11 A MIN-CUT ALGORITHM

performance. The randomized sorting algorithm described above is an exam-
ple. This book presents many other randomized algorithms that enjoy these
advantages.

In the next few sections, we will illustrate some basic ideas from probability
theory using simple applications to randomized algorithms. The reader wishing
to review some of the background material on the analysis of algorithms or on
elementary probability theory is referred to the Appendices.

1.1. A Min-Cut Algorithm

Two events £, and £, are said to be independent if the probability that they
both occur is given by

Pr[&, N &,] = Pr[€;] x Pr[€s] (14)

(see Appendix C). In the more general case where £, and £, are not necessarily
independent,

Pri€,N &) =Pr[€, | £2] x Pr[€5] = Pr[€2 | £41] x Pr[£}], (15)

where Pr[€, | £,] denotes the conditional probability of £, given £,. Sometimes,
when a collection of events is not independent, a convenient method for com-
puting the probability of their intersection is to use the following generalization
of (1.5).

Print, €] = Pr(€1] x Pri€2 | £1] x Prl€; | £1 03] Pri€y | ASlE] (16)

Consider a graph-theoretic example. Let G be a connected, undirected multi-
graph with n vertices. A multigraph may contain multiple edges between any pair
of vertices. A cut in G is a set of edges whose removal results in G being broken
into two or more components. A min-cut is a cut of minimum cardinality. We
now study a simple algorithm for finding a min-cut of a graph.

We repeat the following step: pick an edge uniformly at random and merge
the two vertices at its end-points (Figure 1.1). If as a result there are several
edges between some pairs of (newly formed) vertices, retain them all. Edges
between vertices that are merged are removed, so that there are never any
self-loops. We refer to this process of merging the two end-points of an edge
into a single vertex as the contraction of that edge. With each contraction, the
number of vertices of G decreases by one. The crucial observation is that an
edge contraction does not reduce the min-cut size in G. This is because every
cut in the graph at any intermediate stage is a cut in the original graph. The
algorithm continues the contraction process until only two vertices remain; at
this point, the set of edges between these two vertices is a cut in G and is output
as a candidate min-cut.

Does this algorithm always find a min-cut? Let us analyze its behavior after
first reviewing some elementary definitions from graph theory.

7

INTRODUCTION

1,2

2 3

Figure 1.1: A step in the min-cut algorithm; the effect of contracting edge ¢ = (1,2) is
shown.

» Definition 1.1: For any vertex v in a multigraph G, the neighborhood of G,
denoted I'(v), is the set of vertices of G that are adjacent to v. The degree of v,
denoted d(v), is the number of edges incident on v. For a set S of vertices of G,
the neighborhood of S, denoted I'(S), is the union of the neighborhoods of the
constituent vertices.

Note that d(v) is the same as the cardinality of I'(v) when there are no self-loops
or multiple edges between v and any of its neighbors.

Let k be the min-cut size. We fix our attention on a particular min-cut C with
k edges. Clearly G has at least kn/2 edges; otherwise there would be a vertex of
degree less than k, and its incident edges would be a min-cut of size less than k.
We will bound from below the probability that no edge of C is ever contracted
during an execution of the algorithm, so that the edges surviving till the end are
exactly the edges in C.

Let £; denote the event of not picking an edge of C at the ith step, for
1 <i < n—2. The probability that the edge randomly chosen in the first step is in
C is at most k/(nk/2) = 2/n, so that Pr[£,] > 1 —2/n. Assuming that £; occurs,
during the second step there are at least k(n — 1)/2 edges, so the probability of
picking an edge in C is at most 2/(n — 1), so that Pr[€, | £;] > 1—2/(n—1).
At the ith step, the number of remaining vertices is n — i + 1. The size of the
min-cut is still at least k, so the graph has at least k(n—i+1)/2 edges remaining
at this step. Thus, Pr[&; | nj;‘lﬁ j1 =2 1—=2/(n—1i+1). What is the probability
that no edge of C is ever picked in the process? We invoke (1.6) to obtain

n—2 T : 2
Prinziel = [] (1_ n—i+ 1) T nn—1)

i=1

The probability of discovering a particular min-cut (which may in fact be
the unique min-cut in G) is larger than 2/n?. Thus our algorithm may err
in declaring the cut it outputs to be a min-cut. Suppose we were to repeat
the above algorithm n?/2 times, making independent random choices each
time. By (1.4), the probability that a min-cut is not found in any of the n?/2

12 LAS VEGAS AND MONTE CARLO

attempts is at most

/2
(1 - %) <l1/e.

