ALGEBRAIC TECHNIQUES

7.4. Verifying Equality of Strings

We have seen that the idea of fingerprinting is useful in verifying identities of
algebraic objects. In this section we introduce a different form of fingerprinting,
motivated by the problem of testing the equality of two strings. As mentioned
earlier, the string equality verification problem can be reduced to that of verifying
polynomial identities. However, the new type of fingerprint introduced here has
important benefits when extended to the pattern matching problem discussed
later in Section 7.6.

Suppose that Alice maintains a large database of information. Bob maintains
a second copy of the database. Periodically, they must compare their databases
for consistency. Because transmission between Alice and Bob is expensive, they
would like to discover the presence of an inconsistency without transmitting
the entire database between them. Denote Alice’s data by the sequence of
bits (aj,...,a,), and Bob’s by the sequence (by,...,b,). It is clear that any
deterministic consistency check that transmits fewer than n bits will fail if an
adversary could decide which bits of either database to modify. We describe a
randomized strategy that detects an inconsistency with high probability while
transmitting far fewer than n bits of information.

We use the following simple fingerprint mechanism. Interpret the data as
n-bit integers a and b, by defining a = }°_, 4;2"! and b = T b2, Define
the fingerprint function F,(x) = x mod p for a prime p. Then Alice can transmit
F,(a) to Bob, who in turn can compare this with F;(b). The hope is that if
a # b, then it will also be the case that F,(a) # F,(b). The number of bits to
be transmitted is O(log p), which will be much smaller than n for a small prime
p. This strategy can be easily foiled by an adversary for any fixed choice of p
since, for any p and b, there exist many choices of a for which a = b (mod p).
We get around this problem by choosing p at random.

For any number k, let n(k) be the number of distinct primes less k. A well-
known result in number theory is the Prime Number Theorem, which states that
n(k) is asymptotically k/In k. Consider now the non-negative integer ¢ = |a—b|.
The fingerprint defined above fails only when ¢ # 0 and p divides c. How many
primes can divide ¢? Define N = 2"; we know that ¢ < N.

Lemma 7.4: The number of distinct prime divisors of any number less than 2" is
at most n.

PROOF: Each prime number is greater than 1. If N has more than ¢ distinct
prime divisors, then N > 2°. O

Choose a threshold 7 that is larger than n = log N. The number of primes
smaller than 7 is n(7) ~ 7/In 7. Of these, at most n can be divisors of ¢ and cause
our fingerprint function to fail. Therefore, we pick a random prime p smaller
than 7 for defining F,. The number of bits of communication is O(log 7). Choose

168

75 A COMPARISON OF FINGERPRINTING TECHNIQUES

7 = tnlogtn, for large t. The following theorem is immediate. The probability is
taken over the random choice of p.

Theorem 7.5: Pr[F,(a) = F,(b) | a # b] < — = 0(1).
n(1) t

Thus, we get an error probability of at most O(1/t), and the number of
bits to be transmitted is O(logt + logn). Choosing t = n gives us an excellent
strategy for this problem. We remark that the task of picking a random prime
is non-trivial, primarily because verifying the primality of a number is difficult.
Some algorithms for this purpose will be presented in Chapter 14.

» Example 7.1: This integer equality verification technique can be used to solve
the problem alluded to at the end of Section 7.2. In verifying that a multivariate
polynomial Q(xi,..., x,) is identically zero, we evaluate the polynomial at a ran-
dom point. The problem is that the intermediate values arising in the evaluation
of g = Q(ry,...,r,) could be extremely large. Of course, we do not really wish to
compute gq; our goal is to merely verify that ¢ = 0. By the preceding discussion,
it suffices to verify that ¢ mod p = 0 for some small random prime p.

But how can we possibly hope to perform the verification without evaluating
q explicitly? The trick is to use arithmetic modulo p while evaluating Q(ry,...,7,)
and thereby obtain the residue of ¢ modulo p directly, rather than first computing
q and then reducing it modulo p. The intermediate values are all smaller than p,
and p itself is chosen to be a small random prime. By Theorem 7.5, the probability
of error does not increase significantly for a suitable choice of t.

