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ABSTRACT
Pevzner and Sze [23] considered a precise version of the motif
discovery problem and simultaneously issued an algorithmic chal-
lenge: find a motifM of length 15, where each planted instance
differs fromM in 4 positions. Whereas previous algorithms all
failed to solve this (15,4)-motif problem, Pevzner and Sze intro-
duced algorithms that succeeded. However, their algorithms failed
to solve the considerably more difficult (14,4)-, (16,5)-, and (18,6)-
motif problems.

We introduce a novel motif discovery algorithm based on the use
of random projectionsof the input’s substrings. Experiments on
simulated data demonstrate that this algorithm performs better than
existing algorithms and, in particular, typically solves the diffi-
cult (14,4)-, (16,5)-, and (18,6)-motif problems quite efficiently. A
probabilistic estimate shows that the small values ofd for which the
algorithm fails to recover the planted(l; d)-motif are in all likeli-
hood inherently impossible to solve. We also present experimental
results on realistic biological data by identifying ribosome binding
sites in prokaryotes as well as a number of known transcriptional
regulatory motifs in eukaryotes.

1. CHALLENGING MOTIF PROBLEMS
Pevzner and Sze [23] considered a very precise version of the motif
discovery problem of computational biology, which had also been
considered by Sagot [26]. Based on this formulation, they issued
an algorithmic challenge:

Planted (l; d)-Motif Problem: Suppose there is a fixed but un-
known nucleotide sequenceM (themotif) of lengthl. The problem
is to determineM , givent nucleotide sequences each of lengthn,
and each containing a planted variant ofM . More precisely, each
such planted variant is a substring that isM with exactlyd point
substitutions.

One instantiation that they labeled “The Challenge Problem” was
parameterized as finding a planted (15,4)-motif int = 20 se-
quences each of lengthn = 600. These values ofn, t, andl are

typical for such motif discovery problems as finding transcription
factor binding sites in a collection of coregulated gene promoter
regions in yeast.

A number of algorithms to find motifs have been proposed previ-
ously, for example, Bailey and Elkan [2], Hertz and Stormo [13],
Lawrenceet al. [16], Lawrence and Reilly [17], and Rocke and
Tompa [25]. Since these algorithms employ some form of lo-
cal search such as Gibbs sampling, expectation maximization, or
the greedy method, each may end in a local optimum rather than
finding the best motif. Indeed, Pevzner and Sze [23] discovered
that CONSENSUS [13], Gibbs sampling [16], and MEME [2] all
performed poorly on the particular planted (15,4)-motif challenge
problem stated above, usually ending at local optima representing
randomly occurring patterns rather than the superior planted motif.

In addition to the algorithms mentioned above, there are also a
number of motif-finding algorithms, based on exhaustive enumer-
ation of the possible motifsM , that are guaranteed to find the op-
timal motif. (See, for example, Blanchetteet al. [4], Brāzmaet al.
[6], Galaset al. [10], Sagot [26], Sinha and Tompa [27], Staden
[28], Tompa [29], and van Heldenet al. [30].) However, these
enumerative algorithms run in time exponential in the motif length
l and become impractical for the sizes involved in the challenge
problem. Other motif discovery algorithms have been proposed by
Fraenkelet al. [9] and Rigoutsos and Floratos [24].

Pevzner and Sze [23] introduced two novel algorithms, WIN-
NOWER and SP-STAR, both of which succeeded in solving
the planted (15,4)-motif challenge problem. In summary, WIN-
NOWER constructs a graph whose vertices correspond to thel-
mers present in thet input sequences, with an edge connecting two
vertices if and only if the correspondingl-mers differ in at most
2d positions and do not both come from the same input sequence.
WINNOWER then looks for a clique of sizet in this graph. Their
second algorithm, SP-STAR, starts in turn from each individuall-
merx in the input, chooses the closest match tox from every other
input sequence, and uses a sum-of-pairs score and iterative refine-
ment to converge on a good motif.

The planted (15,4)-motif problem is not the most challenging for
t = 20 andn = 600. For example, the planted (14,4)-, (16,5)-,
and (18,6)-motif problems are all considerably more difficult. Both
WINNOWER and SP-STAR fail to find these motifs. (See Table
1.)

