
LEARNING TO RANK
Claudio Lucchese
claudio.lucchese@isti.cnr.it

¨! Pointwise
! ! Each query-document pair is associated with a score
! ! The objective is to predict such score

n! can be considered a regression problem
! ! Does not consider the position of a document into the result list

¨! Pairwise
! ! We are given pairwise preferences, d 1 is better than d 2 for query q
! ! The objective is to predict a score that preserves such

preferences
n! Can be considered a classification problem

! ! It partially considers the position of a document into the result list
¨! Listwise

! ! We are given the ideal ranking of results for each query
n! NB. It might not be trivial to produce such training set

! ! Objective maximize the quality of the resulting ranked list
n! We need some improved approach…

Learning to Rank approaches

¨! What did we get ?
! !C is minimum if all pairs are ranked in the proper

order, therefore by minimizing C we improve
NDCG
n!this does not imply that the optimal solution for C is the

optimal solution for NDCG or other quality measures

! !we can compute the gradient of C
n!If h is differentiable then also Y and C are

¨! We can directly apply steepest descent
! !Just need derivatives of h, i.e. BM25F

RankNet

C = log(1 + eY) = log
!

1 + eh(d2) ! h(d1)
"

¨! The trick is in the representation

¨! Trees can represent complex functions, where
nodes are operations and leaves are features

¨! Crossover is performed by exchanging
subtrees at random

Genetic Algorithms

¨! Classification technique, aiming at maximizing
the generalization power of its classification
model

! !Given the above points in a 2D space, what is the
line that best “separates” the squares from the
circle?

Support Vector Machines

¨! Let yiC�{+1,-1} be the class of the i-th instance,
the (linear) SVM (binary) classification problem is:

! !Minimize ½ |w| 2

! !Subject to: yi (wTxi + b) ! 1

 or: yi (wTxi + b) -1 ! 0

! !Since the objective function is quadratic, and the

constrains are linear in w and b , this is know to be a
convex optimization problem .

Linear SVM formulation

¨! Idea:
! !First transform the data, potentially mapping to a

space with higher dimensionality,
then use a linear decision boundary as before.

! !Minimize ½ |w| 2

! !Subject to: yi (wT@Å(xi) + b) ! 1

! !The dual is:

Nonlinear SVM

LD =
!

i

! i !
1

2

!

ij

! i! jyiyj ! (xi)! (xj)

¨! We need to relax the previous constraints,
introducing slack variables 𝜉i ! 0

! !Minimize " |w| 2 + C # 𝜉i

i

! !Subject to: yi (wTxi + b) ! 1 - 𝜉i
 𝜉i! 0 i! 0

! !At the same time, this relaxation must be
minimized.

! !C defines the trade-off between training error and
large margin

! !The problem has the same dual formulation as
before, with addition constraint 0 $@Úi $ C

Soft margin

¨! In case of a linear combination of features:
h(d) = wTd

¨! Our objective is to find w , such that:
! ! h(d i) ! h(d j)
! ! wTd i ! wTd j

! ! wT(d i Ð d j) ! 0

¨! We approximate by adding slack variables 𝜉 and
minimizing this “relaxation”
! ! given the k-th document pair, find the weights w such that

 wT(d i Ð d j) ! 1-𝜉k with 𝜉k! 0

and 𝜉k is minimum

(Linear) Ranking SVM

¨! The full formulation of the problem is

! !Minimize " |w| 2 + C # k 𝜉k

! !Subject to wT(d i Ð d j) ! 1-𝜉k
 𝜉k! 0

! !where C allows to trade-off error between the margin
(|w| 2) and the training error (# k 𝜉k)

¨! This is an SVM classification problem !
! ! Is convex, with no local optima, it can be generalized

to non-linear functions of documents features.

