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The Petabyte age 



The Petabyte age 



Plucking the diamond from the waste 

  “Credit-card companies monitor every purchase and can 
identify fraudulent ones with a high degree of accuracy, 
using rules derived by crunching through billions of 
transactions.”  

  “Mobile-phone operators, meanwhile, analyse subscribers’ 
calling patterns to determine, for example, whether most of 
their frequent contacts are on a rival network.” 

  “[…] Cablecom, a Swiss telecoms operator. It has reduced 
customer defections from one-fifth of  subscribers a year to 
under 5% by crunching its numbers.” 

  “Retailers, offline as well as online, are masters of  data mining.” 



Commodity Clusters 

  Web data sets can be very large  
 Tens to hundreds of terabytes 

  Cannot mine on a single server 
   why? obviously … 

  Standard architecture emerging: 
 Cluster of commodity Linux nodes 
 Gigabit ethernet interconnections 

  How to organize computations on this architecture? 
 Mask issues such as hardware failure 
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Stable storage 

  First issue:  
  if nodes can fail, how can we store data persistently?  

  Answer: Distributed File System 
 Provides global file namespace 
 Google GFS; Hadoop HDFS; Kosmix KFS 

  Typical usage pattern 
 Huge files (100s of GB to TB) 
 Data is rarely updated in place 
 Reads and appends are common 



Distributed File System 

  Chunk Servers 
  File is split into contiguous chunks 
  Typically each chunk is 16-64MB 
  Each chunk replicated (usually 2x or 3x) 
  Try to keep replicas in different racks 

  Master node 
  a.k.a. Name Node in HDFS 
  Stores metadata 
 Might be replicated 

  Client library for file access 
  Talks to master to find chunk servers  
 Connects directly to chunkservers to access data 



MapReduce 

  A “novel” programming paradigm. 
  A different data type: 

 Everything is built on top of <key,value> pairs 
 Keys and values are user defined, they can be anything 

  There are only two user defined functions: 
 Map 

 map(k1,v1)  list(k2,v2) 

 Reduce 
  reduce(k2, list(v2))  list(v3) 



MapReduce 

  Two simple functions: 

1.  map      (k1,v1)      �  list(k2,v2) 
  given the input data (k1,v1), 

and produces some intermediate data (v2)  
labeled with a key (k2) 

2.  reduce  (k2,list(v2))   �  list(v3) 
  given every data (list(v2)) associated with a key (k2), 

produces the output of the algorithm list(v3) 



MapReduce 
  All in parallel: 

  we have a set of mappers and a set of reducers 

1.  map      (k1,v1)      �  list(k2,v2) 
  a mapper processes only a split of the input, 

which may be distributed across several machines 

2.  shuffle 
  a middle phase transfers the data associated with a given key 

from the mappers to the proper reducer. 
  reducers will receive data sorted by key 

3.  reduce  (k2,list(v2))   �  list(v3) 
  a reducer produces only a portion of the output 

associated with a given set of keys 



Word Count using MapReduce 

map(key, value): 

// key: document name; value: text of document 

 for each word w in value: 
  emit(w, 1) 

reduce(key, values): 
// key: a word; value: an iterator over counts 

 result = 0 
 for each count v in values: 
  result += v 
 emit(result) 



Word Count example 



MapReduce 



Coordination 

  Master data structures 
 Task status: (idle, in-progress, completed) 
  Idle tasks get scheduled as workers become available 
 When a map task completes, it sends the master the 

location and sizes of its R intermediate files, one for 
each reducer 

 Master pushes this info to reducers 

  Master pings workers periodically to detect failures 



Process mapping 



Failures 

  Map worker failure 
 Map tasks completed or in-progress at worker are reset to 

idle 
 Reduce workers are notified when task is rescheduled on 

another worker 

  Reduce worker failure 
 Only in-progress tasks are reset to idle 
 A different reducer may take the idle task over 

  Master failure 
 MapReduce task is aborted and client is notified 



How many Map and Reduce jobs? 