We introduce an algorithm called PROJECTIONthat is based on the
use ofrandom projectionsof the input’sl-mers, an idea very differ-



ent from all the motif discovery algorithms listed above. The key
idea in this algorithm is to choosek of the l positions at random,
then use thek selected positions of eachl-merx as a hash func-
tion h(x). (This idea is derived from “locality-sensitive hashing,”
employed in the context of computational geometry by Indyk and
Motwani [14], in databases by Gioniset al. [11], and in compu-
tational biology by Buhler [7]. A different randomized projection
algorithm was used by Linialet al. [19] to cluster proteins.) When
a sufficient number ofl-mers hash to the same bucket, they are
likely to be enriched for the planted motifM .

Experiments demonstrate that PROJECTIONperforms better than
all the algorithms above on planted motif problems. In our ex-
periments on randomly generated input sequences, PROJECTION

typically solved the difficult planted (14,4)-, (16,5)-, and (18,6)-
motif problems. Even on these difficult problems the longest suc-
cessful PROJECTIONrun took approximately one hour, while many
runs required only minutes. PROJECTIONsolves Pevzner and Sze’s
planted (15,4)-motif challenge problem in under two minutes. An-
other advantage over WINNOWER and SP-STAR is that PROJEC-
TION is a probabilistic algorithm. This means that if the user is
willing to run more iterations on a given input, the probability of
discovering the planted motif (as well as other existing motifs) in-
creases.

A probabilistic analysis, given in Section 3.2, shows (again for
Pevzner and Sze’s parameterst = 20 andn = 600) that those
small values ofd for which PROJECTION fails to recover the
planted(l; d)-motif are in all likelihood inherently impossible to
solve. Specifically, problem instances with these parameters are
likely to contain spurious motifs that are as strong as the planted
motif. For example, 20 random sequences each of length 600 (with
no planted motif) are expected to contain at least one (9,2)-motif
by chance, whereas the expected number of (10,2)-motifs that they
contain is approximately10�7. Similar statements can be made
for (11,3)- vs. (12,3)-motifs, (13,4)- vs. (14,4)-motifs, (15,5)- vs.
(16,5)-motifs, and (17,6)- vs. (18,6)-motifs. Thus, there is a rather
sharp line between those planted motif problems that PROJECTION

solves, and those that inherently cannot be solved.

After describing the algorithm in Section 2, we present experimen-
tal results in Section 3. In Section 3.1 we first present the natu-
ral experiments for the planted motif problem as described above.
Namely, simulated data is used in which (1) the motifM is cho-
sen randomly; (2) thet independent planted instances are each
produced by randomly selecting (without replacement)d positions
in M , randomly changing each of those positions to some other
nucleotide, and randomly selecting the position of this planted in-
stance in its input sequence; and (3) the remainingn� l residues of
each input sequence are chosen randomly. In this simulated data,
all random choices are made uniformly and independently. This
corresponds to the “FM model” used in most of the experiments
reported by Pevzner and Sze [23].

In Sections 3.3 and 3.4 we complement these simulated results, ad-
dressing realistic biological data first by identifying transcription
factor binding sites in the promoter regions of eukaryotic genes,
then by tackling the ribosome binding site problem in prokaryotes.
In these experiments, the background nucleotide distribution dif-
fers substantially from the independent random model. Our exam-
ples of promoter regions contain just a few motif instances in an
equal number of sequences, while the ribosome binding site exam-
ples consist of thousands of nucleotide sequences, only a fraction

of which contain the motif. We validate these experimental results
by comparing them to published sites from the literature and, for
the ribosome binding sites, to their complementary 16S rRNA se-
quences.

2. THE PROJECTION ALGORITHM
Like many probabilistic algorithms, PROJECTIONperforms a num-
ber of independent trials of a basic iterant. In each such trial, it
chooses a random projectionh and hashes eachl-merx in the in-
put sequences to its bucketh(x). Any hash bucket with sufficiently
many entries is explored as a source of the planted motif, using a
series of refinement steps as described in Section 2.2.

2.1 Random Projections
As outlined in Section 1, the hash functionh(x) is constructed by
choosingk of the l positions at random, without replacement, for
a value ofk to be determined later. Ifx is an l-mer, thenh(x)
is simply thek-mer that results from concatenating the selectedk
residues ofx. Viewing x as a point in anl-dimensional Hamming
space,h(x) is the projection ofx onto ak-dimensional subspace.

