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K-means
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K-means Clustering

! Partitional clustering approach 
! Number of clusters, K, must be specified
! Each cluster is associated with a centroid (center point) 
! Each point is assigned to the cluster with the closest 

centroid
! The basic algorithm is very simple



Example of K-means Clustering
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Example of K-means Clustering
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K-means Clustering – Details

! Initial centroids are often chosen randomly.
– Clusters produced vary from one run to another.

! The centroid is (typically) the mean of the points in the 
cluster.

! ‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc.

! K-means will converge for common similarity measures 
mentioned above.

! Most of the convergence happens in the first few 
iterations.

– Often the stopping condition is changed to ‘Until relatively few 
points change clusters’

! Complexity is O( n * K * I * d )
– n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes
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Evaluating K-means Clusters

! Most common measure is Sum of Squared Error (SSE)
– For each point, the error is the distance to the nearest cluster
– To get SSE, we square these errors and sum them.
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! x is a data point in cluster Ci and mi is the representative 
point for cluster Ci
• can show that mi corresponds to the center (mean) of 

the cluster
! Given two sets of clusters, we prefer the one with the 

smallest error
! One easy way to reduce SSE is to increase K, the number of 

clusters
! A good clustering with smaller K can have a lower SSE than 

a poor clustering with higher K



02/14/2018 Introduction to Data Mining, 2nd Edition 8

Two different K-means Clusterings
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Limitations of K-means

! K-means has problems when clusters are of 
differing 
– Sizes
– Densities
– Non-globular shapes

! K-means has problems when the data contains 
outliers.
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Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters



02/14/2018 Introduction to Data Mining, 2nd Edition 16

Empty Clusters

! K-means can yield empty clusters

6.5 9 10 15 16 18.5
X X X
7.75 12.5 17.25

6.5 9 10 15 16 18.5
X X X
6.8 13 18

Empty 
Cluster
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Handling Empty Clusters

! Basic K-means algorithm can yield empty 
clusters

! Several strategies
§ Choose a point and assign it to the cluster 

uChoose the point that contributes most to SSE
uChoose a point from the cluster with the highest SSE

! If there are several empty clusters, the above can 
be repeated several times.
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Pre-processing and Post-processing

! Pre-processing
– Normalize the data
– Eliminate outliers

! Post-processing
– Eliminate small clusters that may represent outliers
– Split ‘loose’ clusters, i.e., clusters with relatively high 

SSE
– Merge clusters that are ‘close’ and that have relatively 

low SSE
– Can use these steps during the clustering process

u ISODATA



Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids …
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Importance of Choosing Initial Centroids …
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Problems with Selecting Initial Points

! If there are K ‘real’ clusters then the chance of selecting 
one centroid from each cluster is small. 

– Chance is relatively small when K is large
– If clusters are the same size, n, then

– For example, if K = 10, then probability = 10!/1010 = 0.00036
– Sometimes the initial centroids will readjust themselves in 

‘right’ way, and sometimes they don’t
– Consider an example of five pairs of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other 
have only one.
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

! Multiple runs
– Helps, but probability is not on your side

! Sample and use hierarchical clustering to determine 
initial centroids

! Select more than k initial centroids and then select among 
these initial centroids

– Select most widely separated
! Postprocessing
! Generate a larger number of clusters and then perform a 

hierarchical clustering
! Bisecting K-means

– Not as susceptible to initialization issues
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Updating Centers Incrementally

! In the basic K-means algorithm, centroids are 
updated after all points are assigned to a centroid

! An alternative is to update the centroids after 
each assignment (incremental approach)
– Each assignment updates zero or two centroids
– More expensive
– Introduces an order dependency
– Never get an empty cluster
– Can use “weights” to change the impact
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Finding the best number of clusters

! In k-means the number of clusters K is given
– Partition n objects into predetermined number of 

clusters
– Finding the “right” number of clusters is part of 

the problem
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Convergence of K-Means

! Define goodness measure of cluster c as sum of squared 
distances from cluster centroid:
– SSEc(c,s) = Σi (di – sc)2  (sum over all di in cluster c)
– G(C,s) = Σc SSEc(c,s)

! Re-assignment monotonically decreases G
– It is a coordinate descent algorithm (opt one component at a time)

! At any step we have some value for G(C,s)
1) Fix s, optimize C à assign d to the closest centroid à G(C’,s) <= G(C,s)

2) Fix C’, optimize s à take the new centroids à G(C’,s’) <= G(C’,s) <= G(C,s)

The new cost is smaller than the original one à local minimum


