Time Series - Shapelet/Motif Discovery
Motif
Time Series Motif Discovery

- Finding repeated patterns, i.e., pattern mining.
- Are there any repeated patterns, of length m in the TS?
Why Find Motifs?

- Mining **association rules** in TS requires the discovery of motifs. These are referred to as primitive shapes and frequent patterns.
- Several **TS classifiers** work by constructing typical prototypes of each class. These prototypes may be considered motifs.
- Many **TS anomaly detection** algorithms consist of modeling normal behavior with a set of typical shapes (which we see as motifs), and detecting future patterns that are dissimilar to all typical shapes.
How do we find Motifs?

• Given a predefined motif length m, a brute-force method searches for motifs from all possible comparisons of subsequences.

• It is obviously very slow and computationally expensive.

• The most reference algorithm is based on a hot idea from bioinformatics, random projection* and the fact that SAX allows to use lower bound discrete representations of TSs.

Motif in Bioinformatics

- che-2
- daf-19
- osm-1
- osm-6
- F02D8.3

Motifs:
- GTTGT
- GTT
- GT
- CATGG
- T
- TCCATGG
- AAC
- G
- C
- A
- ACCAT
- AGTAAC
- ACATG
- GTT
- T
- CCAT
- GTT
- GT
- CAT
- G
- GT
The Motif Discovery Algorithm

• **The general problem:**
 • Find the motif M by using a set of sequences called (w,d)-motif: sequence of length w that differ from a d points

• **Guiding principle:**
 • Some instances of a motif agree on a subset of positions.

• **Use information from multiple motif instances to construct model**
k-Projections

- Choose k positions in string of length l.
- Concatenate elements at chosen k positions to form k-tuple.
- In l-dimensional Hamming space, projection onto k dimensional subspace.

$l = 15$

ATGGCATTCAAGATTC → TGCTGAT

$k = 7$

P = (2, 4, 5, 7, 11, 12, 13)
Random Projection Algorithm

• Choose a projection by selecting k positions uniformly at random.

• For each l-tuple in input sequences, hash into bucket based on letters at k selected positions.

• Recover motif from bucket containing multiple l-tuples.
Example

• $l = 7$ (motif size), $k = 4$ (projection size)
• Choose projection $(1, 2, 5, 7)$

Input Sequence

...TAGAC\textcolor{red}{ATCCGAC}TTGC\textcolor{red}{CTTAC}TAC...

Buckets

- ATGC
- GCTC
Hashing and Buckets

• Hash function $h(x)$ obtained from k positions of projection.
• Buckets are labeled by values of $h(x)$.
• *Enriched buckets*: contain at least s l-tuples, for some parameter s.

ATGC
GCTC
CATC
ATTC
Example of the Motif Discovery Algorithm

• Assume that we have a time series T of length 1,000, and a motif of length 16, which occurs twice, at time T_1 and time T_{58}.
Example of the Motif Discovery Algorithm

- A mask \{1,2\} was randomly chosen, so the values in columns \{1,2\} were used to project matrix into buckets.
- Collisions are recorded by incrementing the appropriate location in the collision matrix.
Example of the Motif Discovery Algorithm

• A mask \{2,4\} was randomly chosen, so the values in columns \{2,4\} were used to project matrix into buckets.

• Once again, collisions are recorded by incrementing the appropriate location in the collision matrix.
Motif Refinement

- How do we recover the motif from the sequences in the enriched buckets?
- k symbols are known from hash value of bucket.
- Use information in other $l-k$ positions as starting point for local refinement scheme, e.g. EM

ATCCGAC
ATGAGGC
ATAAGTC
ATGTGAC

Local refinement algorithm

ATGCGTC
Candidate motif
Frequency Matrix Model from Bucket

```
| ATCCGAC | ATGAGGC | ATAAAGTC | ATGTGAC |
+---------+---------+----------+---------|
```

Frequency matrix W

$$
\begin{align*}
A & = \begin{pmatrix}
1 & 0 & 0.25 & 0.5 & 0 & 0.5 & 0 \\
C & = \begin{pmatrix}
0 & 0 & 0.25 & 0.25 & 0 & 0 & 1 \\
G & = \begin{pmatrix}
0 & 0 & 0.5 & 1 & 0 & 0.25 & 0 \\
T & = \begin{pmatrix}
0 & 1 & 0 & 0.25 & 0 & 0.25 & 0
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
\end{align*}
$$