  M map tasks, R reduce tasks 
  Rule of thumb: 

 Make M and R larger than the number of nodes in cluster 
 One DFS chunk per map is common 
  Improves dynamic load balancing and speeds recovery 

from worker failure 

  Usually R is smaller than M 
 Having several reducers increases load balancing,  

but generates multiple “waves” somehow delaying the 
shuffling 

 output is spread across R files 



Combiners 

  Often a map task will produce many pairs of the form 
(k,v1), (k,v2), … for the same key k 
 E.g., popular words in Word Count 

  Can save network time by pre-aggregating at mapper 
 Combine (k1, list(v1))  (k1,list(v2)) 
 Usually same as reduce function 
  If reduce function is commutative and associative 



Partition Function 

  Inputs to map tasks are created by contiguous splits of 
input file 

  For reducer, we need to ensure that records with the 
same intermediate key end up at the same worker 

  System uses a default partition function  
e.g., hash(key) mod R 



Back-up Tasks 

  Slow workers significantly lengthen completion time 
 Other jobs consuming resources on machine 
 Bad disks transfer data very slowly 
 Weird things: processor caches disabled (!!) 

  Solution: near end of phase,  
             spawn backup copies of tasks 
 Whichever one finishes first "wins" 

  Effect: Dramatically shortens job completion time 



MR-Sort (1800 nodes) 
  Normal    No back-up tasks  200 processes killed 



Is MapReduce so good ? 

  MapReduce is not for performance !! 
  Every mapper writes to disk which creates huge overhead 
  The shuffle step is usually the bottleneck 

  Little coding time 
  You just need to override two functions 
  (sometimes you need to implement other stuff such as combiner, 

partitioner, sort) 
  But not everything can be implemented in terms of MR 

  Fault tolerance: 
 Drives avg lifetime is 3 years, if you have 3600 drives then 

3 will go broken per day. 
 How would you implement fault tolerance in MPI ?? 

  Data-parallel programming model helps 



Hard to be implemented in MR 

  All Pairs Similarity Search Problem: 
 Given a collection of documents find any pairs of 

documents with similarity greater than � 
 With N documents, we have N2 candidates 
 Some of experiments show that for 60MB worth of 

documents, you generate 40GB of intermediate data to be 
shuffled. 

  Graph mining problems: 
 Find communities, find leaders, PageRank 
  In many cases you need to share the adjacency matrix, 

but how to broadcast ? 



Hadoop 

  Hadoop is  
 an Apache project 
 providing a Java implementation of MapReduce 

  Just need to copy java libs to each machine of your cluster 

 HDFS Hadoop distributed file system 
 Efficient and reliable  

  Check on-line javadoc and “Hadoop the Definitive 
Guide” 



Uses of MapReduce/Hadoop 

  “the New York Times a few years ago used cloud 
computing and Hadoop to convert over 400,000 
scanned images from its archives, from 1851 to 1922. 
By harnessing the power of hundreds of computers, it 
was able to do the job in 36 hours.” 

  “Visa, a credit-card company, in a recent trial with 
Hadoop crunched two years of test records, or 73 
billion transactions, amounting to 36 terabytes of data. 
The processing time fell from one month with traditional 
methods to a mere 13 minutes.” 



Dryad & DryadLINQ 

  Written at Microsoft Research, Silicon Valley 

  Deployed since 2006 
  Running 24/7 on >> 104 machines 
  Sifting through > 10Pb data daily 
  Clusters > 3000 machines 
  Jobs with > 105 processes each 
  Platform for rich software ecosystem 



2-D Piping 

  MapReduce Pipe: 1-D 
  grep |  sed  | sort | awk |  perl 

  Dryad: 2-D 
  grep1000 |  sed500  | sort1000 | awk500 |  perl50 

32 



Real Example 

Motion Capture 
(ground truth) 

Classifier 

Training examples 

Machine  
learning 

Rasterize 



Large-Scale Machine Learning 

  > 1022 objects 
  Sparse, multi-dimensional data structures 
  Complex datatypes  

 (images, video, matrices, etc.) 
  Complex application logic and dataflow 

 >35000 lines of .Net 
 140 CPU days  
 > 105 processes 
   30 TB data analyzed 
 140 avg parallelism (235 machines) 
 300% CPU utilization (4 cores/machine) 



