
Index Construction

Paolo Ferragina
Dipartimento di Informatica

Università di Pisa

(Lecturer: Giovanni Manzini)

Basics

Sec. 3.1

Today task: how to
go from documents
to posting lists

The memory hierarchy

CPU RAM

1

CPU

registers

L1 L2 RAM

Cache
Few Mbs
Some nanosecs
Few words fetched

Few Gbs
Tens of nanosecs
Some words fetched

HD net

Few Tbs

Many Tbs
Even secs
Packets

Few millisecs
B = 32K page

Spatial locality or Temporal locality

Keep attention on disk...

 If sorting needs to manage strings

Key observations:

 Array A is an “array of pointers to objects”

 For each object-to-object comparison A[i] vs A[j]:
 2 random accesses to 2 memory locations A[i] and A[j]
 (n log n) n log n) random memory accesses (n log n) I/Os ??)

Memory containing the strings

A

Again caching helps, but how much ?
Strings  IDs

You sort A
Not the strings

SPIMI:
Single-pass in-memory indexing

 Key idea #1: Generate separate dictionaries for each
block of docs (n log n) No need for term  termID)

 Key idea #2: Accumulate postings in lists as they occur
in each block of docs (n log n) in internal memory).

 Generate an inverted index for each block.
 More space for postings available
 Compression is possible

 What about one big index ?
 Easy append with 1 file per posting (n log n) docID are increasing within

a block)
 But we have possibly many blocks to manage…. (n log n) next!)

SPIMI-Invert
How do we:
• Find in dict ? …time issue…
• AddTo dict + posting? …space issues …
• Postings’ size ? doubling
• Dictionary size ? … in-memory issues …

caesar likes brutus

brutus kills caesar

caesar likes calpurnia

doc1

doc2

doc3

dictionary = { caesar->[1,2,3], likes->[1,2], brutus->[1,3]
 calpurnia ->[2], kills ->[3] }

Ouput on disk: brutus->[1,3], caesar->[1,2,3], calpurnia->[2]
 kills->[2] likes->[1,2]

To be merged with:
Output of anothe machine: caesar -> [4,9], cleopatras->[4],
 kills->[4,5,6]

SPIMI algorithm, running example

What about one single index?

I did enact Julius

Caesar I was killed

i' the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Some issues

 Assign TermID
 (n log n) 1 pass)

 Create pairs <termID, docID>

 (n log n) 1 pass)

 Sort pairs by TermID

 This is a stable sort

Sorting on disk

 multi-way merge-sort

aka BSBI: Blocked sort-based Indexing

 Mapping term  termID
 to be kept in memory for constructing the pairs
 Needs two passes, unless you use hashing and thus

some probability of collision.

See next slide

N items M memory B page size

We can sort in memory up to M items,
 -> N/M sorted blocks to be merged

We can merge simultanesously X = M/B files
X does not depend on the size of the files to be merged

If N/M < X we are done in one pass

In the first round we take X files of size M and merge
them into a new file of size XM

In the second round take X files of size XM and merge
them into a new file of size X^2 M

Proceed until X^i M > N --> i = log_X(N/M)

Multi-way Merge-Sort

 Sort N items with main-memory M and disk pages B:

 Pass 1: Produce (n log n) N/M) sorted runs.
 Pass i: merge X = M/B-1 runs  logX N/M passes

Main memory buffers of B items

Pg for run1

Pg for run X

Out Pg

DiskDisk

Pg for run 2

.
.

. . .

How it works

1 2 5 10 7 9 13 19

1 2 5 7….

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19

M

N/M runs, each sorted in internal memory = 2 (N/B) I/Os

2 passes (one Read/one Write) = 2 * (N/B) I/Os

— I/O-cost for X-way merge is ≈ 2 (N/B) I/Os per level

L
o
g

X
 (

N
/M

)

M

X

X

Cost of Multi-way Merge-Sort

 Number of passes = logX N/M  logM/B (n log n) N/M)

 Total I/O-cost is (n log n) (n log n) N/B) logM/B N/M) I/Os

 Large fan-out (n log n) M/B) decreases #passes

In practice

 M/B ≈ 105  #passes =1  few mins

Tuning depends

on disk features

 Compression would decrease the cost of a pass!

Distributed indexing

 For web-scale indexing: must use a
distributed computing cluster of PCs

 Individual machines are fault-prone
 Can unpredictably slow down or fail

 How do we exploit such a pool of machines?

Distributed indexing

 Maintain a master machine directing the
indexing job – considered “safe”.