If M is the (unknown) planted motif, we will call the bucket with
hash valueh(M) the planted bucket. The fundamental intuition
underlying PROJECTIONis that, ifk < l�d, there is a good chance
that a number of thet planted instances ofM will hash together into
the planted bucket. In particular, those planted instances for which
thed mutated positions are disjoint from thek hash positions will
hash to the planted bucket. At the same time, ifk is not too small,
it is unlikely that many randoml-mers from the input will hash to
the planted bucket, because they must agree withM in all k chosen
positions. Thus, there is a good chance that thel-mers in the planted
bucket will be highly enriched for the planted motif, enabling the
algorithm to recover it from the bucket and the input sequences.

Of course, the algorithm does not know which the planted bucket
is, and so attempts to recover the motif from every bucket that con-
tains at leasts elements, for a parameters to be chosen later. On
occasion, PROJECTIONactually succeeds in recovering the correct
motif by refining some bucket other than the planted bucket, which
is an added bonus.

The PROJECTIONalgorithm requires the choice of three key pa-
rameters, namely the projection sizek, the bucket thresholds, and
the number of independent trials to run. We first attempt to min-
imize contamination of the planted bucket by random background
sequences. Since we are hashingt(n� l+1) l-mers into4k buck-
ets, if4k > t(n� l + 1) the average bucket will contain less than
one randoml-mer. For the simulated challenge problems of Sec-
tion 3.1 and the promoter examples of Section 3.3, we can choose
k large enough to satisfy this low-noise condition without violating
the constraint thatk < l� d. These examples contain only a small
number (4-20) of motif instances overall, so we cannot expect too
many instances to hash to the same bucket in a reasonable number
of trials. We therefore set a low bucket size thresholds (3-4), keep-
ing in mind that even for such small thresholds, the planted bucket
is expected to contain more motif instances than random sequences.

In the ribosome binding site examples of Section 3.4, the total
amount of sequence is so large that we cannot choosek to simul-
taneously satisfyk < l � d and4k > t(n� l + 1). However, we
believe that the planted motif is quite frequent in the input and so
are no longer bound to limits to a small integer. For these exam-
ples, we setk = l�d�1, as large as possible, and select for buckets



in which motif instances are at least as common as background in-
stances, that is, buckets with more signal than noise. In particular,
we sets to be twice the average bucket sizet(n� l + 1)=4k .

Finally, we come to the determination of the numberm of indepen-
dent trials to run. We choosem so that the probability is at least
q = 0:95 that the planted bucket containss or more planted motif
instances in at least one of them trials. For the chosen value ofq,
PROJECTIONoften encounters several trials in which the planted
bucket is significantly enriched for the motif. This condition leads
to the following derivation ofm.

Let p̂(l; d; k) be the probability that a given planted motif instance
hashes to the planted bucket, that is,

p̂(l; d; k) =

�
l� d
k

�
�
l
k

� :

Let t̂ be an estimate of the number of input sequences containing
a planted motif instance (t̂ = t for the simulated challenge prob-
lems and promoter examples, andt̂ = t=3 for the ribosome binding
site application). Then the probability that fewer thans planted in-
stances hash to the planted bucket in a given trial isBt̂;p̂(l;d;k)(s),
whereBt̂;p(s) is the probability that there are fewer thans suc-
cesses in̂t independent Bernoulli trials, each trial having probabil-
ity p of success. If PROJECTIONis run form trials, the probability
that s or more planted instances hash to the planted bucket in at
least one trial is

1�
�
Bt̂;p̂(l;d;k)(s)

�m
� q:

In order to satisfy this inequality, choose

m =

&
log(1� q)

log(Bt̂;p̂(l;d;k)(s))

'
: (1)

Using this criterion form, we find that our choices fork and s
above require at most thousands of trials, and usually many fewer,
to produce a bucket containing sufficiently many instances of the
planted motif.

2.2 Motif Refinement
In this section we describe how each bucket with at leasts ele-
ments is explored to recover the planted motif. The idea is that, if
the current bucket is the planted bucket, PROJECTIONhas already
discoveredk of the planted motif residues. These residues, plus the
information in the remainingl � k positions of thosel-mers that
hashed to the current bucket, provide a very strong signal, starting
from which a few iterations of refinement should lead to the motif.