(Linear) Ranking SVM

¨! We might not realized that
some queries are really badly
ranked

¨! Top result pairs should be more
important than other pairs

¨! In general, the number of
document pairs violations,
might not be a good indicator

Issues of the pairwise approach

¨! Goal:
! !Optimize the NDCG score for each query

¨! Tools:
! !Gradient Boosted Regression Trees
! !A modified cost function, stemming from RankNet

List-wise approach: Lamda-MART

¨! Machine Learning Tool for predicting a continuos variable
! ! given features X={X1, É, Xn} predict variable Y

¨! A Regression Tree is a tree where:
! ! an internal node is a predicate on some feature
! ! a leaf is the prediction
! ! note: every node induces a partitioning/splitting of the data

¨! A RT is build on the basis of some training set
! ! find the tree that best predicts Y on the training data

What is Regression Tree ?

20

80

80

40

65

18

BMI

AGE
Dose=Function (BMI,AGE)

24

AGE<65

80

80

BMI<24

AGE<18

40 20

Y

Y

Y

N

N

N

¨! For each attribute :
! ! For each possible predicate, i.e., splitting criteria
! ! Compute the prediction for the left and right child

n! Predicted value is the average of the target variable on the
corresponding instances

! ! Compute the goodness of the split
n! Error reduction, usually measured as Mean Squared Error
n! New error is given by the average distance of the target variable from the

new prediction : the variance !
! ! Take the split with the best error reduction , i.e. smallest variance

¨! Then:
! ! Split the data according to the chosen split criterion
! ! and repeat recursively for generating new nodes

¨! Note:
! ! A new node will not degrade prediction

How to choose the best split ?

¨! We want to learn a predictor incrementally:

¨! Input: a learning sample {(xi,yi): i=1,…,N}
¨! Initialize

! ! Baseline preticts the average label value
! ! ! 0(x) = 1/N ! i yi ; ri=yi, i=1,…,N

¨! For t=1 to M :
! ! Regression tree predicts the residual error
! ! For i=1 to N, compute the residuals

 ri " ri -! m-1(xi)
! ! Build a regression tree from the learning sample {(xi,ri): i=1,…,N}
! ! The prediciton of the new regression tree is denoted with ! m

¨! Return the model ! (x)= ! 0(x)+! 1(x)+…+! M(x)

¨! Function fm should be easy to be learnt:
¨! Decision stump: trees with one node and two leaves

What is a Boosted Regression Tree ?
MART (multiple additive regression trees)

F ⇤(x) =
M!

m =0

f m (x)

¨! We want to learn a predictor incrementally:

! !where fm is sufficiently easy to be learnt

n!chosen from a family H
n!E.g. decision stumps, or small trees

! !each fi reduces the error/cost function
! !f0 is an initial guess (e.g., average)

¨! How to find the best fi at each step ?
! !We use steepest descent and line search to find fi

What is a Gradient Boosted Regression Tree ?

F ⇤(x) =
M!

m =0

f m (x)

¨! Let C(yi, Fm-1(xi)) be the error in predicting yi with Fm-1 (xi) at the step m-1

¨! To improve Fm-1(xi) we should compute the gradient g m of C
! ! Given the gradient the new approximation should be as follows
! ! Fm(xi) = Fm-1(xi) - 𝛾m g m

¨! Note that we are looking for a tree being equivalent to the gradient of Fm-1 !

¨! Since g m may not be in H , we search for the best approximation :
! ! Compute the value of gradient of the cost function at each training instance

n! This is independent from the fact that Fm-1 is a tree

! ! Find the tree h in H that best approximates g m
n! This is a simple regression tree learning

¨! Finally, line search is used to find the best weight of the tree

¨! The new estimated score function Fm is:

Gradient Boosting and Regression Trees

Fm(x) = Fm�1(x) + ! mhm(x)

¨! Recall the RankNet cost function

¨! Let’s denote with w the parameters of h

! ! where we define:

¨! The update rule of the weights w with steepest descent is:

¨! equivalently

GBRT can optimize any cost function…
so which one ?

�w = ! ⇢
!

ij

"
�ij

@h(di)

@w
! �ij

@h(dj)

@w

#

�i =
!

di ! dj

�ij !
!

dj ! di

�ij

C = log(1 + eY) = log
!

