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Basics
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Today task: how to 
go from documents
to posting lists



The memory hierarchy
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Keep attention on disk...

 If sorting needs to manage strings

Key observations: 

 Array A is an “array of pointers to objects”

 For each object-to-object comparison A[i] vs A[j]:
 2 random accesses to 2 memory locations A[i] and A[j]
 (n log n) n log n) random memory accesses (n log n) I/Os ??) 

Memory containing the strings

A

Again caching helps, but how much ? 
Strings  IDs

You sort A
Not the strings



SPIMI: 
Single-pass in-memory indexing

 Key idea #1: Generate separate dictionaries for each 
block of docs (n log n) No need for term  termID)

 Key idea #2: Accumulate postings in lists as they occur 
in each block of docs (n log n) in internal memory).

 Generate an inverted index for each block.
 More space for postings available
 Compression is possible 

 What about one big index ?
 Easy append with 1 file per posting (n log n) docID are increasing within 

a block)
 But we have possibly many blocks to manage…. (n log n) next!)



SPIMI-Invert
How do we:
• Find in dict ? …time issue…
• AddTo dict + posting?  …space issues …
• Postings’ size ? doubling
• Dictionary size ? … in-memory issues …



caesar likes brutus

brutus kills caesar

caesar likes calpurnia

doc1

doc2

doc3

dictionary = { caesar->[1,2,3], likes->[1,2], brutus->[1,3]
               calpurnia ->[2], kills ->[3]  }

Ouput on disk: brutus->[1,3], caesar->[1,2,3], calpurnia->[2]
               kills->[2] likes->[1,2]

To be merged with:
Output of anothe machine: caesar -> [4,9], cleopatras->[4],
        kills->[4,5,6]

SPIMI algorithm, running example



What about one single index?

I did enact Julius

Caesar I was killed 

i' the Capitol; 

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2



Some issues

 Assign TermID 
 (n log n) 1 pass)

 Create pairs <termID, docID>

 (n log n) 1 pass)

 Sort pairs by TermID

 This is a stable sort



Sorting on disk

 multi-way merge-sort

aka BSBI: Blocked sort-based Indexing

 Mapping term  termID 
 to be kept in memory for constructing the pairs
 Needs two passes, unless you use hashing and thus 

some probability of collision.



See next slide

N items      M memory       B page size 

We can sort in memory up to M items, 
   -> N/M sorted blocks to be merged 

We can merge simultanesously X = M/B files 
X does not depend on the size of the files to be merged

If N/M < X we are done in one pass 

In the first round we take X files of size M and merge 
them into a new file of size   XM 

In the second round take X files of size XM and merge
them into a new file of size X^2 M 

Proceed until X^i M > N  -->  i = log_X(N/M)



Multi-way Merge-Sort

 Sort N items with main-memory M and disk pages B:

 Pass 1: Produce (n log n) N/M) sorted runs. 
 Pass i: merge X = M/B-1 runs  logX N/M passes 

Main memory buffers of B items

Pg for run1

Pg for run X

Out Pg

DiskDisk

Pg for run 2

. . . . . 
.

. . .



How it works
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M

N/M runs, each sorted in internal memory  = 2 (N/B) I/Os

2 passes (one Read/one Write) = 2 * (N/B) I/Os

— I/O-cost for X-way merge is  ≈ 2 (N/B) I/Os per level

L
o
g

X
 (

N
/M

)

M

X

X



Cost of Multi-way Merge-Sort

 Number of passes = logX N/M  logM/B (n log n) N/M)

 Total I/O-cost is (n log n)  (n log n) N/B) logM/B  N/M ) I/Os

 Large fan-out (n log n) M/B) decreases #passes

In practice

 M/B ≈ 105  #passes =1  few mins

Tuning depends

on disk features

 Compression would decrease the cost of a pass! 



Distributed indexing

 For web-scale indexing: must use a 
distributed computing cluster of PCs

 Individual machines are fault-prone
 Can unpredictably slow down or fail

 How do we exploit such a pool of machines?



Distributed indexing

 Maintain a master machine directing the 
indexing job – considered “safe”.

