
220 Chapter 9 Medians and Order Statistics

9.2-4
Suppose we use RANDOMIZED-SELECT to select the minimum element of the
array A D h3; 2; 9; 0; 7; 5; 4; 8; 6; 1i. Describe a sequence of partitions that results
in a worst-case performance of RANDOMIZED-SELECT.

9.3 Selection in worst-case linear time

We now examine a selection algorithm whose running time is O.n/ in the worst
case. Like RANDOMIZED-SELECT, the algorithm SELECT finds the desired ele-
ment by recursively partitioning the input array. Here, however, we guarantee a
good split upon partitioning the array. SELECT uses the deterministic partitioning
algorithm PARTITION from quicksort (see Section 7.1), but modified to take the
element to partition around as an input parameter.

The SELECT algorithm determines the i th smallest of an input array of n > 1
distinct elements by executing the following steps. (If n D 1, then SELECT merely
returns its only input value as the i th smallest.)
1. Divide the n elements of the input array into bn=5c groups of 5 elements each

and at most one group made up of the remaining n mod 5 elements.
2. Find the median of each of the dn=5e groups by first insertion-sorting the ele-

ments of each group (of which there are at most 5) and then picking the median
from the sorted list of group elements.

3. Use SELECT recursively to find the median x of the dn=5e medians found in
step 2. (If there are an even number of medians, then by our convention, x is
the lower median.)

4. Partition the input array around the median-of-medians x using the modified
version of PARTITION. Let k be one more than the number of elements on the
low side of the partition, so that x is the kth smallest element and there are n!k
elements on the high side of the partition.

5. If i D k, then return x. Otherwise, use SELECT recursively to find the i th
smallest element on the low side if i < k, or the .i ! k/th smallest element on
the high side if i > k.

To analyze the running time of SELECT, we first determine a lower bound on the
number of elements that are greater than the partitioning element x. Figure 9.1
helps us to visualize this bookkeeping. At least half of the medians found in

9.3 Selection in worst-case linear time 221

x

Figure 9.1 Analysis of the algorithm SELECT. The n elements are represented by small circles,
and each group of 5 elements occupies a column. The medians of the groups are whitened, and the
median-of-medians x is labeled. (When finding the median of an even number of elements, we use
the lower median.) Arrows go from larger elements to smaller, from which we can see that 3 out
of every full group of 5 elements to the right of x are greater than x, and 3 out of every group of 5
elements to the left of x are less than x. The elements known to be greater than x appear on a shaded
background.

step 2 are greater than or equal to the median-of-medians x.1 Thus, at least half
of the dn=5e groups contribute at least 3 elements that are greater than x, except
for the one group that has fewer than 5 elements if 5 does not divide n exactly, and
the one group containing x itself. Discounting these two groups, it follows that the
number of elements greater than x is at least

3

!"
1

2

ln

5

m#
! 2

$
"

3n

10
! 6 :

Similarly, at least 3n=10 ! 6 elements are less than x. Thus, in the worst case,
step 5 calls SELECT recursively on at most 7n=10C 6 elements.

We can now develop a recurrence for the worst-case running time T .n/ of the
algorithm SELECT. Steps 1, 2, and 4 take O.n/ time. (Step 2 consists of O.n/
calls of insertion sort on sets of size O.1/.) Step 3 takes time T .dn=5e/, and step 5
takes time at most T .7n=10 C 6/, assuming that T is monotonically increasing.
We make the assumption, which seems unmotivated at first, that any input of fewer
than 140 elements requires O.1/ time; the origin of the magic constant 140 will be
clear shortly. We can therefore obtain the recurrence

1Because of our assumption that the numbers are distinct, all medians except x are either greater
than or less than x.

222 Chapter 9 Medians and Order Statistics

T .n/ #

(
O.1/ if n < 140 ;

T .dn=5e/C T .7n=10C 6/CO.n/ if n " 140 :

We show that the running time is linear by substitution. More specifically, we will
show that T .n/ # cn for some suitably large constant c and all n > 0. We begin by
assuming that T .n/ # cn for some suitably large constant c and all n < 140; this
assumption holds if c is large enough. We also pick a constant a such that the func-
tion described by the O.n/ term above (which describes the non-recursive compo-
nent of the running time of the algorithm) is bounded above by an for all n > 0.
Substituting this inductive hypothesis into the right-hand side of the recurrence
yields
T .n/ # c dn=5e C c.7n=10C 6/C an

cn=5C c C 7cn=10C 6c C an

D 9cn=10C 7c C an

D cnC .!cn=10C 7c C an/ ;

which is at most cn if
!cn=10C 7c C an # 0 : (9.2)
Inequality (9.2) is equivalent to the inequality c " 10a.n=.n ! 70// when n > 70.
Because we assume that n " 140, we have n=.n ! 70/ # 2, and so choos-
ing c " 20a will satisfy inequality (9.2). (Note that there is nothing special about
the constant 140; we could replace it by any integer strictly greater than 70 and
then choose c accordingly.) The worst-case running time of SELECT is therefore
linear.

As in a comparison sort (see Section 8.1), SELECT and RANDOMIZED-SELECT
determine information about the relative order of elements only by comparing ele-
ments. Recall from Chapter 8 that sorting requires !.n lg n/ time in the compari-
son model, even on average (see Problem 8-1). The linear-time sorting algorithms
in Chapter 8 make assumptions about the input. In contrast, the linear-time se-
lection algorithms in this chapter do not require any assumptions about the input.
They are not subject to the !.n lg n/ lower bound because they manage to solve
the selection problem without sorting. Thus, solving the selection problem by sort-
ing and indexing, as presented in the introduction to this chapter, is asymptotically
inefficient.

