7.1 MEASURING COMPLEXITY 255

O(n) + O(t*(n)) steps.
We have assumed that ¢(n) > n (a reasonable assumption because M could

not even read the entire input in less time). Therefore the running time of S is
O(t*(n)) and the proof is complete.

..

Next, we consider the analogous theorem for nondeterministic single-tape
Turing machines. We show that any language that is decidable on such a ma-
chine is decidable on a deterministic single-tape Turing machine that requires
significantly more time. Before doing so, we must define the running time of
a nondeterministic Turing machine. Recall that a nondeterministic Turing ma-
chine is a decider if all its computation branches halt on all inputs.

DEFINITION 7.9

Let N be a nondeterministic Turing machine that is a decider. The
running time of N is the function f: N— N/, where f(n) is the
maximum number of steps that N uses on any branch of its com-
putation on any input of length n, as shown in the following figure.

Deterministic Nondeterministic
f(n) reject g f(n)
) ’ j accept
l _accept/reject l/ reject l

FIGURE 7.10
Measuring deterministic and nondeterministic time

The definition of the running time of a nondeterministic Turing machine is
not intended to correspond to any real-world computing device. Rather, itis a
useful mathematical definition that assists in characterizing the complexity of an
important class of computational problems, as we demonstrate shortly.

256 CHAPTER 7 / TIME COMPLEXITY

THEOREM 7.11 ...

Let t(n) be a function, where t(n) > n. Then every t(n) time nondeterministic
single-tape Turing machine has an equivalent 2°((")) time deterministic single-
tape Turing machine.

PROOF Let NV be a nondeterministic TM running in ¢(n) time. We constructa
deterministic TM D that simulates /V as in the proof of Theorem 3.16 by search-
ing N’s nondeterministic computation tree. Now we analyze that simulation.

On an input of length n, every branch of N’s nondeterministic computation
tree has a length of at most ¢(n). Every node in the tree can have at most b
children, where bis the maximum number of legal choices given by N’s transition
function. Thus the total number of leaves in the tree is at most b*(").

The simulation proceeds by exploring this tree breadth first. In other words,
it visits all nodes at depth d before going on to any of the nodes at depth d + 1.
The algorithm given in the proof of Theorem 3.16 inefficiently starts at the root
and travels down to a node whenever it visits that node, but eliminating this
inefficiency doesn’t alter the statement of the current theorem, so we leave it
as is. The total number of nodes in the tree is less than twice the maximum
number of leaves, so we bound it by O(b*(™)). The time for starting from the
root and traveling down to a node is O(¢(n)). Therefore the running time of D
is O(t(n)bt(m)) = 200tn)),

As described in Theorem 3.16, the TM D has three tapes. Converting to a
single-tape TM at most squares the running time, by Theorem 7.8. Thus the
running time of the single-tape simulator is (20¢t())? = 202t(n)) — 90(t(n)
and the theorem is proved.

/.2

THE CLASS P

Theorems 7.8 and 7.11 illustrate an important distinction. On the one hand, we
demonstrated at most a square or polynomial difference between the time com-
plexity of problems measured on deterministic single-tape and multitape Turing
machines. On the other hand, we showed at most an exponential difference be-
tween the time complexity of problems on deterministic and nondeterministic
Turing machines.

POLYNOMIAL TIME

For our purposes, polynomial differences in running time are considered to be
small, whereas exponential differences are considered to be large. Let’s look at

7.2 THE CLASS P 257

why we chose to make this separation between polynomials and exponentials
rather than between some other classes of functions.

First, note the dramatic difference between the growth rate of typically oc-
curring polynomials such as n® and typically occurring exponentials such as 2".
For example, let n be 1000, the size of a reasonable input to an algorithm. In
that case, n? is 1 billion, a large, but manageable number, whereas 2" is a num-
ber much larger than the number of atoms in the universe. Polynomial time
algorithms are fast enough for many purposes, but exponential time algorithms
rarely are useful.

Exponential time algorithms typically arise when we solve problems by ex-
haustively searching through a space of solutions, called brute-force search. For
example, one way to factor a number into its constituent primes is to search
through all potential divisors. The size of the search space is exponential, so this
search uses exponential time. Sometimes, brute-force search may be avoided
through a deeper understanding of a problem, which may reveal a polynomial
time algorithm of greater udility.