EM algorithm

Refined matrix W^*
EM Motif Refinement

• For each bucket h containing more than s sequences, form weight matrix W_h

• Use EM algorithm with starting point W_h to obtain refined weight matrix model W_h^*

• For each input sequence $x(i)$, return l tuple $y(i)$ which maximizes likelihood ratio:
 \[\frac{Pr(y(i) \mid W_h^*)}{Pr(y(i) \mid P_0)} \]

• $T = \{y(1), y(2), ..., y(N)\}$

• $C(T)$ = consensus string
Expectation Maximization (EM)

- \(S = \{ x(1), \ldots, x(N) \} \): set of input sequences
- **Given:**
 - \(W \): An initial probabilistic motif model
 - \(P_0 \): background probability distribution.
- Find value \(W_{\text{max}} \) that maximizes likelihood ratio:

\[
\frac{\Pr(S \mid W_{\text{max}}, P_0)}{\Pr(S \mid P_0)}
\]

- EM is local optimization scheme. Requires starting value \(W \)
A Single Iteration

• Choose a random k-projection.

• Hash each l-subsequences x in input sequence into bucket labelled by $h(x)$.

• From each bucket B with at least s sequences, form weight matrix model, and perform EM refinement.

• Candidate motif is the best one found from refinement of all enriched buckets.
Matrix Profile

• The Matrix Profile (MP) is a data structure that annotates a TS and can be exploited for many purposes: e.g. efficient Motif Discovery.
• Given a time series, T and a desired subsequence length, m.
We can use sliding window of length m to extract all subsequences of length m.

$|T| - m + 1$
We can then compute the pairwise distance among these subsequences.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>7.6952</th>
<th>7.7399</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6952</td>
<td>0</td>
<td>7.7106</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>7.7399</td>
<td>7.7106</td>
<td>0</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Matrix Profile

- For each subsequence we keep only the distance with the closest nearest neighbor.

<table>
<thead>
<tr>
<th>Set of all subsequences</th>
<th>Set of corresponding nearest neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.04</td>
</tr>
<tr>
<td></td>
<td>2.88</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>5.69</td>
</tr>
<tr>
<td></td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
The distance to the corresponding nearest neighbor of each subsequence can be stored in a vector called **matrix profile** \(P \).
Matrix Profile

- The index of corresponding nearest neighbor of each subsequence is also stored in a vector called matrix profile index.

The matrix profile value at location i is the distance between T_i and its nearest neighbor.
Matrix Profile

- The MP index allows to find the nearest neighbor to any subsequence in constant time.
- Note that the pointers in the matrix profile index are not necessarily symmetric.
- If A points to B, then B may or may not point to A.
- The classic TS motif: the two smallest values in the MP must have the same value, and their pointers must be mutual.
How to “read” a Matrix Profile

• For relatively low values, you know that the subsequence in the original TS must have (at least one) relatively similar subsequence elsewhere in the data (such regions are “motifs”)

• For relatively high values, you know that the subsequence in the original TS must be unique in its shape (such areas are anomalies).
How to Compute Matrix Profile?

• Given a time series, \(T \) and a desired subsequence length, \(m \).

\[
\begin{array}{cccccccccccccc}
\text{inf} & \text{inf} \\
\end{array}
\]

Matrix profile is initialized as inf vector

This is just a toy example, so the values and the vector length does not fit the time series shown above
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

At the first iteration, a subsequence T_i is randomly selected from T.
How to Compute Matrix Profile?

- Given a time series, T and a desired subsequence length, m.

![Graphical representation of a time series T_i]

We compute the distances between T_i and every subsequences from T (time complexity $= O(|T| \log(|T|)))$

We then put the distances in a vector based on the position of the subsequences:

```
inf  inf
```

The distance between T_i and T_1 (first subsequence) is 3
How to Compute Matrix Profile?

• Given a time series, \(T \) and a desired subsequence length, \(m \).

We compute the distances between \(T_i \) and every subsequences from \(T \) (time complexity = \(O(|T|\log(|T|)) \)). We then put the distances in a vector based on the position of the subsequences.

Let say \(T_i \) happen to be the third subsequences, therefore the third value in the distance vector is 0.
• Given a time series, T and a desired subsequence length, m.

