p does not satisfy the formula F because after having executed its unique
a-transition we reach a state where it is possible to take a-transitions that lead to
states where either b or g is enabled, but not both. On the contrary, we can execute
the leftmost a-transition of q and we reach a state that satisfies ⇤a(⌃b true^⌃g true)
(i.e., the (only) state reachable by an a-transition can perform both g and b ).
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Although negation is not present in the syntax, HM-logic is closed under negation,
i.e., taken any formula F we can easily compute another formula Fc such that

8p 2 P. p |= F , p 6|= Fc.

The converse formula Fc is defined by structural recursion as follows:

truec def
= false falsec def

= true
(
V

i2I Fi)c def
=
W

i2I Fc
i (

W
i2I Fi)c def

=
V

i2I Fc
i

(⌃µ F)c def
= ⇤µ Fc (⇤µ F)c def

= ⌃µ Fc

Now we present two theorems which allow us to connect strong bisimilarity and
modal logic. As we said this connection is very important both from theoretical and
practical point of view. We start by introducing a measure over formulas, called
modal depth, to estimate the maximal number of consecutive steps that must be taken
into account to check the validity of the formulas.

Definition 11.13 (Depth of a formula). We define the modal depth (also depth) of
a formula as follows:

md(true) = md(false) def
= 0

md(
^

i2I
Fi) = md(

_

i2I
Fi)

def
= max{md(Fi) | i 2 I}

md(⌃µ F) = md(⇤µ F)
def
= 1+md(F)

It is immediate to see that the modal depth corresponds to the maximum nesting
level of modal operators. Moreover md(Fc) = md(F) (see Problem 11.16). For
example, in the case of the formula F in Example 11.16, we have md(F) = 3. We will
denote the set of logic formulas of modal depth k with Lk = {F 2 L | md(F) = k}.

The first theorem ensures that if two agents are not distinguished by the k-th
iteration of the fixpoint calculation of strong bisimilarity, then no formula of depth k
can distinguish between the two agents, and vice versa.

Theorem 11.8. Let k 2 N and let the relation 'k be defined as follows (see Exam-
ple 11.12):

p 'k q , p Fk(P f ⇥P f ) q.

Then, we have:

8k 2 N. 8p,q 2 P f . p 'k q iff 8F 2 Lk. (p |= F) , (q |= F).

Proof. We proceed by strong mathematical induction on k.

Base case: for k = 0 the only formulas F with md(F) = 0 are (conjunctions and
disjunctions of) true and false, which cannot be used to distinguish
processes. In fact F0(P f ⇥P f ) = P f ⇥P f .
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Ind. case: Suppose that:

8p,q 2 P f . p 'k q iff 8F 2 Lk. (p |= F) , (q |= F).

We want to prove that

8p,q 2 P f . p 'k+1 q iff 8F 2 Lk+1. (p |= F) , (q |= F).

We prove that

1. If p 6'k+1 q then a formula F 2 Lk+1 can be found such that p |= F
and q 6|= F . Without loss of generality, suppose there are µ, p0 such
that p

µ�! p0 and for any q0 such that q
µ�! q0 then p0 6'k q0. By

inductive hypothesis, for any q0 such that q
µ�! q0 there exists a

formula Fq0 2 Lk that is satisfied5 by p0 and not by q0. Since q is

finitely branching, the set Q def
= {q0 | q

µ�! q0} is finite and we can
set

F def
= ⌃µ

^

q02Q

Fq0 .

2. If p 'k+1 q and p |= F then q |= F . The proof proceeds by structural
induction on F . We leave the reader to fill the details. ut

The second theorem generalises the above correspondence by setting up a connec-
tion between formulas of any depth and strong bisimilarity.