All reasonable deterministic computational models are polynomially equiv-
alent. That is, any one of them can simulate another with only a polynomial
increase in running time. When we say that all reasonable deterministic models
are polynomially equivalent, we do not attempt to define reasonable. However,
we have in mind a notion broad enough to include models that closely approxi-
mate running times on actual computers. For example, Theorem 7.8 shows that
the deterministic single-tape and multitape Turing machine models are polyno-
mially equivalent.

From here on we focus on aspects of time complexity theory that are unaf-
fected by polynomial differences in running time. We consider such differences
to be insignificant and ignore them. Doing so allows us to develop the theory
in a way that doesn’t depend on the selection of a particular model of computa-
tion. Remember, our aim is to present the fundamental properties of computation,
rather than properties of Turing machines or any other special model.

You may feel that disregarding polynomial differences in running time is ab-
surd. Real programmers certainly care about such differences and work hard just
to make their programs run twice as quickly. However, we disregarded constant
factors a while back when we introduced asymptotic notation. Now we propose
to disregard the much greater polynomial differences, such as that between time
n and time n>.

Our decision to disregard polynomial differences doesn’t imply that we con-
sider such differences unimportant. On the contrary, we certainly do consider
the difference between time n and time n?® to be an important one. But some
questions, such as the polynomiality or nonpolynomiality of the factoring prob-
lem, do not depend on polynomial differences and are important, too. We
merely choose to focus on this type of question here. Ignoring the trees to see
the forest doesn’t mean that one is more important than the other—it just gives
a different perspective.

Now we come to an important definition in complexity theory.

258 CHAPTER 7 / TIME COMPLEXITY

DEFINITION 7.12

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = | TIME(n*).
k

The class P plays a central role in our theory and is important because

1. P 1s invariant for all models of computation that are polynomially equiva-
lent to the deterministic single-tape Turing machine, and

2. P roughly corresponds to the class of problems that are realistically solv-
able on a computer.

Item 1 indicates that P is a mathematically robust class. Itisn’t affected by the
particulars of the model of computation that we are using.

Item 2 indicates that P is relevant from a practical standpoint. When a
problem is in P, we have a method of solving it that runs in time n* for some
constant k. Whether this running time is practical depends on % and on the
application. Of course, a running time of n'% is unlikely to be of any practical
use. Nevertheless, calling polynomial time the threshold of practical solvability
has proven to be useful. Once a polynomial time algorithm has been found for
a problem that formerly appeared to require exponential time, some key insight
into it has been gained, and further reductions in its complexity usually follow,
often to the point of actual practical utility.

EXAMPLES OF PROBLEMS IN P

When we present a polynomial time algorithm, we give a high-level description
of it without reference to features of a particular computational model. Doing
so avoids tedious details of tapes and head motions. We need to follow certain
conventions when describing an algorithm so that we can analyze it for polyno-
miality.

We describe algorithms with numbered stages. The notion of a stage of an
algorithm is analogous to a step of a Turing machine, though of course, imple-
menting one stage of an algorithm on a Turing machine, in general, will require
many Turing machine steps.

When we analyze an algorithm to show that it runs in polynomial time, we
need to do two things. First, we have to give a polynomial upper bound (usu-
ally in big-O notation) on the number of stages that the algorithm uses when it
runs on an input of length n. Then, we have to examine the individual stages
in the description of the algorithm to be sure that each can be implemented in
polynomial time on a reasonable deterministic model. We choose the stages
when we describe the algorithm to make this second part of the analysis easy to

7.2 THECLASSP 259

do. When both tasks have been completed, we can conclude that the algorithm
runs in polynomial time because we have demonstrated that it runs for a poly-
nomial number of stages, each of which can be done in polynomial time, and the
composition of polynomials is a polynomial.

One point that requires attention is the encoding method used for problems.
We continue to use the angle-bracket notation (-) to indicate a reasonable en-
coding of one or more objects into a string, without specifying any particular
encoding method. Now, a reasonable method is one that allows for polyno-
mial time encoding and decoding of objects into natural internal representations
or into other reasonable encodings. Familiar encoding methods for graphs, au-
tomata, and the like all are reasonable. But note that unary notation for encoding
numbers (as in the number 17 encoded by the unary string 11111111111111111)
isn’t reasonable because it is exponentially larger than truly reasonable encod-
ings, such as base & notation for any k > 2.

