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Why compression (in general)?

 Use less disk space
 Saves a little money

 Keep more stuff in memory
 Increases speed

 Increase speed of data transfer from disk to memory
 [read compressed data | decompress] is faster than     

[read uncompressed data]

 Premise: Decompression algorithms are fast
 True of the decompression algorithms we use

Ch. 5
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Why compression for inverted indexes?

 Dictionary
 Make it small enough to keep in main memory

 Make it so small that you can keep some postings lists in 
main memory too

 Postings file(s)
 Reduce disk space needed

 Decrease time needed to read postings lists from disk

 Large search engines keep a significant part of the postings 
in memory.
 Compression lets you keep more in memory

 We will devise various IR-specific compression schemes

Ch. 5
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Lossless vs. lossy compression

 Lossless compression: All information is preserved.
 What we mostly do in IR.

 Lossy compression: Discard some information

 Several of the preprocessing steps can be viewed as 
lossy compression: case folding, stop words, 
stemming, number elimination.

 Chap/Lecture 7: Prune postings entries that are 
unlikely to turn up in the top k list for any query.
 Almost no loss quality for top k list.

Sec. 5.1
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Vocabulary vs. collection size

 How big is the term vocabulary?
 That is, how many distinct words are there?

 Can we assume an upper bound?
 Not really: At least 7020 = 1037 different words of length 20

 In practice, the vocabulary will keep growing with 
the collection size
 Especially with Unicode 

Sec. 5.1
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Vocabulary vs. collection size

 Heaps’ law: M = kTb

 M is the size of the vocabulary, T is the number of 
tokens in the collection

 Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5

 In a log-log plot of vocabulary size M vs. T, Heaps’ 
law predicts a line with slope about ½
 It is the simplest possible relationship between the two in 

log-log space

 An empirical finding (“empirical law”)

Sec. 5.1
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Heaps’ Law

For RCV1, the dashed line

log10M = 0.49 log10T + 1.64 
is the best least squares fit.

Thus, M = 101.64T0.49 so k = 
101.64 ≈ 44 and b = 0.49.

Good empirical fit for 
Reuters RCV1 !

For first 1,000,020 tokens,

law predicts 38,323 terms;

actually, 38,365 terms

Fig 5.1 p81

Sec. 5.1
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Example

 Compute the vocabulary size M for this scenario:
 Looking at a collection of web pages, you find that there 

are 3000 different terms in the first 10,000 tokens and 
30,000 different terms in the first 1,000,000 tokens.

 Assume a search engine indexes a total of 20,000,000,000 
(2 × 1010) pages, containing 200 tokens on average

 What is the size of the vocabulary of the indexed collection 
as predicted by Heaps’ law?

Sec. 5.1
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Compression

 Now, we will consider compressing the space 
for the dictionary and postings

 Basic Boolean index only

 No study of positional indexes, etc.

 We will consider compression schemes

Ch. 5
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DICTIONARY COMPRESSION

Sec. 5.2
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Why compress the dictionary?

 Search begins with the dictionary

 We want to keep it in memory

 Memory footprint competition with other 
applications

 Embedded/mobile devices may have very little 
memory

 Even if the dictionary isn’t in memory, we want it to 
be small for a fast search startup time

 So, compressing the dictionary is important

Sec. 5.2
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Dictionary storage - first cut

 Array of fixed-width entries
 ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr. 

a 656,265  

aachen 65  

…. ….  

zulu 221  
 

 

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2
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Fixed-width terms are wasteful

 Most of the bytes in the Term column are wasted – 
we allot 20 bytes for 1 letter terms.
 And we still can’t handle supercalifragilisticexpialidocious or 

hydrochlorofluorocarbons.

 Written English averages ~4.5 characters/word.
 Exercise: Why is/isn’t this the number to use for 

estimating the dictionary size?

 Ave. dictionary word in English: ~8 characters
 How do we use ~8 characters per dictionary term?

 Short words dominate token counts but not type 
average.

Sec. 5.2
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Compressing the term list: 
Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   
 

 

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

Store dictionary as a (long) string of characters:
Pointer to next word shows end of current word
Hope to save up to 60% of dictionary space.

Sec. 5.2
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Space for dictionary as a string

 4 bytes per term for Freq.

 4 bytes per term for pointer to Postings.

 3 bytes per term pointer

 Avg. 8 bytes per term in term string

 400K terms x 19  7.6 MB (against 11.2MB for fixed 
width)

 Now avg. 11
 bytes/term,
 not 28.

Sec. 5.2
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Blocking

 Store pointers to every kth term string.
 Example below: k=4.

 Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   

7   
 

 

 Save 9 bytes
 on 3
 pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2
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Blocking saving example 

 Example for block size k = 4

 Where we used 3 bytes/pointer without blocking
 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

Sec. 5.2
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Exercise

 Estimate the space usage (and savings compared to 
7.6 MB) with blocking, for block sizes of k = 4, 8 and 
16.

Sec. 5.2
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Dictionary search without blocking

 Assuming each 
dictionary term equally 
likely in query (not really 
so in practice!), average 
number of comparisons 
= (1+2∙2+4∙3+4)/8 ~2.6

Sec. 5.2
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Dictionary search with blocking

 Binary search down to 4-term block;
 Then linear search through terms in block.

 Blocks of 4 (binary tree), avg. = 
(1+2∙2+2∙3+2∙4+5)/8 = 3 compares

Sec. 5.2
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Exercise

 Estimate the impact on search performance (and 
slowdown compared to k=1) with blocking, for block 
sizes of k = 4, 8 and 16.

Sec. 5.2
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Front coding

 Front-coding:
 Sorted words commonly have long common prefix – store 

differences only

 (for last k-1 in a block of k)

8automata8automate9automatic10automation

8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.

Sec. 5.2
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RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2
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