Our primary tool for refining candidate motifs is expectation max-
imization (EM), as formulated for the motif finding problem by
Lawrence and Reilly [17]. This EM formulation derives from the
following simplified probabilistic model. An instance of some
length-l motif occurs exactly once per input sequence. Motif in-
stances are generated from a4� l weight matrix modelW whose
(i; j)th entry gives the probability that basei occurs in positionj
of an instance, independent of its other positions. The remaining
n� l residues in each sequence are chosen randomly and indepen-
dently according to some background nucleotide distribution. Al-
though this model only approximates motifs in real biosequences,

it is both efficient and sensitive enough to recover many such motifs
in practice. Bailey and Elkan [2] give more accurate motif models,
but fitting their parameters from sequence data requires significant
additional computation.

Let S be a set oft input sequences, and letP be the background
distribution. EM-based refinement seeks a weight matrix model
W � that maximizes the likelihood ratio

Pr(S j W �; P )

Pr(S j P )

that is, a motif model that explains the observed sequences much
better than the background model alone. The position at which the
motif occurs in each sequence is not fixeda priori, making com-
putation ofW � difficult becausePr(S j W �; P ) must be summed
over all possible locations of the motif instances. To address this
difficulty, the core EM algorithm [8] specifies an iterative calcula-
tion that, given an initial guessW0 at the motif model, converges
linearly to a locally maximum-likelihood model in the neighbor-
hood ofW0.

PROJECTIONperforms EM refinement on every bucket with at least
s instances. We form an initial guessWh from a bucketh as fol-
lows: setWh(i; j) to be the frequency of basei among thejth
positions of alll-mers inh. This guess forms acentroid for h, in
the sense that positions that are well conserved inh are strongly
biased inWh, while poorly conserved positions are less biased. In
order to avoid zero entries inWh, we add a Laplace correction of
bi toWh(i; j), wherebi is the background probability of residuei
in the input.

Because EM converges only linearly, running it to convergence for
everyWh would be computationally prohibitive. Fortunately, just a
few iterations of EM (five in our implementation) can significantly
improve a well-chosen starting model to the point where it identi-
fies the planted motif. LetW �

h be the candidate motif model refined
from Wh. We useW �

h to identify the planted motif by selecting
from each input sequence thel-mer x with the largest likelihood
ratio Pr(x j W �

h )=Pr(x j P ). This multisetT of l-mers repre-
sents the motif in the input that is most consistent withW �

h . Let
CT be the consensus ofT , and lets(T ) be the number of elements
of T whose Hamming distance toCT exceedsd. In the applica-
tions to biological examples in Sections 3.3 and 3.4, PROJECTION

outputsCT for thatT that minimizess(T ) over all buckets and all
m trials.

To maximize the number of motif instances recovered in the sim-
ulated challenge problems in Section 3.1, we perform a further
heuristic refinement ofT that works well once we have already
found a number of planted instances. (This further refinement pro-
cess is similar to SP-STAR [23] but uses a different score func-
tion.) Compute the consensusC of the sequences inT , and define
the score ofT to be the number of sequences inT whose Hamming
distance toC is at mostd. LetT 0 contain thel-mer from each input
sequence that is closest in Hamming distance toC. If the score of
T 0 is greater than the score ofT , replaceT by T 0 and repeat. This
refinement converges after a few iterations. If it converges with a
score oft, then report the corresponding consensus as the planted
motif. Otherwise, report the consensus of thatT that maximizes
the score over all buckets and allm trials.

The PROJECTIONalgorithm is primarily a technique for picking
starting motif models that are in the neighborhood of the true



planted motif; it is not strongly tied to the use of a particular re-
finement strategy such as EM. Good starting points are crucial to
many local refinement strategies – including EM, Gibbs sampling,
and SP-STAR – because all these techniques may otherwise ter-
minate at local optima different from the planted motif. Existing
motif finders, including the algorithm of Bailey and Elkan [2] and
SP-STAR, start refinement from every individuall-mer (i.e. every
potential motif instance) in the input, in the hope that one of these
instances will fall close to the consensus of the planted motif. Un-
fortunately, the subtle motifs of the challenge problems are formu-
lated precisely so that the planted consensus lies far from any one
of its instances! By forming centroids of multiple similar instances,
PROJECTIONgenerates starting models that are closer to the actual
consensus of the planted motif, so that iterative refinement is more
likely to converge to this motif rather than to some inferior local
optimum.