By this process of repetition, we have managed to reduce the probability of fail-
ure from 1—2/n? to a more respectable 1/e. Further executions of the algorithm
will make the failure probability arbitrarily small — the only consideration being
that repetitions increase the running time.

Note the extreme simplicity of the randomized algorithm we have just stud-
ied. In contrast, most deterministic algorithms for this problem are based on
network flows and are considerably more complicated. In Section 10.2 we will
return to the min-cut problem and fill in some implementation details that
have been glossed over in the above presentation; in fact, it will be shown
that a variant of this algorithm has an expected running time that is signifi-
cantly smaller than that of the best known algorithms based on network flow.

Exercise 1.2: Suppose that at each step of our min-cut algorithm, instead of choosing
a random edge for contraction we choose two vertices at random and coalesce them
into a single vertex. Show that there are inputs on which the probability that this
modified algorithm finds a min-cut is exponentially small.

1.2. Las Vegas and Monte Carlo

The randomized sorting algorithm and the min-cut algorithm exemplify two
different types of randomized algorithms. The sorting algorithm always gives
the correct solution. The only variation from one run to another is its running
time, whose distribution we study. We call such an algorithm a Las Vegas
algorithm.

In contrast, the min-cut algorithm may sometimes produce a solution that is
incorrect. However, we are able to bound the probability of such an incorrect
solution. We call such an algorithm a Monte Carlo algorithm. In Section 1.1 we
observed a useful property of a Monte Carlo algorithm: if the algorithm is run
repeatedly with independent random choices each time, the failure probability
can be made arbitrarily small, at the expense of running time. Later, we will see
examples of algorithms in which both the running time and the quality of the
solution are random variables; sometimes these are also referred to as Monte
Carlo algorithms. For decision problems (problems for which the answer to an
instance is YES or NO), there are two kinds of Monte Carlo algorithms: those
with one-sided error, and those with two-sided error. A Monte Carlo algorithm is
said to have two-sided error if there is a non-zero probability that it errs when it
outputs either YES or No. It is said to have one-sided error if the probability that
it errs is zero for at least one of the possible outputs (YES/NO) that it produces.

9

INTRODUCTION

We will see examples of all three types of algorithms — Las Vegas, Monte Carlo
with one-sided error, and Monte Carlo with two-sided error — in this book.

Which is better, Monte Carlo or Las Vegas? The answer depends on the
application — in some applications .an incorrect solution may be catastrophic.
A Las Vegas algorithm is by definition a Monte Carlo algorithm with error
probability 0. The following exercise gives us a way of deriving a Las Vegas
algorithm from a Monte Carlo algorithm. Note that the efficiency of the
derivation procedure depends on the time taken to verify the correctness of a
solution to the problem.

Exercise 1.3: Consider a Monte Carlo algorithm A for a problem N whose expected
running time is at most T(n) on any instance of size n and that produces a correct
solution with probability p(n). Suppose further that given a solution to N, we can verify
its correctness in time t(n). Show how to obtain a Las Vegas algorithm that always
gives a correct answer to N and runs in expected time at most (7 (n) + t(n))/y(n).

In attempting Exercise 1.3 the reader will have to use a simple property of the
geometric random variable (Appendix C). Consider a biased coin that, on a toss,
has probability p of coming up HEADS and 1 — p of coming up TAILs. What is
the expected number of (independent) tosses up to and including the first head?
The number of such tosses is a random variable that is said to be geometrically
distributed. The expectation of this random variable is 1/p. This fact will prove
useful in numerous applications.

Exercise 1.4: Let 0 < e; < €; < 1. Consider a Monte Carlo algorithm that gives the
correct solution to a problem with probability at least 1-— ¢,, regardless of the input.
How many independent executions of this algorithm suffice to raise the probability
of obtaining a correct solution to at least 1 — ¢, regardless of the input?

We say that a Las Vegas algorithm is an efficient Las Vegas algorithm if on
any input its expected running time is bounded by a polynomial function of the
input size. Similarly, we say that a Monte Carlo algorithm is an efficient Monte
Carlo algorithm if on any input its worst-case running time is bounded by a
polynomial function of the input size.

1.3. Binary Planar Partitions

We now illustrate another very useful and basic tool from probability theory:
linearity of expectation. For random variables X;,X>, ...,

E[} X =} EIXi] (1.7)

10

