Information Retrieval - EXERCISES
 11 July 2024 - time 60 minutes

Name and Surname:

Question \#1 [scores 3+3] Given the dictionary of strings Dict $=\{C C B, C B C A, A D A\}$
a) construct a bigram index (hence $\mathrm{k}=2$).
b) Then given the string $Q=$ " $B C C B$ " use the overlap distance to filter a set of strings from Dict that are potential candidate for an edit distance $\mathrm{e}=1$.

Question \#2 [scores 3+4] Given the two files

$$
\text { Fold }=\text { "How_much_is_good", F }{ }_{\text {new }}=\text { "How_much_are_good", }
$$

and a block size $B=3$ chars (hint: if the length is not a multiple of B, add NULL chars).
a) Describe rsync running on them;
b) Describe zsync running on them.

Question \#3 [scores 2+2+1+1] Consider the WAND algorithm for examining the head of the following four posting lists:

$$
\begin{aligned}
& \mathrm{t}_{1} \rightarrow 2,5,6,8,10,11,13 \\
& \mathrm{t}_{2} \rightarrow 8,11,12,13,15,17,19,21,25 \\
& \mathrm{t}_{3} \rightarrow 5,6,7,8,10,12,13,21 \\
& \mathrm{t}_{4} \rightarrow 3,5,8,11,13,19,22
\end{aligned}
$$

The current threshold is $\theta=2.5$, and the upper bounds of the scores in each posting list are: $u b_{1}=0.5, u b_{2}=0.7, u b_{3}=0.8, u b_{4}=1$.
a) Which is the candidate docID, and is its full score computed?
b) Suppose instead the algorithm is Blocked-WAND with blocks of size 5 and local upper bounds of the first block in each list equal to $\mathrm{lb}_{1}=0.5, \mathrm{lb}_{2}=0.5, \mathrm{lb}_{3}=0.4, \mathrm{lb}_{4}=0.8$. Which is the candidate docID, and its full score is computed?
c) Still considering the Blocked-WAND algorithm and the setting of point b) above, which blocks can be discarded to go to the next docID?
d) Can the value of θ change after the Blocked-WAND step of point b) above? Why?

Question \#4 [scores 3] Compute one step of PageRank on the following graph by assuming $\alpha=2 / 3$ and starting probability distribution equal to [1/4, $0,2 / 4,1 / 4]$.

Information Retrieval - THEORY

 11 July 2024 - time 60 minutes

 11 July 2024 - time 60 minutes}

Name and Surname:

\#matricola:

Question \#1 [scores 2+2]

- Describe the algorithm that computes the LSH-sketch of a binary vector for the case of hamming similarity, and show how it is used to declare that two vectors are "similar".
- State and prove what is the probability that the above algorithm declares that two vectors are "similar" provided that their real similarity is s.

Question \#2 [scores 2] Write the tf-idf formula, and describe what information must be stored in the inverted index to compute it efficiently in time and in space.

Question \#3 [scores 2] Describe how Hyperlink-Induced Topic Search (HITS) determines the so-called "root set" and "base set" of Web pages starting from a user query.