1 + eh(d2) ! h(d1)
"

! C
! w

=
! C

! h(d1)
! h(d1)

! w
+

! C
! h(d2)

! h(d2)
! w

=
1

1 + e! Y

!
! h(d1)

! w
!

! h(d2)
! w

"

! 12 =
1

1 + e! Y

! w = ! "
!

i

#i
$h(di)

$w

¨! @Úi is a single magic number
for each URL assessing
whether it is well ranked and
how much far is from it

¨! Note that @Úi depends on
number of violoated pairwise
constraints
! !Becasue it comes directly from

the RankNet cost

What did we get ?

�i =
!

di ! dj

�ij !
!

dj ! di

�ij

From left to right, the number of
pairwise violations decreases from 13
to 7 (good for RankNet)

Black arrows are RankNet Gradients,
read are what we want

¨! Observation 1:
! ! GBRT only need to be able to compute gradients of the cost function

¨! Observation 2:
! ! @Úij are exactly the gradients of the cost function w.r.t. the document

scoring function h

¨! Conclusion 1:
! ! We can plug@Úij into a GBRT so that at each iteration a new tree is

found that approximates @Úij
¨! Observation 2:

! ! Since we want to optimize NDCG, we can improve @Úij so that they
take into account the change in NDCG due to swapping i with j

¨! Result:

How to optimize NDCG ?

�ij =
1

1 + e! Y |! NDCG | =
1

1 + e! Y

!
2l i ! 2l j

"
#

log
#

1
1 + i

$
! log

#
1

1 + j

$$

¨! Input: a learning sample {(xi,yi): i=1,…,N}
¨! Initialize

! ! Baseline preticts the average label value
! ! ! 0(x) = 1/N ! i yi ; ri=yi, i=1,…,N

¨! For t=1 to M :
! ! Regression tree predicts the corrected lambdas
! ! For i=1 to N, compute the pseudo-residuals

 ri " @Úi
! ! Build a regression tree from the learning sample {(xi,ri): i=1,…,N}
! ! The prediciton of the new regression tree is denoted with ! m

¨! Return the model ! (x)= ! 0(x)+! 1(x)+…+! M(x)

¨! Note that the final prediction is not close to yi, but, since
it optimized lambdas, it optimizes the final NDCG.

Lambda-MART

¨! Results are from the Yahoo! Learning to rank
challenge

¨! The winner of the challenge used a
combination of several Lambda-MART models

Performance

¨! Explicit
! !Ask users to rate result

n!(by the page or by the snippet)

¨! Implicit
! !Process logs to get information about:

n!Clicks
n!Query reformulation

¨! Fancier…
! !Eye tracking

n!Fixation: spatially stable gaze
lasting for approximately 200–300 ms

¨! Goals:
! !Build a training set
! !Evaluate our search engine

How to Exploit User feedback

¨! Phase I:
! !Use Google to answer 10 questions

n!34 user recruited

! !Is there any rank bias ?

¨! Phase II:
! !Answer the same questions with a “modified

Google”
n!27 users recruited

! !Modifications:
n!SWAPPED: swap the top 2 results
n!REVERSED: reverse top-10 results

Experiment Set-up

n! Phase I: 1.9 queries per question, 0.9 clicks per query
n! Phase II: 2.2 queries per question, 0.8 clicks per query

Questions

¨! Phase I:
! !“order the results by how promising their abstracts

are for leading to information that is relevant to
answering the question “

¨! Phase II:
! !same as Phase I
! !Assessment of results by looking at the webpage

without any provided snippet

Explicit Feedback

¨! First result receives a large number of clicks w.r.t. to the
number of fixations

¨! There is drop after page scroll

Which Links Did Users View and Click?

¨! Yes, but the first 2 results are seen almost at the same
time

¨! Scroll is after the 6th result

Did Users Scan Links from Top to Bottom?

¨! Users check most of the results above the click
¨! Almost no attention below the click
¨! An exception is the first link below the click

Which Links Did Users Evaluate Before Clicking?

