Data Sketching

The Bloom Filter (membership with controlled-error)

Dictionary problem

What data structures you know for storing a set of keys and supporting exact searches and insert operations over them?

Hashing

What about false positives?

Bloom Filters Count-Min Sketches Count-Min Sketches Count-Min Sketches Reminder

Wherever a list or set is used, and space is a consideration, a Bloom Filter should be considered.

When using a Bloom Filter, consider the effects of false positives.

Bloom [1970]

Bloom Filters Count-Min Sketches The problem
Main idea
Mathematics
Spectral Bloom Filters

Membership query

Definition

The Membership Problem

- \diamond Given a set S and an element y: $y \in S$
- \diamond Given a set ${\cal S}$ compute its characteristic function $\chi_{\cal S}$

$$\chi_s(y) = \begin{cases} 1, & \text{if} \quad y \in S \\ 0, & \text{if} \quad y \notin S \end{cases}$$

- well-known solutions
 - Linear Scan
 - Hash Functions

Bloom Filters Count-Min Sketches The problem

Main idea

Mathematics

Spectral Bloom Filters

Preconditions

- given a set of objects $S = \{x_1, \dots, x_n\}$
 - no restrictions on objects
- a vector B of m bits were $b_i \in \{0,1\}$
 - \bullet we will discuss next about the value of m
- suppose we have k hash functions h_1, \ldots, h_k
 - each h_i is defined as $h_i:U\supseteq S\to [1;m]$

Bloom Filters Count-Min Sketches The problem

Main idea

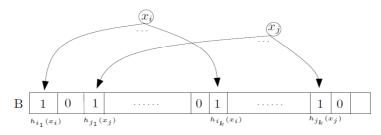
Mathematics

Spectral Bloom Filter

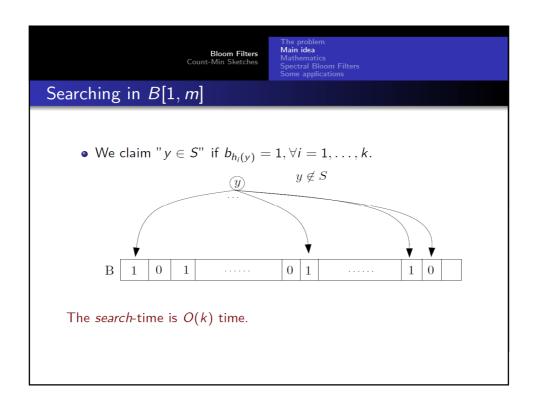
Some applications

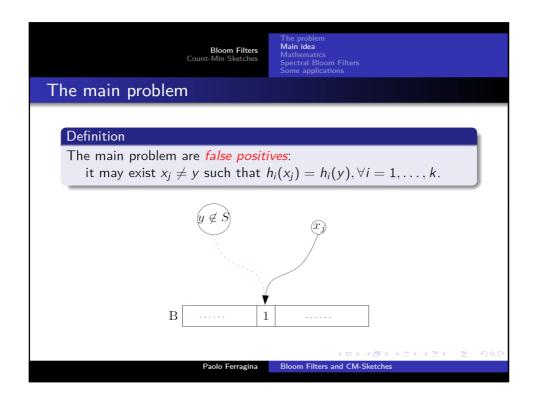
Building B[1, m]

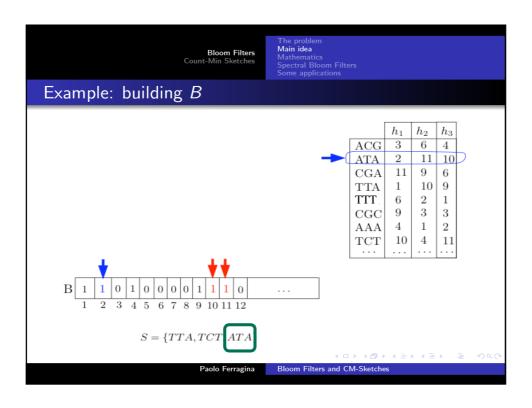
• For each $x \in S$, we set $B[h_i(x)] = 1, \forall j = 1, 2, ..., k$.