3. EXPERIMENTAL RESULTS
3.1 Challenge Problems on Simulated Data
Table 1 compares the performance of PROJECTIONwith that of pre-
vious motif discovery algorithms, using simulated data. The mea-
sure used in that table is the performance coefficient of Pevzner and
Sze [23], defined as follows. LetK denote the set oft � l residue
positions in thet planted motif instances, and letP denote the cor-
responding set of residue positions in thet instances predicted by
the algorithm. Then theperformance coefficientis defined to be
jK \ P j=jK [ P j.

All input instances consist oft = 20 sequences, each of length
n = 600. Each such random instance was constructed as described
at the end of Section 1. For PROJECTION, for each line in Ta-
ble 1, twenty such random instances were prepared, and the table
entry gives the average performance coefficient over those twenty
instances. All runs used projection sizek = 7 and bucket thresh-
old s = 4. The numberm of iterations shown in the table was
computed by Equation (1) of Section 2.1.

The column of Table 1 labeled “Correct” is the number of instances
(out of twenty) for which PROJECTIONrecovered a consensus se-
quence that was identical to the consensus of thet planted motif
instances.

Note that the average performance coefficient of PROJECTIONin
every line of Table 1 is at least as great as that of any of the previous
algorithms. Most striking is the difference in performances on the
planted (14,4)-, (16,5)-, (17,5)-, (18,6)-, and (19,6)-motif problems.

As in Pevzner and Sze [23], we also tested PROJECTIONon the
planted (15,4)-motif problem with input sequences of lengthn =
1300 instead of 600. Again averaging over twenty random in-
stances, the average performance coefficient was 0.88, recovering
the planted consensus in all twenty instances. Of all the algorithms
reported by Pevzner and Sze, only WINNOWER with parameter
k = 3 maintains an average performance coefficient of 0.8 at this
length. The others are down to 0.23 or less by the timen reaches
1000 [23, Table 1].

3.2 Limitations on Solvable(l,d)-Motif
Problems

Looking at Table 1, it is natural to ask whether there is a more ef-
fective algorithm, in the sense that it recovers planted (9,2)-, (11,3)-
, (13,4)-, (15,5)-, or (17,6)-motifs (fort = 20 and n = 600),

whereas PROJECTIONfails to do so. A probabilistic analysis shows
that these problems are quantitatively different from the problems
in Table 1. For instance, 20 random sequences each of length 600
(with no planted motif) are expected to contain more than one (9,2)-
motif by chance, whereas the expected number of (10,2)-motifs that
they contain is approximately6:1 � 10�8. Such estimates are de-
rived as follows. Let

pd =

dX
i=0

�
l
i

��
3

4

�i�
1

4

�l�i

be the probability that a givenl-merC occurs with up tod substitu-
tions at a given position of a random sequence. Then the expected
number of lengthl motifs that occur with up tod substitutions at
least once in each oft random lengthn sequences is approximately

E(l; d) = 4l
�
1� (1� pd)

n�l+1
�t
:

(The reason this is only an estimate is that overlapping occurrences
of a given motifC do not occur independently.)

Table 2 lists the relevant values ofE(l; d) andE(l+1; d) for com-
parison. Note in each line of the table that the expected number of
spurious(l; d)-motifs is around 1–5, whereas the expected number
of spurious(l+1; d)-motifs is negligible. This means there is likely
to be too much random noise to recover a planted(l; d)-motif, for
these values ofl andd.

Although these table entries are only estimates, we do know from
an exhaustive enumeration of 9-mers and an exact calculation of
their probabilities of occurrence in 20 random 600-mers that the ex-
pected number of spurious (9,2)-motifs is 1.621. (The probability
calculation was done using an algorithm described in [29, Section
3.1].) Thus, the estimates may not be too inaccurate.

To corroborate this analysis, PROJECTIONwas run on twenty ran-
dom instances of the planted(l; d)-motif problem, exactly as de-
scribed in Section 3.1. The results are also shown in Table 2.
The average performance coefficient is given in the column labeled
“apc.” The number of instances (out of twenty) on which PROJEC-
TION returned the consensus of the planted motif is shown in the
column labeled “Correct.” The column labeled “Spurious” shows
the number of instances in which PROJECTIONreturned a perfect
(l; d)-motif (i.e. one occurring in all 20 input sequences) that was
not the planted motif. In the remaining instances the best motif
PROJECTIONfound occurred in only 19 of the 20 input sequences,
and was again not the planted motif. These experiments give fur-
ther evidence that there are many spurious motifs for these values
of l andd.