Theorem 11.9. Let p and q two finitely branching CCS processes, then we have:

p ' q if and only if p ⌘HM q

Proof. It is a consequence of Theorems 11.6 and 11.8. ut

It is worth reading this result both in the positive sense, namely strong bisimilar
agents satisfy the same set of HM-formulas; and in the negative sense, namely if
two finitely branching agents p and q are not strong bisimilar, then there exists a
formula F which distinguishes between them, i.e., such that p |= F but q 6|= F . From
a theoretical point of view these theorems show that strong bisimilarity distinguishes
all and only those agents which enjoy different properties. These results witness that
the relation ' is a good choice from the logical point of view. From the point of
view of verification, if we are given a specification F 2 L and a (finitely branching)
implementation p, it can be convenient to minimise the size of the LTS of p by taking
its quotient q up to bisimilarity and then check if q |= F .

Later, in Section 12.2, we will show that we can define a denotational semantics
for logic formulas, by assigning to each formula F the set {p | p |= F} of all
processes that satisfy F .

5 If the converse applies, we just take Fc
q0 .
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11.7 Axioms for Strong Bisimilarity

Finally, we show that strong bisimilarity can be finitely axiomatised. First we present
a theorem which allows to derive for every non recursive CCS agent a suitable normal
form.

Theorem 11.10. Let p be a (non-recursive) CCS agent, then there exists a CCS agent,
strong bisimilar to p, built using only prefix, sum and nil.

Proof. We proceed by structural recursion. First we define two auxiliary binary
operators b and k, where pbq means that p must make a transition while q stays
idle, and p1kp2 means that p1 and p2 must perform a synchronisation. In both case,
after the transition, the processes run in parallel. This corresponds to say that the
operational semantics rules for pbq and pkq are:

p
µ�! p0

pbq
µ�! p0 | q

p l�! p0 q l�! q0

pkq t�! p0 | q0

We show how to decompose the parallel operator, then we show how to simplify
the other cases:

p1 | p2 ' p1bp2 + p2bp1 + p1kp2

nilbp ' nil
µ.pbq ' µ.(p | q)

(p1 + p2)bq ' p1bq + p2bq

nilkp ' pknil ' nil
µ1.p1kµ2.p2 ' nil if µ1 6= µ2 _ µ1 = t

l .p1kl .p2 ' t.(p1 | p2)

(p1 + p2)kq ' p1kq + p2kq
pk(q1 +q2) ' pkq1 + pkq2

nil\a ' nil
(µ.p)\a ' nil if µ 2 {a,a}
(µ.p)\a ' µ.(p\a) if µ 6= a,a

(p1 + p2)\a ' p1\a + p2\a

nil[f ] ' nil
(µ.p)[f ] ' f(µ).p[f ]

(p1 + p2)[f ] ' p1[f ] + p2[f ]
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By repeatedly applying the axioms from left to right it is evident that any (non-
recursive) agent p can be rewritten to a sequential agent q built using only action
prefix, sum and nil. Since the left hand side and the right hand side of each axiom can
be proved to be strong bisimilar, by transitivity and congruence of strong bisimilarity,
we have that p and q are strong bisimilar. ut

From the previous theorem, it follows that every non-recursive CCS agent can
be equivalently written using action prefix, sum and nil. Note that the LTS of any
non-recursive CCS agent has only a finite number of reachable states. We call finite
any such agent.

Then, the axioms that characterise the strong bisimilarity relation are the follow-
ing:

p+nil ' p
p1 + p2 ' p2 + p1

p1 +(p2 + p3) ' (p1 + p2)+ p3

p+ p ' p

This last set of axioms simply asserts that processes with sum define an idempotent,
commutative monoid whose neutral element is nil.

Theorem 11.11. Any two finite CCS processes p and q are strong bisimilar if and
only if they can be equated using the above axioms.