Result: XBOX Kinect 



Connected components 

  Input format: 
  X Y  (meaning that node X links to node Y) 

  Iterative Algorithm: 
1.  Initially node X belongs to component with id X 
2.  Node X sends to its neighbours its own component id 
3.  Node X receives a list of component ids and keeps the minimum 
4.  Repeat until convergence 

  Output: 
  X C (meaning that X belongs to connected component C) 

  Note: complexity is O(d), where d is the diameter 

[ U. Kang, Charalampos E. Tsourakakis, and C. Faloutsos. 2009. PEGASUS: A Peta-Scale Graph Mining System 
Implementation and Observations. In Proc. of the 2009 Ninth IEEE Int. Conf. on Data Mining (ICDM '09). ] 



Connected components 

1 

2 

3 

4 
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  Node 1  Node 2  Node 3  Node 4  Node 5 
Iter 0   1   2   3   4   5 

Iter 1   (1) 2  (2) 1 3  (3) 2  (4) 5  (5) 4 
   1   1   2   4   4 

Iter 2   (1) 1  (1) 1 2  (2) 1  (4) 4  (4) 4 
   1   1   1   4   4 

Iter 3   (1) 1  (1) 1 1  (1) 1  (4) 4  (4) 4 
   1   1   1   4   4 



Connected Components: Hadoop Implementation 

 public static class Pegasus_Mapper_first  

    extends Mapper<LongWritable, Text,  

                   LongWritable, LongArrayWritable> { 

 // Extend the Class Mapper  

 // The four generic type are resp. 

 //  - the input key type 

 //  - the input value type 

 //  - the output key type 

 //  - the output value type 

 // Any key should implement WritableComparable 

 // Any value should implement Writable 



Connected Components: Hadoop Implementation 

 public static class Pegasus_Mapper_first  

    extends Mapper<LongWritable, Text,  

                   LongWritable, LongArrayWritable> { 

 @Override 

 protected void map(LongWritable key, Text value,  

    Context context)  

   throws IOException, InterruptedException { 

 // Override the map method 

 //  - by default it implements identity  

 // Context provides the emit function 

 //  - and some other useful stuff 



Connected Components: Hadoop Implementation 

… … … 

String [] values = value.toString().split(" "); 

LongWritable node  = new LongWritable( Long.parseLong(values[0]) ); 

LongWritable neigh = new LongWritable( Long.parseLong(values[1]) ); 

// Read the pair of nodes from the input 



Connected Components: Hadoop Implementation 

… … … 

String [] values = value.toString().split(" "); 

LongWritable node  = new LongWritable( Long.parseLong(values[0]) ); 

LongWritable neigh = new LongWritable( Long.parseLong(values[1]) ); 

LongWritable[] singlet = new LongWritable[1]; 

singlet[0] = neigh; 

context.write(node, new LongArrayWritable(singlet) ); 

// Emit the pair <node, neighbor> 

// i.e. tell to node who is its neighbor 

// otherwise it will not know its neighbors in the following 
iterations 



Connected Components: Hadoop Implementation 

… … … 

String [] values = value.toString().split(" "); 

LongWritable node  = new LongWritable( Long.parseLong(values[0]) ); 

LongWritable neigh = new LongWritable( Long.parseLong(values[1]) ); 

LongWritable[] singlet = new LongWritable[1]; 

singlet[0] = neigh; 

context.write(node, new LongArrayWritable(singlet) ); 

singlet[0] = new LongWritable(-1-node.get()); 

context.write(node, new LongArrayWritable(singlet) ); 

context.write(neigh, new LongArrayWritable(singlet) ); 

// Tell to the neighbor and to the node itself 

//      what is the currently know smallest component id 

// The component ids are made negative (-1) 



Connected Components: Hadoop Implementation 

 public static class Pegasus_Reducer  

  extends Reducer<LongWritable, LongArrayWritable, 
   LongWritable, LongArrayWritable> { 