Matrix profile is updated by apply elementwise minimum to these two vectors:

\[
\begin{array}{cccccccccccccccc}
\text{inf} & \text{inf} \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
3 & 2 & 0 & 5 & 3 & 4 & 5 & 1 & 2 & 9 & 8 & 4 & 2 & 3 & 4 & 8 & 6 & 2 & 1
\end{array}
\]
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

$$
\begin{array}{cccccccccccccccc}
3 & \text{inf} \\
\end{array}
$$

Matrix profile is updated by apply elementwise minimum to these two vectors

$$
\begin{array}{cccccccccccccccc}
3 & 2 & 0 & 5 & 3 & 4 & 5 & 1 & 2 & 9 & 8 & 4 & 2 & 3 & 4 & 8 & 6 & 2 & 1 \\
\end{array}
$$
How to Compute Matrix Profile?

• Given a time series, \(T \) and a desired subsequence length, \(m \).

After we finish to update matrix profile for the first iteration

\[
\begin{array}{cccccccccccccc}
3 & 2 & \text{inf} & 5 & 3 & 4 & 5 & 1 & 2 & 9 & 8 & 4 & 2 & 3 & 4 & 8 & 6 & 2 & 1 \\
\end{array}
\]
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

In the second iteration, we randomly select another subsequence T_j and it happens to be the 12th subsequences
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

Once again, we compute the distance between T_j and every subsequences of T
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

The same elementwise minimum
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

\[
\begin{array}{ccccccccc}
2 & 2 & \text{inf} & 5 & 3 & 4 & 5 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
9 & 8 & 4 & 2 & 3 & 4 & 8 & 6 & 2 \\
\end{array}
\]

The same elementwise minimum

\[
\begin{array}{ccccccccc}
2 & 3 & 1 & 4 & 4 & 3 & 6 & 2 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
5 & 8 & 0 & 2 & 3 & 5 & 9 & 4 & 2 \\
\end{array}
\]
How to Compute Matrix Profile?

- Given a time series, T and a desired subsequence length, m.

\[
\text{min}_{i \leq j \leq n-m+1} \min_T t_i \quad T_j
\]

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>inf</th>
<th>5</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>9</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>8</th>
<th>6</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>

The same elementwise minimum

| 2 | 3 | 1 | 4 | 4 | 3 | 6 | 2 | 1 | 5 | 8 | 0 | 2 | 3 | 5 | 9 | 4 | 2 | 2 |
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

\[
T_j
\]

m

\[
\begin{array}{cccccccccccccc}
2 & 2 & 1 & 5 & 3 & 4 & 5 & 1 & 2 & 9 & 8 & 4 & 2 & 3 & 4 & 8 & 6 & 2 & 1 \\
\end{array}
\]

2 3 1 4 4 3 6 2 1 5 8 0 2 3 5 9 4 2 2

The same elementwise minimum
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

We repeat the two steps (distance computation and update) until we have used every subsequence.
How to Compute Matrix Profile?

• Given a time series, T and a desired subsequence length, m.

There are $|T|$ subsequences and the distance computation is $O(|T|\log(|T|))$

The overall time complexity is $O(|T|^2\log(|T|))$
Motif Discovery From Matrix Profile

time series, T

matrix profile, P

Local minimums are corresponding to motifs
Motif Discovery From Matrix Profile

- It is sometime useful to think of time series subsequences as points in m-dimensional space.
- In this view, dense regions in the m-dimensional space correspond to regions of the time series that have a low corresponding MP.
Top-K Motifs

- We need a parameter R.
- $1 < R < \text{(small number, say 3)}$
- Let’s make $R = 2$ for now.
- We begin by finding the nearest pair of points, the *motif pair*....
- This pair of subsequences correspond to lowest pair of values in the MP
Top-K Motifs

- We find the nearest pair of points are D1 apart.
- Let’s draw a circle, D1 times R, around both points.
- Any points that are within either of these circles, are added to this motif, in this case just one.
- The Top-1 motif has three members, it is done.
Now let’s find the Top-2 motif. We find the nearest pair of points, excluding anything from the top motif.

The nearest pair of points are D2 apart.

Let’s draw a circle D2 times R, around both points.

Any points that are within either of these circles, is added to this motif, in this case there are two for a total of four items in the Top-2 Motif.
Top-K Motifs

- We have done with the Top-2 Motif
- Note that we will always have:
 - $D_1 < D_2 < D_3 \ldots D_K$
- **When to stop?** (what is K?)
- We could use MDL or a predefined K.
We need a parameter E of subsequences to exclude in the vicinity of the anomaly.