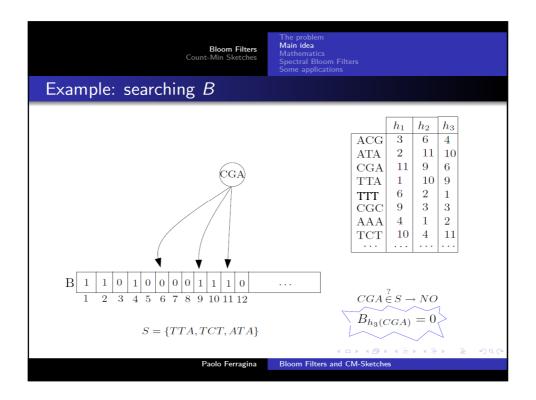


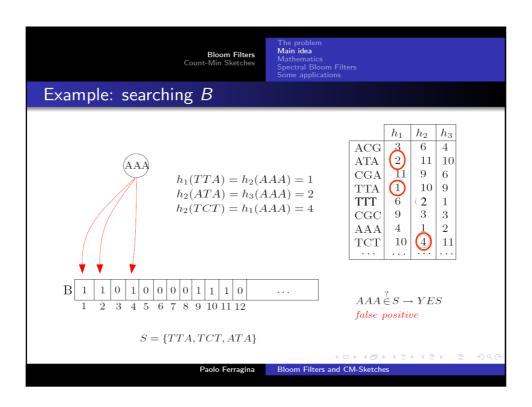
The build-time is $\Theta(k|S|)$ time and $\Theta(|B|) = \Theta(m)$ space

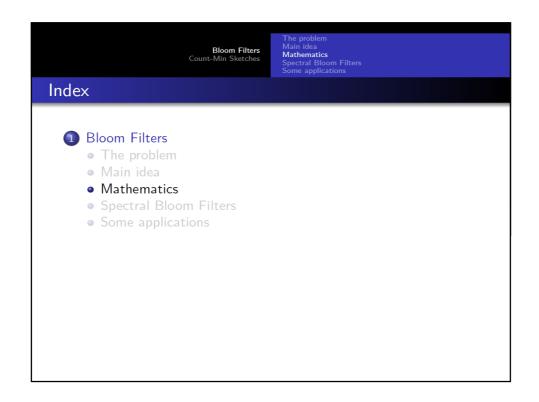












Probability of a false positive

- assumption that hash are perfectly random
- after build

$$\mathcal{P}(b_i=0) = \left(1-rac{1}{m}
ight)^{kn} pprox e^{-kn/m} = p$$

• probability of a false positive is

$$(1-e^{-kn/m})^k=(1-p)^k=arepsilon$$
 Not perfectly true but.

• other formulations are asymptotically equivalent

Optimizing number of hash functions

- higher k-value: more chances to find a 0-bit for $y \notin S$.
- lower k-value: increase fraction of 0-bits in B.
- minimize the ε function

$$\tilde{k} = \ln 2 \cdot (m/n)$$

ullet With this value of $ilde{k}$, we have p=0.5 and thus

$$\varepsilon = (0.5)^{\tilde{k}} = (0.6185)^{m/n}$$

Bloom Filters Count-Min Sketches The problem
Main idea
Mathematics
Spectral Bloom Filters
Some applications

How big should be the B vector?

• depends on the ε value we want: given n we fix m.

m	ε
n	0.61
2 <i>n</i>	0.38
5 <i>n</i>	0.09
10 <i>n</i>	0.008

 $m = \Theta(n)$ is generally a good choice

Bloom Filters Count-Min Sketches The problem Main idea **Mathematics** Spectral Bloom Filters

Bloom Filters v.s. hash functions

♦	hash functions	Bloom Filters
<i>build</i> time	$\Theta(n)$	$\Theta(n)$
<i>space</i> needed	$\Theta(n \log n)$	$\Theta(m)$
search time	O(1)	$(m/n) \ln 2$
arepsilon value		$(0.6185)^{m/n}$

ullet Hash functions are Bloom Filters with k=1

Bloom Filters tricks

- union by OR
 - lacktriangledown we have sets S_1, S_2 and Bloom Filters B^1, B^2
 - 2 suppose $m_1 = m_2$ and same hashing functions
 - just OR the counters

$$B_i^{12} = B_i^1 \vee B_i^2$$

- halved size
 - **1** suppose $m = 2^{\alpha}$
 - 2 make union by OR of the two halves
 - when hashing, mask high-order bit

Bloom Filters

Compressed Bloom Filters
Spectral Bloom Filters

Spectral Bloom Filters (SBF)

Definition

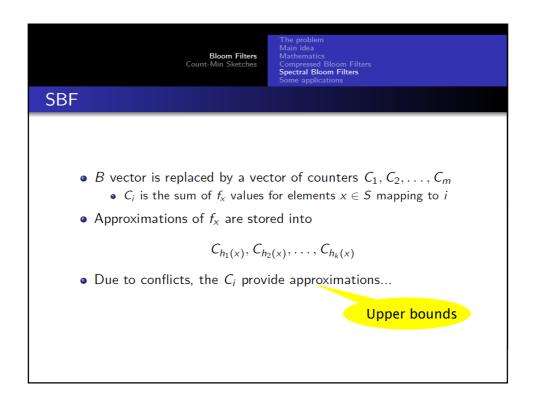
 $M = \langle S, f_{\times} \rangle$ is a multiset were