7.5. A Comparison of Fingerprinting Techniques

It is useful at this point to compare the two types of fingerprinting techniques
that we have seen so far. Suppose that we wish to verify the equality of two
strings or vectors @ = (ay,...,a,) and b = (by,...,b,) with each component
drawn from a finite alphabet X. We can encode the alphabet symbols using the
set of numbers I' = {0,1,...,k — 1}, where k = |Z|. It is then possible to view
the two strings as the polynomials A(z) = 3°i-) a;z' and B(z) = Y_I— biz', each
of which has integer coefficients and degree at most n. Clearly, the two vectors
are identical if and only if the two polynomials are identical.

The fingerprinting technique of Sections 7.1 and 7.2 can be summarized as
follows. Fix a prime number p greater than both 2n and k. View the polynomials
A(z) and B(z) as polynomials over the field Z,. By our choice of p, the set I is
contained in this field and arithmetic modulo p will not render identical any two
non-identical polynomials. The fingerprint of the two polynomials is obtained by
choosing a random element r € Z, and substituting it for the symbolic variable
z. If a = b, then the two polynomials are identical and the fingerprint will also
be identical; on the other hand, when a # b, the two polynomials are distinct

169

ALGEBRAIC TECHNIQUES

and the probability that their fingerprints turn out to be the same is at most
n/p, and this is bounded by 1/2 for our choice of p. For k = 2 and p = O(n),
this can be viewed as reducing the problem of comparing n-bit numbers to that
of comparing O(log n)-bit numbers.

The fingerprinting technique from Section 7.4 is in some sense a dual of the
first technique. In this approach, we fix z = 2 and choose a random prime g of
a reasonably small magnitude. The fingerprints are obtained by evaluating A(2)
and B(2) over the field Z,. Thus, instead of fixing the field and evaluating at a
random point in the field, the second type of fingerprint is obtained by fixing
the point of evaluation and choosing a random field over which the evaluation
is to be performed. By our analysis in Section 7.4, this also reduces the problem
of comparing n-bit numbers to that of comparing (log n)-bit numbers. However,
as we will see in the next section, there are certain applications where the second
type of fingerprinting proves to be more useful.

A third version of the fingerprinting approach works as follows. Assume that
k = 2, and interpret the bit vectors @ and b as the n-bit integers a and b. Fix
a prime number p > 2". Choose a random polynomial P(z) over the field Z,,
and obtain the fingerprints by evaluating this polynomial at the integers a and
b, performing all arithmetic over the field Z,, and then reducing the resulting
values modulo a number of magnitude close to logn. This is the main idea
behind the construction of the so-called universal hash functions discussed in
Section 8.4.

7.6. Pattern Matching

Consider now the problem of pattern matching in strings. A text is a string
X = x1x3...x, and a pattern is a string Y = y,y;...ym, both over a fixed
finite alphabet X, such that m < n. Without loss of generality, we restrict
ourselves to the case £ = {0,1}. The pattern occurs in the text if there is a
j€{1,2,...,n—m+1} such that for 1 <i <m, xj4;_; = y;. The pattern matching
problem is that of finding an occurrence (if any) of a given pattern in the text.
This problem can be trivially solved in O(nm) time by trying for a match at all
possible locations i; moreover, there are deterministic algorithms that achieve
the best possible running time of O(n + m).

We describe a Monte Carlo algorithm that also achieves a running time of
O(n + m); later, we will convert this into a Las Vegas algorithm. This algorithm
is interesting despite the existence of linear-time deterministic algorithms because
it is significantly simpler, has a “real-time” implementation (this is explained
below), and generalizes to the problem of pattern matching in two-dimensional
strings (or matrices).

Define the string X(j) = X;Xj41...Xj4m—1 as the sub-string of length m in
X that starts at position j. A match occurs if there is a choice of j, for
1 <j<n—m+1, for which Y = X(j). We make the solution unique by
requiring that the algorithm find the smallest value of j such that X(j) =Y.

170

76 PATTERN MATCHING

The brute-force O(nm) time algorithm compares Y with each of the strings X(j).
Our randomized algorithm will choose a fingerprint function F and compare
F(Y) with each of the fingerprints F(X(j)). An error occurs if F(Y) = F(X(j))
but Y # X(j). We would like to choose a function F that has a small probability
of error and can be efficiently computed.

