
Problem set for the Algoritmica 2 class (2015/16)

Roberto Grossi
Dipartimento di Informatica, Università di Pisa

grossi@di.unipi.it

October 22, 2015

Abstract

This is the problem set assigned during class. What is relevant during the resolution
of the problems is the reasoning path that leads to their solutions, thus offering the op-
portunity to learn from mistakes. This is why they are discussed by students in groups,
one class per week, under the supervision of the teacher to guide the brainstorming
process behind the solutions. The wrong way to use this problem set: accumulate the
problems and start solving them alone, a couple of weeks before the exam. The correct
way: solve them each week in groups, discussing them with classmates and teacher.

1. [Randomized selection] Consider the randomized quicksort, analyzed with the indicator
variables, discussed in class (also, paragraph 7.3 in the textbook CLRS - Comern,
Leiserson, Rivest, Stein, Introduction to Algorithms, 3rd edition, MIT Press). Show
how to modify the randomized quicksort so that, given an array A and an integer
1 ≤ k ≤ |A|, it finds the kth largest element in A without fully sorting A. Consider the
analysis with indicator variables seen in class, and adapt it to show that the selection
algorithm thus obtained requires linear expected time. [hint: since the algorithm has
A and k as input, define an indicator variable Xijk for zi and zj, where i < j, with
the knowledge that zk is looked for. The probability will have three cases, according
to the relative order of zk with respect to zi and zj.]

2. [Randomized min-cut algorithm] Consider the randomized min-cut algorithm discussed
in class. We have seen that its probability of success is about 2/n2.

• Describe how to implement the algorithm when the graph is represented by ad-
jacency lists, and analyze its running time.

• A weighted graph has a weight w(e) on each edge e, which is a positive real
number. The min-cut in this case is meant to be min-weighted cut, where the
sum of the weights in the cut edges is minimum. Describe how to extend the
algorithm to weighted graphs, and show that the probability of success is still
2/n2. [hint: define the weighted degree of a node]

1

• Show that running the algorithm for N = cn2 lnn times, for a constant c > 0,
and taking the minimum among the N min-cuts thus produced, the probability
of success can be made at least 1−1/nc (hence, with high probability). [hint: use
the fact that (1− 1/x)x ≈ e−x for small x.]

• Optional. When the graph becomes smaller, the probability of hitting a bad edge
is higher. To reduce this chance, what if the algorithm is stopped when the result-
ing graph contains half of the original vertices? Run it four times independently,
starting from the same graph G, and thus obtaining four graphs G1, G2, G3, G4,
each with n/2 vertices. Apply recursively this idea to each Gi independently.
Each time that two vertices are obtained, return the edges (as before). At the
end, choose the best min-cut thus found among all those generated. Show what is
the time complexity and the probability of error. [hint: it is a divide-and-conquer
approach whose time cost is a recurrence relation; same for the probability]

3. [External memory mergesort] In the external-memory model (hereater EM model),
show how to implement the k-way merge (where (k + 1)B ≤ M), namely, how to
simultaneously merge k sorted sequences of total length N , with an I/O cost of O(N/B)
where B is the block transfer size. Also, try to minimize and analyze the CPU time
cost. Using the above k-way merge, show how to implement the EM mergesort and
analyze its I/O complexity and CPU complexity.

4. [Deterministic data streaming] Consider a stream of n items, where items can appear
more than once in the stream. The problem is to find the most frequently appearing
item in the stream (where ties broken arbitrarily if more than one item satisfies the
latter). Suppose that only k = O(logc n) items can be stored, one item per memory
cell, where the available storage is k + O(1) memory cells. Show that the problem
cannot be solved deterministically under the following rules: the algorithm can access
only O(logc n) information for each of the k items that it can store, and can read the
next item of the stream; you, the adversarty, have access to all the stream, and the
content of the k items stored by the algorithm, and can decide what is the next item
that the algorithm reads (please note that you cannot change the past, namely, the
items already read by the algorithm) . Hint: it is an adversarial argument based on
the k items chosen by the hypothetical determinist streaming algorithm, and the fact
that there can be a tie on > k items till the last minute.

5. [Family of uniform hash functions] Show that the family of hash functions H = {h(x) =
((ax + b)% p)%m} is (almost) “pairwise independent”, where a, b ∈ [m] with a 6= 0
and p is a sufficiently large prime number (m + 1 ≤ p ≤ 2m). The notion of pairwise
independence says that, for any x1, x2 and c1, c2 ∈ [m], we have that Prh∈H [h(x1) =
c1 ∧ h(x2) = c2] = Prh∈H [h(x1) = c1] × Prh∈H [h(x2) = c2]. In other words, the joint
probability is the product of the two individual probabilities.

2