Many computational problems you encounter in this chapter contain encod-
ings of graphs. One reasonable encoding of a graph is a list of its nodes and
edges. Another is the adjacency matrix, where the (i, j)th entry is 1 if there is
an edge from node i to node j and 0 if not. When we analyze algorithms on
graphs, the running time may be computed in terms of the number of nodes
instead of the size of the graph representation. In reasonable graph represen-
tations, the size of the representation is a polynomial in the number of nodes.
Thus, if we analyze an algorithm and show that its running time is polynomial
(or exponential) in the number of nodes, we know that it is polynomial (or expo-
nential) in the size of the input.

The first problem concerns directed graphs. A directed graph G contains
nodes s and ¢, as shown in the following figure. The PATH problem is to deter-
mine whether a directed path exists from s to ¢. Let

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to t}.

FIGURE 7.13
‘The PATH problem: Is there a path from s to ¢?

260 CHAPTER 7 / TIME COMPLEXITY

THEOREM 7.14 ...

PATH € P.

PROOF IDEA We prove this theorem by presenting a polynomial time algo-
rithm that decides PATH. Before describing that algorithm, let’s observe that a
brute-force algorithm for this problem isn’t fast enough.

A brute-force algorithm for PATH proceeds by examining all potential paths
in G and determining whether any is a directed path from s to t. A potential path
is a sequence of nodes in G having a length of at most m, where m is the number
of nodes in G. (If any directed path exists from s to t, one having a length of at
most m exists because repeating a node never is necessary.) But the number of
such potential paths is roughly m™, which is exponential in the number of nodes
in G. Therefore this brute-force algorithm uses exponential time.

To get a polynomial time algorithm for PATH we must do something that
avoids brute force. One way is to use a graph-searching method such as breadth-
first search. Here, we successively mark all nodes in G that are reachable from s
by directed paths of length 1, then 2, then 3, through m. Bounding the running
time of this strategy by a polynomial is easy.

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t) where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:
3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.
4. Iftis marked, accept. Otherwise, reject.”

Now we analyze this algorithm to show that it runs in polynomial time. Ob-
viously, stages 1 and 4 are executed only once. Stage 3 runs at most m times
because each time except the last it marks an additional node in G. Thus the
total number of stages used is at most 1 4+ 1 + m, giving a polynomial in the size
of G.

Stages 1 and 4 of M are easily implemented in polynomial time on any rea-
sonable deterministic model. Stage 3 involves a scan of the input and a test of
whether certain nodes are marked, which also is easily implemented in polyno-
mial time. Hence M is a polynomial time algorithm for PATH.

..

Let’s turn to another example of a polynomial time algorithm. Say that two
numbers are relatively prime if 1 is the largest integer that evenly divides them
both. For example, 10 and 21 are relatively prime, even though neither of them
is a prime number by itself, whereas 10 and 22 are not relatively prime because
both are divisible by 2. Let RELPRIME be the problem of testing whether two

7.2 THEcLAasspP 261

numbers are relatively prime. Thus

RELPRIME = {(z,y)| « and y are relatively prime}.

THEOREM 7.15 ...
RELPRIME € P.

PROOF IDEA One algorithm that solves this problem searches through all
possible divisors of both numbers and accepts if none are greater than 1. How-
ever, the magnitude of a number represented in binary, or in any other base &
notation for k£ > 2, is exponential in the length of its representation. Therefore
this brute-force algorithm searches through an exponential number of potential
divisors and has an exponential running time.

Instead, we solve this problem with an ancient numerical procedure, called
the Euclidean algorithm, for computing the greatest common divisor. The
greatest common divisor of natural numbers = and y, written ged(z, y), is the
largest integer that evenly divides both « and y. For example, gcd(18,24) = 6.
Obviously, = and y are relatively prime iff gcd(z, y) = 1. We describe the Eu-
clidean algorithm as algorithm E in the proof. It uses the mod function, where
x mod y is the remainder after the integer division of z by y.

PROOF The Euclidean algorithm FE is as follows.

E = “On input (z,y), where z and y are natural numbers in binary:
1. Repeatuntil y = 0:
2. Assign x «— x mod y.
3. Exchange z and y.
4. Outputz.”

Algorithm R solves RELPRIME, using E as a subroutine.