In fact, we use the same fingerprint function as in Section 7.4: for any
string Z € {0, 1}", interpret Z as an m-bit integer and define F,(Z) = Z mod p.
Assume that p is chosen uniformly at random from the set of primes smaller
than a threshold 7. Suppose that we interpret the strings Y and X(j) as m-bit
integers, and compare their fingerprints F,(Y) and F,(X(j)) instead of trying to
match each symbol in the two strings. The only possible error is that we get
identical fingerprints when Y # X(j). By Theorem 7.5, we bound the probability
of such a false match as follows:

] . m mlogt
PRLF/Y) = () | ¥ #X()] < = = o 12%5),
n(t) T
Then, the probability that a false match occurs for any of the at most n values
of j is O((nmlogt)/t). We choose t = n?mlogn*m, and this gives

Pr[a false match occurs] = O(%)

The Monte Carlo version of this algorithm simply compares the fingerprints
of all X(j) to that of Y, and outputs the first j for which a match occurs; the
Las Vegas version will be described below. We first show that the runnmg time
of this algorithm is as claimed. For l < j<n—m+1,

X(+1)=2[X()—2""'%] + Xj4m
From this we obtain the recurrence
Fp)(X(j + 1)) = 2 [Fp)(X(j)) — 2™ 'x;] + xj4m mod p.

It is now clear that given the fingerprint of X(j), the incremental cost of
computing the fingerprint of X(j + 1) is O(1) field operations. In fact, there is
no need to use the more expensive operations of multiplication and division,
because each x; is 0 or 1. Thus, the total time required for this algorithm is
O(n + m) even under the more stringent log-cost RAM model. This efficient
incremental update property is the main motivation for using the second form
of fingerprinting; the reader may verify that more complex computations would
be required if the first form of fingerprinting was used instead (see Section 7.5).

Theorem 7.6: The Monte Carlo algorithm for pattern matching requires O(n + m)
time and has a probability of error O(1/n).

It is easy to convert this into a Las Vegas algorithm. Whenever a match
occurs between the fingerprints of Y and some X(j), we compare the strings
Y and X(j) in O(m) time. If this is a false match, we detect it and abandon

171

ALGEBRAIC TECHNIQUES

the whole process in favor of using the brute-force O(nm) time algorithm.
The new algorithm does not make any errors and has expected running time
O((n+ m)(1 — 1/n) + nm(1/n)), which works out to be O(n + m). An alternative
Las Vegas version of this algorithm restarts the entire algorithm with a new
random choice of p whenever a false match is detected. In the latter approach,
the probability of having to restart more than ¢ times is bounded by 1/n’. This
leads to a very small variance in the running time. In contrast, the first approach
has a relatively high probability of being forced to use the O(nm) time algorithm,
and hence has a high variance in the running time.

An alternative fingerprint function with a similar behavior is described in
Problem 7.12. In Problem 7.13 it is required to show that this algorithm extends
to the case of two-dimensional pattern matching.

The method for computing the fingerprints of the various X(j)’'s will work
well in on-line or real-time settings where the string X is provided incrementally,
possibly a bit at a time. This feature is also useful when the text is extremely
large and cannot be completely stored in the primary memory of a machine.

Exercise 7.4: Consider the fingerprint function used for polynomial identities and
adapt it to the problem of testing string equality. Why is this not a good choice of a
fingerprint for the pattern matching problem?

7.7. Interactive Proof Systems

We have seen the power of combining randomization and algebra in devising
fingerprinting techniques with applications to efficient verification of simple
identities involving objects such as matrices, polynomials, and strings. We have
also seen that the basic idea used in the verification of the equality of two strings
x and y could be taken a step further and be used for the efficient detection of
a pattern y in a string x. How far can we push this approach?

Suppose, for example, the string x represents a graph G, and the “pattern” y
represents some graph property P. Can we then use the ideas developed here
for efficient “pattern matching” in terms of verifying the property P in G? More
specifically, suppose that the pattern y corresponds to the property of not being
an expanding graph. The problem of verifying this property belongs to NP and
so there exist short proofs of non-expansion. Moreover, given such a proof, it is
possible to efficiently verify its correctness. Thus, the pattern matching task can
be efficiently performed provided the pattern y includes a “proof™ of this fact,
i.e., a description of a set of vertices in G that do not have too many neighbors.
In this context, efficiency means time polynomial in the length of the inputs,
and this requires that the proof itself be of polynomial length.

Suppose instead the pattern matching task corresponds to the verification of
the property of being an expander. As we mentioned earlier (Section 6.7), this

172