Proof. We need to prove that the axioms are sound (i.e., they preserve strong bisimi-
larity) and complete (i.e., any strong bisimilar finite agents can be proved equivalent
using the axioms). Soundness can be proved by showing that the left-hand side and
the right-hand side of each axiom are strong bisimilar, which can be readily done
by exhibiting suitable strong bisimulation relations, similarly to what has been done
for proving that strong bisimilarity is a congruence. Completeness is more involved.
First, it requires the definition of a normal form representation for processes, called
head normal form (HNF for short). Second, it requires proving that for any two
strong bisimilar processes p and q that are in HNF we can prove that p is equal to q
by using the axioms. Third, it requires proving that any process can be put in HNF.
Formally, a process p is in HNF if it is written p = Âi2I µi.pi for some processes pi
that are themselves in HNF. We omit here the details of the proof. ut

Example 11.17 (Proving strong bisimilarity by equational reasoning). We have
seen in Example 11.7 that the operational semantics reduces concurrency to non-
determinism. Let us prove that a.nil | b .nil is strongly bisimilar to a.b .nil+b .a.nil
by using the axioms for strong bisimilarity. First let us observe that

nil | nil ' nilbnil + nilbnil + nilknil ' nil + nil + nil ' nil

Then, we have
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a.nil | b .nil ' a.nilbb .nil + b .nilba.nil + a.nilkb .nil
' a.(nil | b .nil) + b .(nil | a.nil) + nil
' a.(nilbb .nil + b .nilbnil + nilkb .nil)+

b .(nilba.nil + a.nilbnil + nilka.nil)
' a.(nil + b .(nil | nil) + nil) + b .(nil + a.(nil | nil) + nil)
' a.(b .(nil)) + b .(a.(nil))
' a.b .nil + b .a.nil

We remark that strong bisimilarity of (possibly recursive) CCS processes is not
decidable in general, while the above theorem can be used to prove that strong
bisimilarity of finite CCS process is decidable. Moreover, if two finitely branching
(but possibly infinite-state) processes are not strong bisimilar, then we should be
able to find a finite counterexample, i.e., strong bisimilarity inequivalence of finitely
branching processes is semi-decidable (as a consequence of Theorem 11.9).

11.8 Weak Semantics of CCS

Let us now see an example that illustrates the limits of strong bisimilarity as a
behavioural equivalence between agents.

Example 11.18 (Linked buffers). Let us consider the buffers implemented as in Exam-
ple 11.8. An alternative implementation of a buffer of capacity two could be obtained
by linking two buffers of capacity one. Let us define the linking operation, similarly
to what we have done in Example 11.3, as follows:

p _ q def
= (p[fout ] | q[fin])\`

where fout(out) = ` and fin(in) = ` and they are the identity otherwise. Then an
empty buffer of capacity two could be implemented by taking B1

0 _ B1
0. However, its

LTS is
B1

0 _ B1
0

in
xx

B1
1 _ B1

0
t // B1

0 _ B1
1

out
ff

inxx
B1

1 _ B1
1

out
ff

Obviously the internal t-transition B1
1 _ B1

0
t�! B1

0 _ B1
1, which is necessary to shift

the data from the leftmost buffer to the rightmost buffer, makes it not possible to
establish a strong bisimulation between B2

0 and B1
0 _ B1

0.

The above example shows that, when we consider t as an internal action, not
visible from outside of the system, we would like, accordingly, relate observable
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behaviours that differs just for t-actions. Therefore strong bisimilarity is not abstract
enough for some purposes. For example, in many situations, one can use CCS to
give an abstract specification of a system and also to define an implementation that
should be provable “equivalent” to the specification, but typically the implementation
makes use of auxiliary invisible actions t that are not present in the specification.
So it is natural to try to abstract away from the invisible (t-labelled) transitions by
defining a new equivalence relation. This relation is called weak bisimilarity. We
start by defining a new, more abstract, LTS, where a single transitions can involve
several internal moves.

11.8.1 Weak Bisimilarity

Definition 11.14 (Weak transitions). We let ) be the weak transition relation on
the set of states of an LTS defined as follows:

p t
=) q def

= p t�! . . .
t�! q _ p = q

p l
=) q def

= 9p0,q0. p t
=) p0 l�! q0 t

=) q

Note that p t
=) q means that q can be reached from p via a, possibly empty, finite

sequence of t-transitions, i.e., the weak transition relation t
=) coincides with the

reflexive and transitive closure (
t�!)⇤ of the silent transition relation t�!. For l an

observable action, the relation l
=) requires instead the execution of exactly one l -

transition, possibly preceded and followed by any finite sequence (also empty) of
silent transitions.