Let’s make $E = 2$ for now.

We begin by finding the subsequence with the highest distance in the MP.

This corresponds to the biggest anomaly.
• Then we look for the E closest subsequences to the anomaly.
• We remove all of them.
• We can use a predefined K or the MDL to stop.
Shapelet
• Given a set X of n time series, $X = \{x_1, x_2, ..., x_n\}$, each time series has m ordered values $x_i = \langle x_{t1}, x_{t2}, ..., x_{tm} \rangle$ and a class value c_i.

• The objective is to find a function f that maps from the space of possible time series to the space of possible class values.

• Generally, it is assumed that all the TS have the same length m.
Shapelet-based Classification

1. Represent a TS as a vector of distances with representative subsequences, namely shapelets.

2. Use it as input for machine learning classifiers.
Time Series Shapelets

• Shapelets are TS subsequences which are maximally representative of a class.

• Shapelets can provide interpretable results, which may help domain practitioners better understand their data.

• Shapelets can be significantly more accurate/robust because they are local features, whereas most other state-of-the-art TS classifiers consider global features.
Extract Subsequences of all Possible Lengths
Distance with a Subsequence

- Distance from the TS to the subsequence \(\text{SubsequenceDist}(T, S) \) is a distance function that takes time series \(T \) and subsequence \(S \) as inputs and returns a nonnegative value \(d \), which is the distance from \(T \) to \(S \).

- \(\text{SubsequenceDist}(T, S) = \min(\text{Dist}(S, S')), \text{ for } S' \in S_T^{|S|} \)

- Where \(S_T^{|S|} \) is the set of all possible subsequences of \(T \)

- Intuitively, it is the distance between \(S \) and its best matching location in \(T \).
Testing The Utility of a Candidate Shapelet

• Arrange the TSs in the dataset D based on the distance from the candidate.
• Find the optimal split point that maximizes the information gain (same as for Decision Tree classifiers)
• Pick the candidate achieving best utility as the shapelet
• A TS dataset D consists of two classes, A and B.
• Given that the proportion of objects in class A is $p(A)$ and the proportion of objects in class B is $p(B)$,
• The Entropy of D is: $I(D) = -p(A)\log(p(A)) - p(B)\log(p(B))$.
• Given a strategy that divides the D into two subsets D_1 and D_2, the information remaining in the dataset after splitting is defined by the weighted average entropy of each subset.
• If the fraction of objects in D_1 is $f(D_1)$ and in D_2 is $f(D_2)$,
• The total entropy of D after splitting is $\hat{I}(D) = f(D_1)I(D_1) + f(D_2)I(D_2)$.
Information Gain

• Given a certain split strategy sp which divides D into two subsets D_1 and D_2, the entropy before and after splitting is $I(D)$ and $\hat{I}(D)$.

• The **information gain** for this splitting rule is:

 $$Gain(sp) = I(D) - \hat{I}(D) = I(D) - f(D_1)I(D_1) + f(D_2)I(D_2).$$

• We use the distance from T to a shapelet S as the splitting rule sp.
Problem

• The total number of candidate is

\[
\sum_{l=\text{MINLEN}}^{\text{MAXLEN}} \sum_{T_i \in D} (|T_i| - l + 1)
\]

• For each candidate you have to compute the distance between this candidate and each training sample (space inefficiency)

• For instance
 • 200 instances with length 275
 • 7,480,200 shapelet candidates
Speedup

- Distance calculations form TSs to shapelet candidates is expensive.
- Reduce the time in two ways
- Distance Early Abandon
 - reduce the distance computation time between two TS
- Admissible Entropy Pruning
 - reduce the number of distance calculations
Distance Early Abandon

• We only need the minimum distance.

• Method
 • Keep the best-so-far distance
 • Abandon the calculation if the current distance is larger than best-so-far.
Admissible Entropy Pruning

- We only need the best shapelet for each class
- For a candidate shapelet
 - We do not need to calculate the distance for each training sample
 - After calculating some training samples, the upper bound of information gain (corresponding to the optimistic scenario) < best candidate shapelet
 - Stop calculation
 - Try next candidate
Motif/Shapelet Summary

• A **motif** is a repeated pattern/subsequence in a given TS.

• A **shapelet** is a pattern/subsequence which is maximally representative of a class with respect to a given dataset of TSs.
References

• Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets. Chin-Chia Michael Yeh et al. 1997