3.3 Transcription Factor Binding Sites
In order to test PROJECTIONon more realistic biological data, we
used it to find known transcriptional regulatory elements upstream
of several eukaryotic genes. We examined orthologous sequences
from a variety of organisms taken from regions upstream of four
types of gene: preproinsulin, dihydrofolate reductase (DHFR),
metallothioneins, and c-fos. (See Blanchette [3] for an alternative
approach to finding motifs in these sequences.) These sequences
are known to contain binding sites for specific transcription factors.
We also tested a collection of promoter regions1 from the yeastS.
cerevisiaethat is known to contain a shared cell-cycle-dependent
promoter [20].

1Genes used: SWI4, CLN3, CDC6, CDC46, and CDC47.



l d Gibbs WINNOWER SP-STAR PROJECTION Correct m
10 2 0.20 0.78 0.56 0.82 20 72
11 2 0.68 0.90 0.84 0.91 20 16
12 3 0.03 0.75 0.33 0.81 20 259
13 3 0.60 0.92 0.92 0.92 20 62
14 4 0.02 0.02 0.20 0.77 19 647
15 4 0.19 0.92 0.73 0.93 20 172
16 5 0.02 0.03 0.04 0.70 16 1292
17 5 0.28 0.03 0.69 0.93 19 378
18 6 0.03 0.03 0.03 0.74 16 2217
19 6 0.05 0.03 0.40 0.96 20 711

Table 1: Average performance coefficients on planted(l; d)-motifs in simulated data. Each input instance consists oft = 20 sequences
each of lengthn = 600. Average performance coefficients of Gibbs, WINNOWER (k = 2), and SP-STAR are from Pevzner and Sze
[personal communication], who averaged the performance coefficient over eight random instances. ForPROJECTION, averages were
taken over twenty random instances, with projection sizek = 7 and thresholds = 4.

l d E(l; d) E(l + 1; d) apc Correct Spurious 19/20 m
9 2 1.6 6:1� 10�8 0.28 11 5 4 1483

11 3 4.7 3:2� 10�7 0.026 1 13 6 2443
13 4 5.2 4:2� 10�7 0.062 2 15 3 4178
15 5 2.8 2:3� 10�7 0.018 0 7 13 6495
17 6 0.88 7:1� 10�8 0.022 0 8 12 9272

Table 2: Statistics of spurious(l; d)-motifs in simulated data. The column labeled “apc” shows the average performance coefficient
averaged over twenty random instances, each consisting oft = 20 sequences of lengthn = 600. The projection size was chosen to be
k = 7, the bucket threshold was set tos = 4, and the number of iterations is shown in the column labeled “m.”

Unlike the synthetic examples of Section 3.1, our promoter exam-
ples contain background DNA that varies substantially from our
simple random model. The embedded motifs are better conserved
than in our synthetic examples but must be inferred from a much
smaller number of instances. These motifs are also less “subtle”
than our synthetic examples; that is, nucleotide substitutions in
each motif instance tend to occur at the same few positions, rather
than independently at random as in the challenge problem. We were
unable to locate published examples of biological motifs as subtle
as those of Section 3.1, though we cannot say whether the dearth
of such examples implies that they are biologically uncommon, or
only that they are inaccessible to previous search techniques.

In all experiments we setl = 20 andd = 2, which worked well
despite the fact that the actual motifs varied considerably in length.
We chose a projection sizek = 7 to obtain less than one expected
backgroundl-mer per bucket and set a size thresholds = 3, re-
flecting the fact that the number of motif occurrences in each ex-
periment is quite small (4-5). The numbers of iterationsm, chosen
according to the procedure of Section 2.1, were also small, so that
the experiments required only a few seconds each.

Table 3 gives the best (20,2)-motif consensus found by PROJEC-
TION, along with a published motif that closely matches a substring
of each consensus. Analysis of the preproinsulin promoter region
yielded a motif known from the TRANSFAC database [31], while
the other four experiments produced motifs corresponding to ex-
perimentally verified transcription factor binding sites. Multiple
refinements often produced two or more distinct motifs with the
same (maximum) score; in these cases, the different motifs were
usually slightly shifted windows covering the same underlying site.
For these experiments, we report only the most50-shifted consen-
sus string.