R = “On input (z, y), where z and y are natural numbers in binary:
1. Run £ on (z, y).
2. If the resultis 1, accept. Otherwise, reject.”

Clearly, if E runs correctly in polynomial time, so does R and hence we only
need to analyze E for time and correctness. The correctness of this algorithm is
well known so we won’t discuss it further here.

To analyze the time complexity of E, we first show that every execution of
stage 2 (except possibly the first), cuts the value of x by at least half. After stage 2
is executed, x < y because of the nature of the mod function. After stage 3,
x > y because the two have been exchanged. Thus, when stage 2 is subsequently
executed, z > y. If /2 > y, then 2z mod y < y < z/2 and z drops by at least
half. If /2 < y, then 2 mod y = — y < /2 and z drops by at least half.

262 CHAPTER 7/ TIME COMPLEXITY

The values of z and y are exchanged every time stage 3 is executed, so each
of the original values of z and y are reduced by at least half every other time
through the loop. Thus the maximum number of times that stages 2 and 3 are
executed is the lesser of 2log, z and 2 log, y. These logarithms are proportional
to the lengths of the representations, giving the number of stages executed as
O(n). Each stage of E uses only polynomial time, so the total running time is
polynomuial.

..

The final example of a polynomial time algorithm shows that every context-
free language is decidable in polynomial time.

THEOREM 7.16 ...

Every context-free language is a member of P.

PROOF IDEA In Theorem 4.9 we proved that every CFL is decidable. To do
so we gave an algorithm for each CFL that decides it. If that algorithm runs in
polynomial time, the current theorem follows as a corollary. Let’s recall that
algorithm and find out whether it runs quickly enough.

Let L be a CFL generated by CFG G that 1s in Chomsky normal form. From
Problem 2.26, any derivation of a string w has 2n — 1 steps, where n is the length
of w because G is in Chomsky normal form. The decider for L works by trying
all possible derivations with 2n — 1 steps when its input is a string of length n. If
any of these is a derivation of w, the decider accepts; if not, it rejects.

A quick analysis of this algorithm shows that it doesn’t run in polynomial
time. The number of derivations with & steps may be exponential in k, so this
algorithm may require exponential time.

To get a polynomial time algorithm we introduce a powerful technique called
dynamic programming. This technique uses the accumulation of information
about smaller subproblems to solve larger problems. We record the solution to
any subproblem so that we need to solve it only once. We do so by making a
table of all subproblems and entering their solutions systematically as we find
them.

In this case, we consider the subproblems of determining whether each vari-
able in G generates each substring of w. The algorithm enters the solution to
this subproblem in an n x n table. For i < j the (4, j)th entry of the table con-
tains the collection of variables that generate the substring w;w;, - -w;. For
i > 7 the table entries are unused.

The algorithm fills in the table entries for each substring of w. First it fills
in the entries for the substrings of length 1, then those of length 2, and so on.
It uses the entries for the shorter lengths to assist in determining the entries for
the longer lengths.

7.2 THEcLAss P 263

For example, suppose that the algorithm has already determined which vari-
ables generate all substrings up to length k. To determine whether a variable A
generates a particular substring of length £+ 1 the algorithm splits that substring
into two nonempty pieces in the k£ possible ways. For each split, the algorithm
examines each rule A — BC to determine whether B generates the first piece
and C generates the second piece, using table entries previously computed. If
both B and C generate the respective pieces, A generates the substring and so
is added to the associated table entry. The algorithm starts the process with the
strings of length 1 by examining the table for the rules A — b.

PROOF The following algorithm D implements the proof idea. Let G be
a CFG in Chomsky normal form generating the CFL L. Assume that S is the
start variable. (Recall that the empty string is handled specially in a Chomsky
normal form grammar. The algorithm handles the special case in which w = €
in stage 1.) Comments appear inside double brackets.

D = “Oninput w = wy -+ - Wy
1. Ifw=ecand S — eisarule, accept. [handle w = € case]
2. Fori=1ton: [examine each substring of length 1]
3. For each variable A:
Test whether A — b is a rule, where b = w;,.
If so, place A in table (i, 7).
Forl =2ton: [1is the length of the substring]
Fori=1ton —{+1: [%is the start position of the substring]
Letj=7+1-1, [j is the end position of the substring |
Fork =itoj—1: [% is the split position |
10. For each rule A — BC:
11. If table(i, k) contains B and table(k + 1,7) contains
C, put A in table(i, j).
12. If Sis in table(1,n), accept. Otherwise, reject.”