 Break up indexing into sets of (n log n) parallel) tasks.
 Master machine assigns tasks to idle

machines
 Other machines can play many roles during

the computation

Parallel tasks

 We will use two sets of parallel tasks
 Parsers and Inverters

 Break the document collection in two ways:

• Term-based partition
one machine handles a subrange of terms

• Doc-based partition
one machine handles a subrange of documents

• Term-based partition
one machine handles a subrange of terms

• Doc-based partition
one machine handles a subrange of documents

Data flow: doc-based partitioning

splits

Parser

Parser

Parser

Master

Inverter

Inverter

Inverter

Postings

IL1

assign assign

IL2

ILk

Set1

Set2

Setk

Each query-term goes to many machines

Data flow: term-based partitioning

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Set1

Set2

Setk

Each query-term goes to one machine

MapReduce

 This is
 a robust and conceptually simple framework for

distributed computing
 … without having to write code for the

distribution part.

 Google indexing system (n log n) ca. 2002) consists of a
number of phases, each implemented in
MapReduce.

Data flow: term-based
partitioning

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Reduce
phase

Segment
files

(local disks)

16Mb -
64Mb

Guarantee
fitting in one
machine ?

Guarantee
fitting in one
machine ?

Guarantee
fitting in one
machine ?

Guarantee
fitting in one
machine ?

Dynamic indexing

 Up to now, we have assumed static collections.

 Now more frequently occurs that:
 Documents come in over time
 Documents are deleted and modified

 And this induces:
 Postings updates for terms already in dictionary
 New terms added/deleted to/from dictionary

Simplest approach

 Maintain “big” main index
 New docs go into “small” auxiliary index
 Search across both, and merge the results

 Deletions
 Invalidation bit-vector for deleted docs
 Filter search results (n log n) i.e. docs) by the

invalidation bit-vector

 Periodically, re-index into one main index

Issues with 2 indexes

 Poor performance
 Merging of the auxiliary index into the main index is efficient if

we keep a separate file for each postings list.
 Merge is the same as a simple append [new docIDs are

greater].
 But this needs a lot of files – inefficient for O/S.

 In reality: Use a scheme somewhere in between (n log n) e.g.,
split very large postings lists, collect postings lists of
length 1 in one file etc.)

Logarithmic merge

 Maintain a series of indexes, each twice as large
as the previous one: M, 21 M , 22 M , 23 M , …

 Keep a small index (n log n) Z) in memory (n log n) of size M)

 Store I0, I1, I2, … on disk (n log n) sizes M , 2M , 4M,…)

 If Z gets too big (n log n) = M), write to disk as I0

 or merge with I0 (n log n) if I0 already exists)

 Either write Z + I0 to disk as I1 (n log n) if no I1)

 or merge with I1 to form I2, and so on
 etc.

indexes = logarithmic# indexes = logarithmic

Assume memory size is M (max size of an index in memory)

We keep on disk indexes of size

 M, 2M, 4M, 8M, 16M

but at most ONE index of a given size

When the memory is full for the first time we transfer
the index to disk obviously it has size M

Now the memory can handle new documents, but when
when the index has size M, we transfer it do disk: since
there is already an index of size M they are merged into
a new index of size 2M

As more and more new indexes of size M are transferred
from the main memory to the disk, the indexes stored
on disks have the following sizes:

After 2 transfers: 2M (see above)

After 3 transfers: M 2M (no merge)

After 4 transfers: 4M (this requires 2 merges)

After 5 transfers: M 4M (no merge)

After 6 transfers: 2M 4M (one merge of size M)

and so on: you can see a relationship between the binary
representation of the number of transfers and which
indexes are on disk.

Some analysis (n log n) C = total collection size)

 Auxiliary and main index: Each text participates to at
most (n log n) C/M) mergings because we have 1 merge of the two
indexes (n log n) small and large) every M-size document insertions.

 Logarithmic merge: Each text participates to no more
than log (n log n) C/M) mergings because at each merge the text
moves to a next index and they are at most log (n log n) C/M).

after log(C/M) merges, a text will be in a group of size
2^(log(C/M)) M = (C/M) M = C. Since this is the largest
possible size, no text will undergo more than log(C/M)
merges.

Each merge has a cost equal to the number of texts in it,
so the total cost is C log(C/M)

Web search engines

 Most search engines now support dynamic
indexing
 News items, blogs, new topical web pages

 But (n log n) sometimes/typically) they also
periodically reconstruct the index
 Query processing is then switched to the new

index, and the old index is then deleted