Although the motifs we found are not particularly subtle, and in-
deed have previously been found by standard iterative methods
such as MEME [3], the results of these experiments are notewor-
thy for two reasons. First, we achieved good performance even
with a fairly primitive refinement strategy that did not include, e.g.,
motif length corrections, information-based scoring, or iteration of
EM to convergence. We expect that random projections could yield
even better performance if adjoined to a more sophisticated motif
finder that implements these additional techniques. Second, PRO-
JECTIONperformed fewer total refinements in every case than the
standard heuristic that takes every individuall-mer in the input as
a starting point for refinement. In our experiments, PROJECTION

refined 30% to 80% fewer starting points than this heuristic would
have examined. This cost savings is possible because our algorithm
preferentially selects starting points that are likely to lead to a suc-
cessful refinement.

The PROJECTIONalgorithm returned only a single high-scoring lo-
cus in our experiments, even though the input sequences sometimes
contained more than one known promoter site. For example, anal-
ysis of the preproinsulin locus yielded a site known from TRANS-
FAC but missed the better known CT-II promoter element [5]. En-
hancements to EM refinement, such as probabilistic erasing [2], can
ameliorate this method’s tendency to prefer only one out of several
possible high-scoring motifs.

Simply using less stringent selection criteria for motifs can also
identify multiple sites in one experiment, albeit with a significant
amount of noise. When we reanalyzed the preproinsulin locus to
find high-scoring (14,2)- (rather than (20,2)-) motifs, the result con-
tained multiple hits on the CT-II element and on two TRANSFAC
sites, including the one from the previous experiment. However,
these three sites together accounted for only 20 of 39 unique high-
scoring motifs reported; the other reported motifs did not match



Sequence Input size t m Best (20,2) motif Published Ref.
(bases) from PROJECTION motif

preproinsulin 7689 4 15 GGAAATTGCAGCCTCAGCCC CCTCAGCCCC (A)
DHFR 800 4 15 CTGCAATTTCGCGCCAAACT ATTTCnnGCCA (B)
metallothionein 6823 4 15 CCCTCTGCGCCCGGACCGGT TGCRCYCGG (C)
c-fos 3695 5 8 CCATATTAGGACATCTGCGT CCATATTAGAGACTCT(D)
yeast ECB 5000 5 8 GTATTTCCCGTTTAGGAAAA TTtCCcnntnaGGAAA (E)

Table 3: Performance ofPROJECTIONon eukaryotic promoter sequences. All motifs were found usingl = 20, d = 2, k = 7, and
s = 3. Where multiple shifted versions of the motif were found, only the most50 result is shown. Italicized portions of the motifs
indicate matches to known sequence features. References: (A) TRANSFAC signal [31]; (B) non-TATA transcription start signal [21];
(C) MREa promoter [1]; (D) c- fos serum response element [22]; (E) yeast early cell cycle box [20].

these sites, and most could not be explained as shifted windows
over one or a few additional underlying loci. Applying PROJEC-
TION with a liberal threshold for accepting motifs can thus reveal
more information about interesting sites in the input sequences.
However, the results must be further sifted, either by additional
refinement or by filtering with a more biologically accurate motif
model, to differentiate real motifs from background noise.

3.4 Ribosome Binding Sites
To test PROJECTION’s robustness on a very different sort of bio-
logical example, we applied it to the ribosome binding site prob-
lem for various prokaryotes. Such an instance includes the short
DNA sequence (n = 20) just upstream of the translation start site
of each gene of the organism. The problem is to identify the short
site (l � 6) at which the 16S rRNA of the ribosome binds to the
transcribed mRNAs of the organism’s genes. It is known that this
binding site is complementary to a short subsequence very near the
30 end of the 16S rRNA (Kozak [15]), which provides a check for
the plausibility of the planted motif that PROJECTIONreports.

These instances are quite different from the ones discussed in Sec-
tions 3.1 and 3.3: they contain thousands of input sequences, the
background nucleotide distribution may be more strongly biased,
and the binding site occurs in only a fraction of the input sequences.
The results of these experiments are shown in Table 4. For all ex-
periments we chosel = 6, d = 1, input sequence lengthn = 20,
and projection sizek = 4. The table shows the numbert of input
sequences, the bucket thresholds, and the numberm of iterations,
calculated according to the formulas of Section 2.1. The motif pre-
dicted by PROJECTIONis shown in the column labeled “Motif.”
Each experiment finished in under one minute.