We can now define a notion of bisimulation that is based on weak transitions.

Definition 11.15 (Weak Bisimulation). Let R be a binary relation on the set of states
of an LTS then it is a weak bisimulation if

8s1,s2. s1 R s2 )
(

8µ,s0
1. if s1

µ�! s0
1 then 9s0

2 such that s2
µ
=) s0

2 and s0
1 R s0

2

8µ,s0
2. if s2

µ�! s0
2 then 9s0

1 such that s1
µ
=) s0

1 and s0
1 R s0

2

Definition 11.16 (Weak bisimilarity ⇡). Let s1 and s2 be two states of an LTS, then
they are said to be weak bisimilar, written s1 ⇡ s2 if there exists a weak bisimulation
R such that s1 R s2.

As done for strong bisimilarity, we can now define a transformation function
Y : √(P ⇥P) ! √(P ⇥P) which takes a relation on P and returns another
relation Y(R) by exploiting simulations via weak transitions:

p Y(R) q def
=

(
8µ, p0. p

µ�! p0 implies 9q0. q
µ
=) q0 and p0 R q0

8µ,q0. q
µ�! q0 implies 9p0. p

µ
=) p0 and p0 R q0
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Then a weak bisimulation R is just a relation such that Y(R) v R (i.e., R ✓ Y(R)).
From which it follows:

p ⇡ q if and only if 9R. p R q^Y(R) v R

and that an alternative definition of weak bisimilarity is

p ⇡ q def
=

G

Y(R)vR

R.

Weak bisimilarity seems to improve the notion of equivalence w.r.t. ', because ⇡
abstracts away from the invisible transitions as we required. Unfortunately, there are
two problems with this relation:

1. First, the LTS obtained by considering weak transitions instead of string transi-
tions can become infinitely branching also for guarded terms (consider, e.g., the
finitely branching process rec x. (t.x | a.nil), analogous to the agent discussed
in Example 11.13). Thus function Y is not continuous, and the minimal fixpoint
cannot be reached, in general, with the usual chain of approximations.

2. Second, and much worse, weak bisimilarity is not a congruence with respect to the
choice operator +, as the following example shows. As a (minor) consequence,
weak bisimilarity, differently than strong bisimilarity, cannot be axiomatised by
context-insensitive laws.

Example 11.19 (Weak bisimilarity is not a congruence). Let p and q be the following
CCS agents:

p def
= a.nil q def

= t.a.nil

Obviously, we have p ⇡ q, since their behaviours differ only by the ability to perform
an invisible action t . Now we define the following context:

C[·] = ·+b .nil

Then by embedding p and q within the context C[·] we get:

C[p] = a.nil+b .nil 6⇡ t.a.nil+b .nil = C[q]

In fact C[q]
t�! a.nil, while C[p] has only one invisible weak transition that can

be used to match such a step, that is the idle step C[p]
t
=) C[p] and C[p] is clearly

not equivalent to a.nil (because the former can perform a b -transition that the
latter cannot simulate). This phenomenon is due to the fact that t-transitions are not
observable but can be used to discard some alternatives within non-deterministic
choices. While quite unpleasant, the above fact is not in any way due to a CCS
weakness, or misrepresentation of reality, but rather enlightens a general property of
nondeterministic choice in systems represented as black boxes.

Note, however, that weak bisimilarity is an equivalence relation and that it is a
congruence w.r.t. all operators, except sum.
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11.8.2 Weak Observational Congruence

As shown by the Example 11.19, weak bisimilarity is not a congruence relation.
In this section we present one possible (partial) solution. The idea is to close the
equivalence w.r.t. all sum contexts.