O@XNNn bk

Now we analyze D. Each stage is easily implemented to run in polynomial
time. Stages 4 and 5 run at most nv times, where v is the number of variables in
G and is a fixed constant independent of n; hence these stages run O(n) times.
Stage 6 runs at most n times. Each time stage 6 runs, stage 7 runs at most n
times. Each time stage 7 runs, stages 8 and 9 run at most n times. Each time
stage 9 runs, stage 10 runs 7 times, where 7 is the number of rules of G' and
is another fixed constant. Thus stage 11, the inner loop of the algorithm, runs
O(n?®) times. Summing the total shows that D executes O(n?) stages.

..

264 CHAPTER 7 / TIME COMPLEXITY

/.3

THE CLASS NP

As we observed in Section 7.2, we can avoid brute-force search in many problems
and obtain polynomial time solutions. However, attempts to avoid brute force
in certain other problems, including many interesting and useful ones, haven’t
been successful, and polynomial time algorithms that solve them aren’t known
to exist.

Why have we been unsuccessful in finding polynomial time algorithms for
these problems? We don’t know the answer to this important question. Perhaps
these problems have, as yet undiscovered, polynomial time algorithms that rest
on unknown principles. Or possibly some of these problems simply cannor be
solved in polynomial time. They may be intrinsically difficult.

One remarkable discovery concerning this question shows that the complex-
ities of many problems are linked. A polynomial time algorithm for one such
problem can be used to solve an entire class of problems. To understand this
phenomenon, let’s begin with an example.

A Hamiltonian path in a directed graph G is a directed path that goes through
each node exactly once. We consider the problem of testing whether a directed
graph contains a Hamiltonian path connecting two specified nodes, as shown in

the following figure. Let

HAMPATH = {(G, s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}.

FIGURE 7.17
A Hamiltonian path goes through every node exactly once

We can easily obtain an exponential time algorithm for the HAMPATH prob-
lem by modifying the brute-force algorithm for PATH given in Theorem 7.14.
We need only add a check to verify that the potential path is Hamiltonian. No
one knows whether HAMPATH is solvable in polynomial time.

The HAMPATH problem does have a feature called polynomial verifiabil-

7.3 THE CLASSNP 265

ity that is important for understanding its complexity. Even though we don’t
know of a fast (i.e., polynomial time) way to determine whether a graph contains
a Hamiltonian path, if such a path were discovered somehow (perhaps using
the exponential time algorithm), we could easily convince someone else of its
existence, simply by presenting it. In other words, verifying the existence of a
Hamiltonian path may be much easier than determining its existence.

Another polynomially verifiable problem is compositeness. Recall that a nat-
ural number is composite if it is the product of two integers greater than 1 (i.e., a
composite number is one that is not a prime number). Let

COMPOSITES = {z| z = pq, for integers p,q > 1}.

We can easily verify that a number is composite—all that is needed is a divisor
of that number. Recently, a polynomial time algorithm for testing whether a
number is prime or composite was discovered, but it is considerably more com-
plicated than the preceding method for verifying compositeness.

Some problems may not be polynomially verifiable. For example, take
HAMPATH, the complement of the HAMPATH problem. Even if we could
determine (somehow) that a graph did zor have a Hamiltonian path, we don’t
know of a way for someone else to verify its nonexistence without using the
same exponential time algorithm for making the determination in the first place.
A formal definition follows.

DEFINITION 7.18
A verifier for a language A is an algorithm V, where
A = {w| V accepts (w, ¢) for some string c}.

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length
of w. Alanguage A is polynomially verifiable if it has a polynomial
time verifier.

A verifier uses additional information, represented by the symbol ¢ in Defini-
tion 7.18, to verify that a string w is a member of A. This information is called a
certificate, or proof, of membership in A. Observe that, for polynomial verifiers,
the certificate has polynomial length (in the length of w) because that is all the
verifier can access in its time bound. Let’s apply this definition to the languages
HAMPATH and COMPOSITES.

For the HAMPATH problem, a certificate for a string (G, s,t) € HAMPATH
simply is the Hamiltonian path from s to ¢t. For the COMPOSITES problem, a
certificate for the composite number z simply is one of its divisors. In both cases
the verifier can check in polynomial time that the input is in the language when
it is given the certificate.