There are many pieces of evidence that corroborate the ribosome
binding site motifs predicted by PROJECTION. The first is the good
complementarity of those motifs to the30 end of the 16S rRNA se-
quences (with the possible exception ofH. influenzae), as shown
in Table 4. Another is the well known fact that, in many bacteria,
the binding site for the 16S rRNA during translation initiation is
the Shine-Dalgarno sequenceAAGGAGGor a large substring of it
(Kozak [15], Lewin [18]). The recovered motifs for the four bac-
teria in Table 4 agree quite well with this fact. In archaea such as
M. jannaschii, the30 end of the 16S rRNA is missing a few termi-
nal nucleotides compared to the bacterial rRNA sequences, and the
16S rRNA binding site is insteadAGGTGATor a large substring
of it (Woese, personal communication). Hayes and Borodovsky
[12] discovered the motifGGTGAin M. jannaschiiusing a Gibbs
sampler, and Tompa [29] discovered similar binding sites in four
different archaeal genomes, includingM. jannaschii.

Tompa used a very different enumerative statistical algorithm to
solve the ribosome binding site problem, ranking motifs by their
z-scores. All the motifs found by PROJECTIONare in good agree-
ment with the highest scoring motifs that his algorithm reported.
For example, the last column of Table 4 shows the 5-mers whose
number of occurrences, allowingno substitutions, has the highest
z-score. Note the strong overlap between each of these entries and
the corresponding PROJECTIONprediction.

We note that randomization is not strictly necessary to find good
starting points for refinement in the ribosome binding site problem.
There are only fifteen different projections of a 6-mer into four
dimensions, so one could efficiently test all possible projections
rather than picking them at random. Indeed, because the embed-
ded motifs are so short, this particular problem has been addressed
enumeratively without resorting to iterative search techniques at
all [29]. The significance of these results is rather to show that
PROJECTIONis capable of handling motif-finding problems that
are quite different both from the typical applications of Section 3.3
and from the formal motif model for which it was designed.

4. CONCLUSIONS AND
OPEN PROBLEMS

We have presented PROJECTION, a new algorithm for finding mo-
tifs based on random projections. Experimental results have shown
that PROJECTION is much more effective at recovering planted
(l; d)-motifs in simulated data than existing algorithms. It has also
proven effective in applications to real biological data. As for prac-
ticality, the greatest running time on any synthetic instance of Sec-
tion 3.1 was approximately an hour, and most runs, both on syn-
thetic and on biological examples, required only seconds to min-
utes.

We intend to improve our implementation of PROJECTIONto ac-
commodate more features of real biological motif-finding prob-
lems. Basic improvements include predicting the length of the mo-
tif, finding multiple motifs in the same input automatically, and
handling features such as spacers (sequences ofN’s) in the motif
(Sinha and Tompa [27]). A more challenging research problem
is to extend PROJECTIONto handle motifs whose instances con-
tain insertions and deletions, which destroy the notion of fixed se-
quence positions used to define projections. Most importantly, we
continue to seek biological examples of motifs that are more subtle
than those described in Sections 3.3 and 3.4. Such motifs could
better illustrate the particular strengths of the PROJECTIONalgo-
rithm.



Organism t s m Motif Occurs 16S rRNA Bestz-score
M. jannaschii 1679 196 14 AGGTGA 606 GGAGGTGATCC GGTGA
H. influenzae 1716 202 17 AGGAAA 639 TAAGGAGGTGA AAGGA
T. maritima 1846 216 13 GGAGGT 1198 GAAAGGAGGTG AGGTG
B. subtilis 4099 480 35 AGGAGG 2742 TAGAAAGGAGG AGGAG
E. coli 4287 502 35 AAGGAG 1306 TAAGGAGGTGA AGGAG

Table 4: Planted (6,1)-motifs found byPROJECTIONas candidate 16S rRNA binding sites of various prokaryotes. For all experiments,
the projection size wask = 4. The column labeled “Occurs” shows the number of input sequences containing the motif with up to
one substitution. The column labeled “16S rRNA” shows the reverse complement of the30 end of the organism’s 16S rRNA; the true
binding site should be similar to a substring of this sequence. The column labeled “Bestz-score” shows the 5-mer with the greatest
z-score, using the algorithm of Tompa [29].
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