Let us consider the Example 11.19, where the execution of a t-transition forces
the system to make a choice which is invisible to an external observer. In order to
make this kind of choices observable we can define the relation u as follows

Definition 11.17 (Weak observational congruence u). We say that two processes
p and q are weakly observational congruent, written p u q if

p ⇡ q ^ 8r 2 P. p+ r ⇡ q+ r.

Weak observational congruence can be defined directly by letting:

p u q def
=

8
><

>:

8p0. p t�! p0 implies 9q0. q t�! t
=) q0 and p0 ⇡ q0

8l , p0. p l�! p0 implies 9q0. q l
=) q0 and p0 ⇡ q0

(and, vice versa, any transition of q can be (weakly) simulated by p)

As we can see, an internal action p t�! p0 must now be matched by at least one internal
action. Notice however that this is not a recursive definition, since u is simply defined
in terms of ⇡: after the first step has been performed, other t-labeled transition can
be simulated also by staying idle. Now it is obvious that a.nil 6u t.a.nil, because
a.nil cannot simulate the t-transition t.a.nil t�! a.nil.

The relation u is a congruence but as we can see in the following example it is
not a (weak) bisimulation, namely u 6✓ Y(u).

Example 11.20 (Weak observational congruence is not a weak bisimulation). Let

p def
= b .p0 p0 def

= t.a.nil q def
= b .q0 q0 def

= a.nil

We have p0 6u q0 (see above), although Example 11.19 shows that p0 ⇡ q0. Therefore:

p ⇡ q and p u q

but, according to the weak bisimulation game, if Alice the attacker plays the b -

transition p
b�! p0, Bob the defender has no chance of playing a (weak) b -transition

on q and reach a state that is related by u with p0. Thus u is not a pre-fixpoint of Y .

Weak observational congruence u can be axiomatised by adding to the axioms
for strong bisimilarity the following three Milner’s t laws:

p+ t.p u t.p (11.1)
µ.(p+ t.q) u µ.(p+ t.q)+ µ.q (11.2)

µ.t.p u µ.p (11.3)
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11.8.3 Dynamic Bisimilarity

Example 11.20 shows that weak observational congruence is not a (weak) bisim-
ulation. In this section we present the largest relation which is at the same time
a congruence and a weak bisimulation. It is called dynamic bisimilarity and was
introduced by Vladimiro Sassone.

Definition 11.18 (Dynamic bisimilarity ⇠=). We define the dynamic bisimilarity ⇠=
as the largest relation that satisfies:

p ⇠= q implies 8C[·]. C[p] Y(⇠=) C[q]

In this case, at every step we close the relation by comparing the behaviour w.r.t.
any possible embedding context. In terms of game theory this definition can be
viewed as “at each turn Alice the attacker is also allowed to insert both agents into
the same context and then choose the transition.”

Alternatively, we can define the dynamic bisimilarity in terms of the transforma-
tion function Q :√(P ⇥P) !√(P ⇥P) such that:

pQ(R) q def
=

8
><

>:

8p0. p t�! p0 implies 9q0. q t��! t
==) q0 and p0 R q0

8l , p0. p l�! p0 implies 9q0. q l
==) q0 and p0 R q0

(and, vice versa, any transition of q can be (weakly) simulated by p)

In this case, every internal move must be simulated by making at least one internal
move: this is different from weak observational congruence, where after the first step,
an internal move can be simulated by staying idle, and it is also different from weak
bisimulation, where any internal move can be simulated by staying idle.

Then, we say that R is a dynamic bisimulation if Q(R) v R, and dynamic bisimi-
larity can be defined by letting:

⇠= def
=

[

Q(R)vR

R

Example 11.21. Let p, p0,q and q0 be defined as in Example 11.20. We have:

p ⇡ q and p0 ⇡ q0 (weak bisimilarity)
p u q and p0 6u q0 (weak observational congruence)
p 6⇠= q and p0 6⇠= q0 (dynamic bisimilarity)