266 CHAPTER 7 / TIME COMPLEXITY

DEFINITION 7.19

NP is the class of languages that have polynomial time verifiers.

The class NP is important because it contains many problems of practical in-
terest. From the preceding discussion, both HAMPATH and COMPOSITES are
members of NP. As we mentioned, COMPOSITES is also a member of P which
is a subset of NP, but proving this stronger result is much more difficult. The
term NP comes from nondeterministic polynomial time and is derived from an
alternative characterization by using nondeterministic polynomial time Turing
machines. Problems in NP are sometimes called NP-problems.

The following is a nondeterministic Turing machine (NTM) that decides the
HAMPATH problem in nondeterministic polynomial time. Recall that in Defi-
nition 7.9 we defined the time of a nondeterministic machine to be the time used
by the longest computation branch.

N; = “On input (G, s, t), where G 1s a directed graph with nodes s and ¢:
1. Write a list of m numbers, py, ..., pm, where m is the number
of nodes in G. Each number in the list is nondeterministically
selected to be between 1 and m.
2. Check for repetitions in the list. If any are found, reject.
Check whether s = p; and t = p,,. If either fail, reject.
4. For each i between 1 and m — 1, check whether (p;, pi+1) is an
edge of G. If any are not, reject. Otherwise, all tests have been
passed, so accept.”

hed

To analyze this algorithm and verify that it runs in nondeterministic poly-
nomial time, we examine each of its stages. In stage 1, the nondeterministic
selection clearly runs in polynomial time. In stages 2 and 3, each partis a simple
check, so together they run in polynomial time. Finally, stage 4 also clearly runs
in polynomial time. Thus this algorithm runs in nondeterministic polynomial
time.

THEOREM 7.20 ...

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.

PROOF IDEA We show how to convert a polynomial time verifier to an
equivalent polynomial time NTM and vice versa. The NTM simulates the ver-
ifier by guessing the certificate. The verifier simulates the NTM by using the
accepting branch as the certificate.

PROOF For the forward direction of this theorem, let A € NP and show that
Ais decided by a polynomial time NTM N. Let V be the polynomial time verifier
for A that exists by the definition of NP. Assume that V' is a TM that runs in time
n* and construct N as follows.

7.3 THE cLASsS NP 267

N = “On input w of length n:
1. Nondeterministically select string ¢ of length at most n*.
2. Run V on input (w, c).
3. If V accepts, accept; otherwise, reject.”

To prove the other direction of the theorem, assume that A is decided by a
polynomial time NTM N and construct a polynomial time verifier V' as follows.

V = “On input (w, ¢), where w and ¢ are strings:
1. Simulate N on input w, treating each symbol of ¢ as a descrip-
tion of the nondeterministic choice to make at each step (as in
the proof of Theorem 3.16).
2. If this branch of N’s computation accepts, accept; otherwise,
reject.”

--

We define the nondeterministic time complexity class NTIME(¢(n)) as anal-
ogous to the deterministic time complexity class TIME(¢(n)).

— DEFINITION 7.21

NTIME(@#(m)) = {L]| L is a language decided by a O(t(n)) time

nondeterministic Turing machine}.

COROLLARY A iy TP TP
NP = J, NTIME(n*).

The class NP is insensitive to the choice of reasonable nondeterministic com-
putational model because all such models are polynomially equivalent. When
describing and analyzing nondeterministic polynomial time algorithms, we fol-
low the preceding conventions for deterministic polynomial time algorithms.
Each stage of a nondeterministic polynomial time algorithm must have an obvi-
ous implementation in nondeterministic polynomial time on a reasonable non-
deterministic computational model. We analyze the algorithm to show that
every branch uses at most polynomially many stages.

EXAMPLES OF PROBLEMS IN NP

A clique in an undirected graph is a subgraph, wherein every two nodes are
connected by an edge. A k-clique is a clique that contains k£ nodes. Figure 7.23
illustrates a graph having a 5-clique

268 CHAPTER 7 / TIME COMPLEXITY

Q O

o ‘s N
FIGURE 7.23

A graph with a 5-clique

The clique problem is to determine whether a graph contains a clique of a
specified size. Let

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}.