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10
Rank of Result

P
ro

ba
bi

lit
y

R
es

ul
t w

as
 V

ie
w

ed
Clicked Link

Does Relevance Influence User Decisions?

¨! Average number of clicks changes from 2.1 to 2.45
¨! The quality of the system impact on the clicks
¨! Trust bias and quality bias make it difficult to use

clicks as an absolute measure of result quality

Does Relevance Influence User Decisions?

¨! Can we use clicks to compare results ?
¨! Idea:

! !exploit clicked and non clicked results

¨! Strategy 1 : CLICK > SKIP ABOVE
¨! Example:

! ! l1C+ l2 l3C+ l4 l5C+ l6 l7
! ! l3>l2, l5>l4 , l5>l2

¨! Measure the goodness of these constraints as the
ratio of agreement with relevance judgments

Are Clicks Relative Relevance Judgments
Within One Results Page?

¨! Idea:
! !Latest click is the most important

¨! Strategy 2 : LAST CLICK > SKIP ABOVE
¨! Example:

! ! l1C+ l2 l3C+ l4 l5C+ l6 l7
! ! l5>l4 , l5>l2

¨! Idea:
! !Earlier clicks are less important

¨! Strategy 3 : CLICK > EARLIER CLICK
¨! Example:

! ! l1C+ l2 l3C+ l4 l5C+ l6 l7 (l3 then l1 then l5)
! ! l1>l3 , l5>l1 , l5>l3

Are Clicks Relative Relevance Judgments
Within One Results Page?

¨! Idea:
! !Previous result receives lot of attention

¨! Strategy 4 : CLICK > SKIP PREVIOUS
¨! Example:

! ! l1C+ l2 l3C+ l4 l5C+ l6 l7
! ! l3>l2 , l5>l4

¨! Idea:
! !Next result receives lot of attention

¨! Strategy 5 : CLICK > NO-CLICK NEXT
¨! Example:

! ! l1C+ l2 l3C+ l4 l5C+ l6 l7
! ! l1>l2 , l3>l4 , l5>l6

Are Clicks Relative Relevance Judgments
Within One Results Page?

¨! CLICK > SKIP ABOVE: performs well, close to the judge agreement

¨! LAST CLICK > SKIP ABOVE: slightly improves

¨! CLICK > EARLIER CLICK: not performing well

¨! CLICK > SKIP PREVIOUS: No statistically significant difference with
CLICK > SKIP ABOVE

¨! CLICK > NO-CLICK NEXT: is it useful ?

¨! Observations:
! !Clicked top queries are not very involved in the

generated frequencies
! !Users run sequence of queries before satisfying their

information need

¨! Strategy 1 : CLICK > SKIP EARLIER
¨! Strategy 2 : LAST CLICK > SKIP EARLIER
¨! Strategy 3 : CLICK > CLICK EARLIER
¨! Strategy 4 : CLICK > TOP 1 NO CLICK EARLIER
¨! Strategy 5 : CLICK > TOP 2 NO CLICK EARLIER
¨! Strategy 6 : TOP 1 > TOP 1 EARLIER

Are Clicks Relative Relevance Judgments
Within a Query Chain?

¨! The performance of CLICK > TOP 2 NO CLICK
EARLIER suggest that query reformulation is a
strong evidence of document poor quality

Are Clicks Relative Relevance Judgments
Within a Query Chain?

¨! RankLib:
! !http://sourceforge.net/p/lemur/wiki/RankLib/

Software tools

¨! Machine learning frameworks are necessary for
modern web search engines

¨! Creating a training dataset is expensive
! !Potentially requires users to evaluate a large number

of queries and results

¨! Click data can be successfully transformed in pair-
wise preferences:
! !To estimate the quality of the system
! !To create a training set of a learning-to-rank approach

¨! Several approaches have been developed
! !They succeed in the non trivial task of optimizing

complex IT evaluation measures such as NDCG.

Conclusions

claudio.lucchese@isti.cnr.it

The End