As for weak observational congruence, we can axiomatise dynamic bisimilarity of
finite processes. The axiomatisation of ⇠= is obtained from that of u by omitting
the third Milner’s t law (Equation 11.3), i.e., by adding to the axioms for strong
bisimilarity the laws:

p+ t.p ⇠= t.p (11.4)
µ.(p+ t.q) ⇠= µ.(p+ t.q)+ µ.q (11.5)
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Problems

11.1. Draw the complete LTS for the agent of Example 11.2.

11.2. Write the recursive CCS process that corresponds to X3 in Example 11.5.

11.3. Given a natural number n � 1, let us define the family of CCS processes Bn
k for

0  k  n by letting:

Bn
0

def
= in.Bn

1 Bn
k

def
= in.Bn

k+1 +out.Bn
k�1 for 0 < k < n Bn

n
def
= out.Bn

n�1

Intuitively Bn
k represents a buffer with n positions of which k are occupied (see

Example 11.8).
Prove that Bn

0 ' B1
0 | B1

0 | · · · | B1
0| {z }

n

by providing a suitable strong bisimulation.

11.4. Prove that the union R1 [R2 and the composition

R1 �R2
def
= {(p, p0) | 9p00.p R1 p00 ^ p00 R2 p0}

of two strong bisimulation relations R1 and R2 are also strong bisimulation relations.

11.5. Exploit the properties outlined in Problem 11.4 to prove that strong bisimilarity
is an equivalence relation (i.e., to prove Theorem 11.1).

11.6. CCS is expressive enough to encode language constructs from imperative
programming, e.g., shared memory models of computation. A possible encoding is
outlined below:

Termination: To represent sequential composition of commands, we can use a
dedicated channel done over which a message is sent when the
current command is terminated. The message will be received by the
continuation. In the following we let Done denote the process

Done def
= done.nil

Variables: Suppose x is a variable whose possible values range over a fi-
nite domain {v1, ...,vn}. Such variables can have n different states
X1,X2, ...,Xn, depending on the currently stored value. In any such
state, a write operation can change the value stored in the variable,
or the current value can be read. We can model this situation by
considering (recursively defined processes):

X1
def
= xw1.X1 + xw2.X2 + ...+ xwn.Xn + xr1.X1

X2
def
= xw1.X1 + xw2.X2 + ...+ xwn.Xn + xr2.X2

...

Xn
def
= xw1.X1 + xw2.X2 + ...+ xwn.Xn + xrn.Xn
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where in any state Xi:

• for any j 2 [1,n] a message on channel xw j causes a change of
state to Xj;

• a message on channel xr j is accepted if and only if j = i.

Allocation: A variable declaration like

var x

can be modelled by the allocation of an uninitialised variable, to-
gether with the termination message:

xw1.X1 + xw2.X2 + ...+ xwn.Xn | Done

Assignment: An assignment like
x := i

can be modelled by sending a message over the channel xwi to the
process that manages the variable x:

xwi.Done

Skip: A skip statement is translated directly as t.Done or simply Done.
Sequencing: Let p1, p2 be the CCS processes modelling the commands c1,c2.

Then, we could try to model the sequential composition

c1;c2

simply as p1 | done.p2, but this solution is unfortunate, because when
considering several processes composed sequentially, like (c1;c2);c3,
then the termination signal produced by p1 could activate p3 instead
of p2. To amend the situation, we can introduce a channel d, private
to p1 and p2, which is used to rename the termination channel of p1
(while termination of p2 is still on channel done):

(p1[fdone] | d.p2)\d

where fdone is the relabelling such that fdone(done) = d.

Complete the encoding by implementing the following constructs:

Conditionals: Let p1, p2 be the CCS processes modelling the commands c1,c2.
Then, how can we model the conditional statement below?

if x = i then c1 else c2

Iteration: Let p be the CCS process modelling the command c. Then, how can
we model the while statement below?
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while x = i do c

Concurrency: Let p1, p2 be the CCS processes modelling the commands c1,c2.
Then, how can we model the parallel composition below?

c1 | c2

Hint: note that p1 | p2 is not the correct answer: we want to signal
termination when both the executions of p1 and p2 are terminated.