 Break up indexing into sets of (n log n) parallel) tasks.
 Master machine assigns tasks to idle 

machines
 Other machines can play many roles during 

the computation



Parallel tasks

 We will use two sets of parallel tasks
 Parsers and Inverters

 Break the document collection in two ways:

• Term-based partition
one machine handles a subrange of terms

• Doc-based partition
one machine handles a subrange of documents

• Term-based partition
one machine handles a subrange of terms

• Doc-based partition
one machine handles a subrange of documents



Data flow: doc-based partitioning

splits

Parser

Parser

Parser

Master

Inverter

Inverter

Inverter

Postings

IL1

assign assign

IL2

ILk

Set1

Set2

Setk

Each query-term goes to many machines



Data flow: term-based partitioning

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Set1

Set2

Setk

Each query-term goes to one machine



MapReduce

 This is
 a robust and conceptually simple framework for 

distributed computing 
 … without having to write code for the 

distribution part.

 Google indexing system (n log n) ca. 2002) consists of a 
number of phases, each implemented in 
MapReduce.



Data flow: term-based 
partitioning

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Reduce
phase

Segment
files

(local disks)

16Mb -
64Mb

Guarantee 
fitting in one 
machine ?

Guarantee 
fitting in one 
machine ?

Guarantee 
fitting in one 
machine ?

Guarantee 
fitting in one 
machine ?



Dynamic indexing

 Up to now, we have assumed static collections.

 Now more frequently occurs that: 
 Documents come in over time
 Documents are deleted and modified

 And this induces:
 Postings updates for terms already in dictionary
 New terms added/deleted to/from dictionary



Simplest approach

 Maintain “big” main index
 New docs go into “small” auxiliary index
 Search across both, and merge the results

 Deletions
 Invalidation bit-vector for deleted docs
 Filter search results (n log n) i.e. docs) by the 

invalidation bit-vector

 Periodically, re-index into one main index



Issues with 2 indexes

 Poor performance
 Merging of the auxiliary index into the main index is efficient if 

we keep a separate file for each postings list.
 Merge is the same as a simple append [new docIDs are 

greater].
 But this needs a lot of files – inefficient for O/S.

 In reality: Use a scheme somewhere in between (n log n) e.g., 
split very large postings lists, collect postings lists of 
length 1 in one file etc.)



Logarithmic merge

 Maintain a series of indexes, each twice as large 
as the previous one: M, 21 M , 22 M , 23 M , …

 Keep a small index (n log n) Z) in memory (n log n) of size M)

 Store I0, I1, I2, … on disk (n log n) sizes M , 2M , 4M,…)

 If Z gets too big (n log n) = M), write to disk as I0

            or merge with I0 (n log n) if I0 already exists)

 Either write Z + I0 to disk as I1 (n log n) if no I1)

            or merge with I1 to form I2, and so on
 etc.

# indexes = logarithmic# indexes = logarithmic



  

Assume memory size is M (max size of an index in memory)

We keep on disk indexes of size 

   M, 2M, 4M, 8M, 16M ....

but at most ONE index of a given size 

When the memory is full for the first time we transfer 
the index to disk obviously it has size M 

Now the memory can handle new documents, but when
when the index has size M, we transfer it do disk: since 
there is already an index of size M they are merged into 
a new index of size 2M



As more and more new indexes of size M are transferred
from the main memory to the disk, the indexes stored
on disks have the following sizes:

After 2 transfers:    2M    (see above)

After 3 transfers:  M 2M    (no merge)

After 4 transfers:   4M     (this requires 2 merges)

After 5 transfers:  M 4M    (no merge)

After 6 transfers:  2M 4M   (one merge of size M)

and so on: you can see a relationship between the binary 
representation of the number of transfers and which
indexes are on disk.



Some analysis (n log n) C = total collection size)

 Auxiliary and main index: Each text participates to at 
most (n log n) C/M) mergings because we have 1 merge of the two 
indexes (n log n) small and large) every M-size document insertions.

 Logarithmic merge: Each text participates to no more 
than log (n log n) C/M) mergings because at each merge the text 
moves to a next index and they are at most log (n log n) C/M).

after log(C/M) merges, a text will be in a group of size
2^(log(C/M)) M = (C/M) M = C. Since this is the largest
possible size, no text will undergo more than log(C/M) 
merges.

Each merge has a cost equal to the number of texts in it,
so the total cost is C log(C/M) 



Web search engines

 Most search engines now support dynamic 
indexing
 News items, blogs, new topical web pages

 But (n log n) sometimes/typically) they also 
periodically reconstruct the index
 Query processing is then switched to the new 

index, and the old index is then deleted