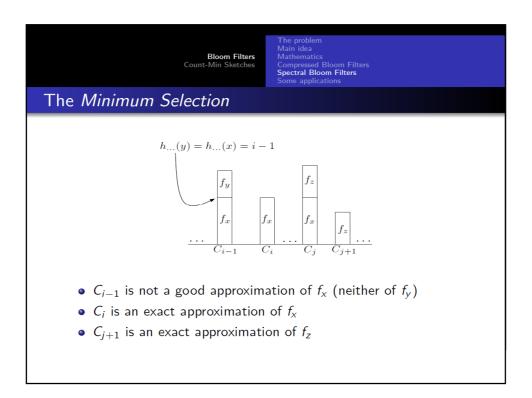
- S is a set
- f_x is a function returning the #occurrences of x in M

Notice that a stream might be looked at as a multiset.

$$\underline{ex}$$
 Given $\{A, A, B, C, C\}$

We have $S = \{A, B, C\}$ and $f_A = f_C = 2$, $f_B = 1$





```
Bloom Filters
Count-Min Sketches

The problem
Main idea
Mathematics
Compressed Bloom Filters
Spectral Bloom Filters
Spectral Bloom Filters
Spectral Bloom Filters
Some applications

Insertion is simple

• increase each counter by 1

...

for each h in H do

C[h(x)] = C[h(x)] + 1;
done

...

• deletion is simple

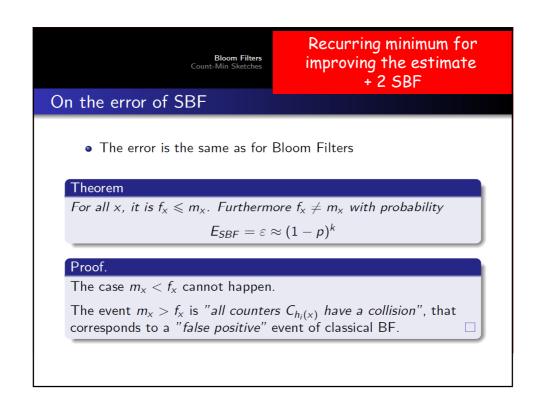
• decrease each counter by 1

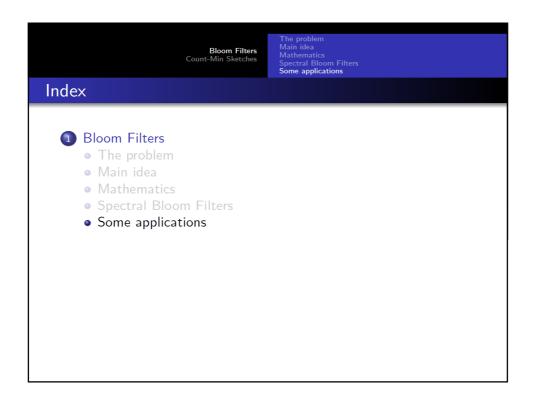
Upper bounds

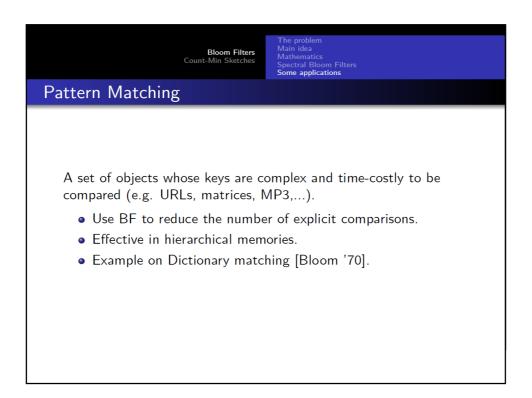
• search for an element x

• return the Minimum Selection (MS) value

m_x = \min\{C_{h_1(x)}, C_{h_2(x)}, \dots, C_{h_k(x)}\}
```







Set Intersection

We have two machines M_A and M_B each storing a set of items Aand B, respectively. We wish to compute $A \cap B$ exchanging a small number of bits.

Typical applications: data replication check, distributed search engines.

- M_A sends BF(A) to B, using $m = m_{opt} = k|A|/In2$ bits.
- M_B checks B into BF(A) in O(k|B|) time, and sends back *explicitly* the found items, say Q. Note that $Q \supseteq A \cap B$.
- M_A computes $Q \cap A$, and returns it.

The bit-cost is $\frac{k|A|}{\ln 2} + (|A \cap B| + |B|0.5^k) \log |U| \ll |A| \log |U|$. Good for long keys,

Web Algorithmics

File Synchronization

