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K-means Clustering

Partitional clustering approach
Number of clusters, K, must be specified
Each cluster is associated with a centroid (center point)

Each point is assigned to the cluster with the closest
centroid

The basic algorithm is very simple

: Select K points as the initial centroids.
repeat
Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.

Ot =~ W

until The centroids don’t change
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Example of K-means Clustering
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Example of K-means Clustering
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K-means Clustering — Details

® Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

® The centroid is (typically) the mean of the points in the
cluster.

® ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

® K-means will converge for common similarity measures
mentioned above.

® Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

® ComplexityisO(n*K*1*d)

— n =number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Evaluating K-means Clusters

® Most common measure is Sum of Squared Error (SSE)
— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

1.5

SSE = i Zdistz(ml.,x)
i=1 xeC; o

® X is a data point in cluster C; and m; is the representative
point for cluster Ci 2 -

can show that mi corresponds to the center (mean) of |

the cluster 0s 0o o

@ Given two sets of clusters, we prefer the one with the =
smallest error

® One easy way to reduce SSE is to increase K, the number of
clusters

® A good clustering with smaller K can have a lower SSE than
a poor clustering with higher K
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Two different K-means Clusterings
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Limitations of K-means

® K-means has problems when clusters are of
differing
— Sizes
— Densities
— Non-globular shapes

® K-means has problems when the data contains
outliers.
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Limitations of K-means: Differing Sizes
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Overcoming K-means Limitations
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K-means Clusters

One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Limitations of K-means: Differing Density
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Overcoming K-means Limitations
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters
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Empty Clusters

@ K-means can yield empty clusters
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Handling Empty Clusters

@ Basic K-means algorithm can yield empty
clusters

® Several strategies

= Choose a point and assign it to the cluster
+Choose the point that contributes most to SSE
+Choose a point from the cluster with the highest SSE

e If there are several empty clusters, the above can
be repeated several times.
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Pre-processing and Post-processing

® Pre-processing
— Normalize the data
— Eliminate outliers

® Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’ and that have relatively
low SSE

— Can use these steps during the clustering process
+ ISODATA
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids ...
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Problems with Selecting Initial Points

@ Ifthere are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
— If clusters are the same size, n, then

number of ways to select one centroid from each cluster KIn¥ K!

P = KI;

number of ways to select K centroids B (Kn)K

—  For example, if K = 10, then probability = 10!//10° = 0.00036

—  Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.
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10 Clusters Example
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Solutions to Initial Centroids Problem

@ Multiple runs
— Helps, but probability is not on your side

@ Sample and use hierarchical clustering to determine
initial centroids

® Select more than kK initial centroids and then select among
these initial centroids

— Select most widely separated
® Postprocessing

® Generate a larger number of clusters and then perform a
hierarchical clustering

® Bisecting K-means
— Not as susceptible to initialization issues
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Updating Centers Incrementally

@ In the basic K-means algorithm, centroids are
updated after all points are assigned to a centroid

@ An alternative is to update the centroids after
each assignment (incremental approach)

— Each assignment updates zero or two centroids
— More expensive

— Introduces an order dependency

— Never get an empty cluster

— Can use “weights” to change the impact
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Finding the best number of clusters

® In k-means the number of clusters K is given

— Partition n objects into predetermined number of
clusters

— Finding the “right” number of clusters is part of

the problem "
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Convergence of K-Means

® Define goodness measure of cluster ¢ as sum of squared
distances from cluster centroid:

— SSE_(c,s)=2; (d;—s.)? (sum over all d; in cluster c)
— G(C,s) =2.SSE(c,s)
® Re-assignment monotonically decreases G

— It is a coordinate descent algorithm (opt one component at a time)

® At any step we have some value for G(C,s)
1) Fix s, optimize C = assign d to the closest centroid = G(C,s) <= G(C,s)
2) Fix C’, optimize s = take the new centroids = G(C',s’ ) <= G(C,s) <= G(C,s)

The new cost is smaller than the original one - local minimum
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