11.7. Prove that strong bisimilarity is a congruence w.r.t. action prefix, restriction,
relabelling and sum (see Section 11.5.1).

11.8. Let us consider the agent A def
= rec x. (a.x | b .nil). Prove that among the

reachable states from A there exist infinitely many states that are not strong bisimilar.
Exploit this fact to conclude that A is not strong bisimilar to any agent with a finite
number of reachable states.

11.9. Let us consider the CCS processes

p def
= rec x. (a.x+a.nil) q def

= rec y. (a.a.y+a.nil)

Draw the LTS for p and q and prove that p 6' q by exhibiting a formula in HM-logic
that distinguishes between the two.

11.10. Let us consider the CCS processes

r def
= a.(b.c.nil+b.t.c.nil+ t.b.nil+b.nil)

s def
= a.(b.c.t.nil+ t.b.nil)+a.b.nil

Draw the LTS for r and s and prove that they are weakly observational congruent
by exploiting the axioms presented in Sections 11.7 and 11.8.2. At each step of the
proof explain which axiom is used and where it is applied.

11.11. Consider the CCS agents:

p def
= (rec x. a.x) | rec y. b.y q def

= rec z. a.a.z+a.b.z+b.a.z+b.b.z

Prove that p and q are strong bisimilar or exhibit an HM-logic formula F that can be
used to distinguish them.

11.12. Let us consider sequential CCS agents composed using only nil, action prefix
and sum. Prove that

p
µ�! q implies j(p)

j(µ)���! j(q)

for any permutation of action names j . Use this result to prove that p ' q implies
j(p) ' j(q), where ' denotes strong bisimilarity.
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11.13. Let us consider the LTSs below:

A0

t
✓✓ a // A1

b
��

t~~
A2

b

33
t

`` B0

a
✓✓

t

  
B1

b
��

a

``

1. Write the recursive CCS expressions that corresponds to A0 and B0.
Hint: Introduce a rec construct for each node in the diagram and name the process
variables as the nodes for simplicity, e.g., for A0 write rec A0. (t.A0 + ...).

2. Prove that A0 6⇡ B0 and B0 ⇡ B1, where ⇡ is the weak bisimilarity.

11.14. Recall that a weak bisimulation is a relation R such that:

8p,q. p R q implies

(
8µ, p0. p

µ�! p0 implies 9q0. q
µ
=) q0 and p0 R q0

8µ,q0. q
µ�! q0 implies 9p0. p

µ
=) p0 and p0 R q0

Let us define a loose bisimulation to be a relation R such that:

8p,q. p R q implies

(
8µ, p0. p

µ
=) p0 implies 9q0. q

µ
=) q0 and p0 R q0

8µ,q0. q
µ
=) q0 implies 9p0. p

µ
=) p0 and p0 R q0

Prove that weak bisimilarity is the largest loose bisimulation by showing that:

1. any loose bisimulation is a weak bisimulation; and
2. any weak bisimulation is a loose bisimulation.

Hint: For (2) prove first, by mathematical induction on n � 0, that for any weak
bisimulation R, any two processes p R q, and any sequence of transitions p t�! p1

t�!
p2 · · · t�! pn there exists q0 with q t

=) q0 and pn R q0.

11.15. Let P denote the set of all (closed) CCS processes.

1. Prove that 8p,q 2 P. p | q ⇡ q | t.p, where ⇡ denotes weak bisimilarity, by
showing that the relation R below is a weak bisimulation:

R def
= {(p | q,q | t.p) | p,q 2 P}[{(p | q,q | p) | p,q 2 P}

2. Then exhibit two processes p and q and a context C[·] showing that s def
= p | q and

t def
= q | t.p are not weak observational congruent.

Hint: remind that, denoting by u the weak observational congruence:

s u t if and only if s ⇡ t ^ 8r. s+ r ⇡ t + r.

11.16. Prove that for any HM-formula F we have (Fc)c = F and md(Fc) = md(F).
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