 @Override 

 protected void reduce(LongWritable key,  

    Iterable<LongArrayWritable> values, 

     Context context)  

     throws IOException, InterruptedException { 

 // Extend the Class Reducer 

 // Override the reduce method 

 //  ( similarly to what we did for the mapper) 

 // Note: reducer receives a list (Iterable) of values 



Connected Components: Hadoop Implementation 

… … … 

LongWritable min = null; 

Writable[] neighbors = null; 

for(LongArrayWritable cluster : values) { 

 Writable[] nodes = cluster.get(); 

 LongWritable first = (LongWritable) nodes[0]; 

 if (first.get()<0) { // This is a min ! 

  if (min==null) min = first; 

  else if (min.compareTo(first)<0) { 

   min = first; 

  } 

 } else { … … … …  

// Scan the list of values received. 

// Each value is an array of ids. 

// If the first element is negative,  

//   this message contains a component id 

//   Keep the smallest! (absolute value) 



Connected Components: Hadoop Implementation 

… … … 

} else { // This is the actual graph 

 if (neighbors == null) neighbors = nodes; 

 else { 

  Writable[] aux = new Writable[neighbors.length + 

       nodes.length]; 

  System.arraycopy(neighbors, 0, aux, 0, neighbors.length); 

  System.arraycopy(nodes, 0, aux, neighbors.length,  

        nodes.length); 

  neighbors = aux; 

 } 

} 

// If we received graph information 

// (potentially from many nodes). 

// store it a new array 



Connected Components: Hadoop Implementation 

… … … 

int num_neigh = neighbors==null ? 0 : neighbors.length; 

LongWritable[] min_nodes = new LongWritable[num_neigh + 1]; 

min_nodes[0] = min; 

for (int i=0; i<num_neigh; i++) 

 min_nodes[i+1] = (LongWritable) neighbors[i]; 

// send current min + graph 

context.write(key, new LongArrayWritable(min_nodes)); 

// Create a vector where 

// The first position is the current component id 

// The rest is the list of neighbors 

// “send” this information to the node 



Connected Components: Hadoop Implementation 

 public static class Pegasus_Mapper  

  extends Mapper< LongWritable, LongArrayWritable,  

    LongWritable, LongArrayWritable> { 

 @Override 

     protected void map(LongWritable key, 
LongArrayWritable value, 

      Context context)  

 // In subsequent iterations: 

 // the mapper receives the vector with the component id 

 // and the set of neighbors. 

 //  - it propagates the id to the neighbors 

 //  - send graph information to the node  



Connected Components: Hadoop Implementation 

Path iter_input_path = null; 

Path iter_output_path = null; 

int max_iteration = 30; 

// Pegasus Algorithm invocation 

Configuration configuration = new Configuration();   

FileSystem fs = FileSystem.get(configuration); 

for (int iteration = 0; iteration<=max_iteration; iteration++ ) { 

 Job jobStep = new Job(configuration, “PEGASUS iteration " +  

        iteration); 

 jobStep.setJarByClass(MRConnectedComponents.class); 

// A MapReduce Job is defined by a Job object 

// In each iteration we must update the “fields” of such object 



Connected Components: Hadoop Implementation 

// common settings 

iter_input_path = new Path(intermediate_results, "iter"+iteration); 

iter_output_path = new Path(intermediate_results, "iter"+  

       (iteration+1)); 

Class mapper_class        = Pegasus_Mapper.class; 

Class reducer_class       = Pegasus_Reducer.class; 

Class output_class        = LongArrayWritable.class; 

Class output_format_class = SequenceFileOutputFormat.class; 

Class input_format_class  = SequenceFileInputFormat.class; 

// Some parameters are the same at each iteration 



Connected Components: Hadoop Implementation 

// per iteration settings 

if (iteration==0) { 

 iter_input_path     = input_dir; 

 mapper_class        = Pegasus_Mapper_first.class; 

 input_format_class  = TextInputFormat.class; 

} else if (iteration == max_iteration) { 

 mapper_class        = Pegasus_Outputter.class; 

 reducer_class       = null; 

 iter_output_path    = output_dir; 

 output_format_class = TextOutputFormat.class; 

 output_class        = LongWritable.class; 

