
Introduction to Information RetrievalIntroduction to Information Retrieval

Introduction to

Information Retrieval

Lecture 5: Index Compression

Introduction to Information RetrievalIntroduction to Information Retrieval

Why compression (in general)?

 Use less disk space
 Saves a little money

 Keep more stuff in memory
 Increases speed

 Increase speed of data transfer from disk to memory
 [read compressed data | decompress] is faster than

[read uncompressed data]

 Premise: Decompression algorithms are fast
 True of the decompression algorithms we use

Ch. 5

3

Introduction to Information RetrievalIntroduction to Information Retrieval

Why compression for inverted indexes?

 Dictionary
 Make it small enough to keep in main memory

 Make it so small that you can keep some postings lists in
main memory too

 Postings file(s)
 Reduce disk space needed

 Decrease time needed to read postings lists from disk

 Large search engines keep a significant part of the postings
in memory.
 Compression lets you keep more in memory

 We will devise various IR-specific compression schemes

Ch. 5

4

Introduction to Information RetrievalIntroduction to Information Retrieval

Lossless vs. lossy compression

 Lossless compression: All information is preserved.
 What we mostly do in IR.

 Lossy compression: Discard some information

 Several of the preprocessing steps can be viewed as
lossy compression: case folding, stop words,
stemming, number elimination.

 Chap/Lecture 7: Prune postings entries that are
unlikely to turn up in the top k list for any query.
 Almost no loss quality for top k list.

Sec. 5.1

7

Introduction to Information RetrievalIntroduction to Information Retrieval

Vocabulary vs. collection size

 How big is the term vocabulary?
 That is, how many distinct words are there?

 Can we assume an upper bound?
 Not really: At least 7020 = 1037 different words of length 20

 In practice, the vocabulary will keep growing with
the collection size
 Especially with Unicode 

Sec. 5.1

8

Introduction to Information RetrievalIntroduction to Information Retrieval

Vocabulary vs. collection size

 Heaps’ law: M = kTb

 M is the size of the vocabulary, T is the number of
tokens in the collection

 Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5

 In a log-log plot of vocabulary size M vs. T, Heaps’
law predicts a line with slope about ½
 It is the simplest possible relationship between the two in

log-log space

 An empirical finding (“empirical law”)

Sec. 5.1

9

Introduction to Information RetrievalIntroduction to Information Retrieval

Heaps’ Law

For RCV1, the dashed line

log10M = 0.49 log10T + 1.64
is the best least squares fit.

Thus, M = 101.64T0.49 so k =
101.64 ≈ 44 and b = 0.49.

Good empirical fit for
Reuters RCV1 !

For first 1,000,020 tokens,

law predicts 38,323 terms;

actually, 38,365 terms

Fig 5.1 p81

Sec. 5.1

10

Introduction to Information RetrievalIntroduction to Information Retrieval

Example

 Compute the vocabulary size M for this scenario:
 Looking at a collection of web pages, you find that there

are 3000 different terms in the first 10,000 tokens and
30,000 different terms in the first 1,000,000 tokens.

 Assume a search engine indexes a total of 20,000,000,000
(2 × 1010) pages, containing 200 tokens on average

 What is the size of the vocabulary of the indexed collection
as predicted by Heaps’ law?

Sec. 5.1

11

Introduction to Information RetrievalIntroduction to Information Retrieval

Compression

 Now, we will consider compressing the space
for the dictionary and postings

 Basic Boolean index only

 No study of positional indexes, etc.

 We will consider compression schemes

Ch. 5

15

Introduction to Information RetrievalIntroduction to Information Retrieval

DICTIONARY COMPRESSION

Sec. 5.2

16

Introduction to Information RetrievalIntroduction to Information Retrieval

Why compress the dictionary?

 Search begins with the dictionary

 We want to keep it in memory

 Memory footprint competition with other
applications

 Embedded/mobile devices may have very little
memory

 Even if the dictionary isn’t in memory, we want it to
be small for a fast search startup time

 So, compressing the dictionary is important

Sec. 5.2

17

Introduction to Information RetrievalIntroduction to Information Retrieval

Dictionary storage - first cut

 Array of fixed-width entries
 ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2

18

Introduction to Information RetrievalIntroduction to Information Retrieval

Fixed-width terms are wasteful

 Most of the bytes in the Term column are wasted –
we allot 20 bytes for 1 letter terms.
 And we still can’t handle supercalifragilisticexpialidocious or

hydrochlorofluorocarbons.

 Written English averages ~4.5 characters/word.
 Exercise: Why is/isn’t this the number to use for

estimating the dictionary size?

 Ave. dictionary word in English: ~8 characters
 How do we use ~8 characters per dictionary term?

 Short words dominate token counts but not type
average.

Sec. 5.2

19

Introduction to Information RetrievalIntroduction to Information Retrieval

Compressing the term list:
Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

Store dictionary as a (long) string of characters:
Pointer to next word shows end of current word
Hope to save up to 60% of dictionary space.

Sec. 5.2

20

Introduction to Information RetrievalIntroduction to Information Retrieval

Space for dictionary as a string

 4 bytes per term for Freq.

 4 bytes per term for pointer to Postings.

 3 bytes per term pointer

 Avg. 8 bytes per term in term string

 400K terms x 19  7.6 MB (against 11.2MB for fixed
width)

 Now avg. 11
 bytes/term,
 not 28.

Sec. 5.2

21

Introduction to Information RetrievalIntroduction to Information Retrieval

Blocking

 Store pointers to every kth term string.
 Example below: k=4.

 Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

 Save 9 bytes
 on 3
 pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2

22

Introduction to Information RetrievalIntroduction to Information Retrieval

Blocking saving example

 Example for block size k = 4

 Where we used 3 bytes/pointer without blocking
 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

Sec. 5.2

23

Introduction to Information RetrievalIntroduction to Information Retrieval

Exercise

 Estimate the space usage (and savings compared to
7.6 MB) with blocking, for block sizes of k = 4, 8 and
16.

Sec. 5.2

24

Introduction to Information RetrievalIntroduction to Information Retrieval

Dictionary search without blocking

 Assuming each
dictionary term equally
likely in query (not really
so in practice!), average
number of comparisons
= (1+2∙2+4∙3+4)/8 ~2.6

Sec. 5.2

25

Introduction to Information RetrievalIntroduction to Information Retrieval

Dictionary search with blocking

 Binary search down to 4-term block;
 Then linear search through terms in block.

 Blocks of 4 (binary tree), avg. =
(1+2∙2+2∙3+2∙4+5)/8 = 3 compares

Sec. 5.2

26

Introduction to Information RetrievalIntroduction to Information Retrieval

Exercise

 Estimate the impact on search performance (and
slowdown compared to k=1) with blocking, for block
sizes of k = 4, 8 and 16.

Sec. 5.2

27

Introduction to Information RetrievalIntroduction to Information Retrieval

Front coding

 Front-coding:
 Sorted words commonly have long common prefix – store

differences only

 (for last k-1 in a block of k)

8automata8automate9automatic10automation

8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.

Sec. 5.2

28

Introduction to Information RetrievalIntroduction to Information Retrieval

RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2

29