}  

// The first and the last iterations are different 



Connected Components: Hadoop Implementation 

jobStep.setMapperClass(mapper_class); 

if (reducer_class!=null) { jobStep.setReducerClass(reducer_class); } 

jobStep.setOutputKeyClass(LongWritable.class); 

jobStep.setOutputValueClass(output_class); 

jobStep.setInputFormatClass(input_format_class); 

jobStep.setOutputFormatClass(output_format_class); 

FileInputFormat.setInputPaths(jobStep, iter_input_path); 

FileOutputFormat.setOutputPath(jobStep, iter_output_path); 

boolean success = jobStep.waitForCompletion(true); 

// Set all parameters of the job and launch 



Connected components: Hash-To-Min 

  Iterative Algorithm: 
1.  Initially node X “knows” cluster C=X plus its neighbors 
2.  Node X sends C to the smallest node in C 
3.  Node X sends the smallest node of C to any other node in C 
4.  Node X receives creates a new C by merging all the received 

messages 
5.  Repeat until convergence 

[Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, Anish Das Sarma: Finding Connected Components on 
Map-reduce in Logarithmic Rounds. CoRR abs/1203.5387 (2012). ] 



Connected components: Hash-To-Min 

1 2 
3 

4 
5 

  Node 1   Node 2   Node 3   Node 4   Node 5   Node 6 
Iter 0  1,2    1,2,3   2,3,4   3,4,5   4,5,6   5,6 

Iter 1  (1,2)   1      
  (1,2,3)   1    1   
     (2,3,4)   2    2 
        (3,4,5)   3    3 
           (4,5,6)   4    4 
              5,6    5 
  1,2,3   1,2,3,4   1,2,3,4,5  2,3,4,5,6  3,4,5,6   4,5   

6 



Connected components: Hash-To-Min 

1 2 
3 

4 
5 

  Node 1   Node 2   Node 3   Node 4   Node 5   Node 6 
Iter 1  1,2,3   1,2,3,4   1,2,3,4,5  2,3,4,5,6  3,4,5,6   4,5 

Iter 2  (1,2,3)   1    1     
  (1,2,3,4)   1    1    1 
  (1,2,3,4,5)  1    1    1    1 
     (2,3,4,5,6)  2    2    2    2 
        (3,4,5,6)   3    3    3 
           (4,5)   4 
  1,2,3,4,5  1,2,3,4,5,6  1,2,3,4,5,6  1,2,3,4,5  1,2,3,4   2,3 

6 



Connected components: Hash-To-Min 

1 2 
3 

4 
5 

  Node 1   Node 2   Node 3   Node 4   Node 5   Node 6 
Iter 2  1,2,3,4,5  1,2,3,4,5,6  1,2,3,4,5,6  1,2,3,4,5  1,2,3,4   2,3 

Iter 3  (1,2,3,4,5)  1    1    1    1 
  (1,2,3,4,5,6)  1    1    1    1    1 
  (1,2,3,4,5,6)  1    1    1    1    1 
  (1,2,3,4,5)  1    1    1    1 
  (1,2,3,4)   1    1    1 
     (2,3)   2 
  1,2,3,4,5,6  1,2,3   1,2    1    1    1 

    

6 



Connected components: Hash-To-Min 

1 2 
3 

4 
5 

  Node 1   Node 2   Node 3   Node 4   Node 5   Node 6 
Iter 3  1,2,3,4,5,6  1,2,3   1,2    1    1    1 

Iter 4  (1,2,3,4,5,6)  1    1    1    1    1 
  (1,2,3)   1    1 
  (1,2)   1 
  1 
  1 
  1 
  1,2,3,4,5,6  1    1    1    1    1 

  Note: complexity is O(log d), where d is the diameter 
    

6 



If you are interested in the following topics: 
•  large-scale data processing 
•  data mining 
•  web search and mining 

feel free to contact me/fabrizio at   
claudio.lucchese@isti.cnr.it 
fabrizio.silvestri@isti.cnr.it 

… The end 