THEOREM 7.24 ...
CLIQUE is in NP,

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = “On input ((G, k), ¢):
1. Test whether cis a set of £ nodes in G
2. Test whether G contains all edges connecting nodes in c.
3. Ifboth pass, accept; otherwise, reject.”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = “On input (G, k), where G is a graph:
1. Nondeterministically select a subset ¢ of k nodes of G.
2. Test whether G contains all edges connecting nodes in c.
3. Ifyes, accept; otherwise, reject.”

..

Next we consider the SUBSET-SUM problem concerning integer arithmetic.
In this problem we have a collection of numbers zy, ...,z and a target num-
ber t. We want to determine whether the collection contains a subcollection that

7.3 THE CLASS NP 269

adds up to t. Thus
SUBSET-SUM = {(S,t)| S = {1, ..., zx} and for some
{vi, .- u} C {z1, ..., 2%}, we have By, = t}.

For example, ({4,11,16,21,27}, 25) € SUBSET-SUM because 4 + 21 = 25.
Note that {zy, ..., zx} and {y1, ..., v} are considered to be multisets and so
allow repetition of elements.

THEOREM 7.25 ...
SUBSET-SUM is in NP,

PROOF IDEA The subset is the certificate.

PROOF The following is a verifier V for SUBSET-SUM.

V = “On input ((S, 1), c):
1. Test whether c is a collection of numbers that sum to ¢.
2. TTest whether S contains all the numbers in c.
3. Ifboth pass, accept; otherwise, reject.”

ALTERNATIVE PROOF We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

N =“On input (S, t):
1. Nondeterministically select a subset ¢ of the numbers in S.

2. "Test whether cis a collection of numbers that sum to ¢.
3. If the test passes, accept; otherwise, reject.”

--

Observe that the complements of these sets, CLIQUE and SUBSET-SUM,
are not obviously members of NP. Verifying that something is zot present seems
to be more difficult than verifying that it is present. We make a separate com-
plexity class, called coNP, which contains the languages that are complements of
languages in NP. We don’t know whether coNP is different from NP.

THE P VERSUS NP QUESTION

As we have been saying, NP is the class of languages that are solvable in polyno-
mial time on a nondeterministic Turing machine, or, equivalently, it is the class
of languages whereby membership in the language can be verified in polynomial
time. P is the class of languages where membership can be tested in polyno-
niial time. We summarize this information as follows, where we loosely refer to

270 CHAPTER 7 / TIME COMPLEXITY

polynomial time solvable as solvable “quickly.”

P = the class of languages for which membership can be decided quickly.
NP = the class of languages for which membership can be verified quickly.

We have presented examples of languages, such as H4MPATH and CLIQUE,
that are members of NP but that are not known to be in P. The power of polyno-
mial verifiability seems to be much greater than that of polynomial decidability.
But, hard as it may be to imagine, P and NP could be equal. We are unable to
prove the existence of a single language in NP that is not in P.

The question of whether P = NP is one of the greatest unsolved problems
in theoretical computer science and contemporary mathematics. If these classes
were equal, any polynomially verifiable problem would be polynomially decid-
able. Most researchers believe that the two classes are not equal because people
have invested enormous effort to find polynomial time algorithms for certain
problems in NP, without success. Researchers also have tried proving that the
classes are unequal, but that would entail showing that no fast algorithm exists
to replace brute-force search. Doing so is presently beyond scientific reach. The
following figure shows the two possibilities.

NP

FIGURE 7.26
One of these two possibilities is correct

The best method known for solving languages in NP deterministically uses
exponential time. In other words, we can prove that

NP C EXPTIME = | J TIME(2""),
k

but we don’t know whether NP is contained in a smaller deterministic time com-
plexity class.

7.4 NP-COMPLETENESS 271

/.4

NP-COMPLETENESS

One important advance on the P versus NP question came in the early 1970s
with the work of Stephen Cook and Leonid Levin. They discovered certain
problems in NP whose individual complexity is related to that of the entire class.
If a polynomial time algorithm exists for any of these problems, all problems in
NP would be polynomial time solvable. These problems are called NP-complete.
‘The phenomenon of NP-completeness is important for both theoretical and
practical reasons.

On the theoretical side, a researcher trying to show that P is unequal to NP
may focus on an NP-complete problem. If any problem in NP requires more
than polynomial time, an NP-complete one does. Furthermore, a researcher
attempting to prove that P equals NP only needs to find a polynomial time al-
gorithm for an NP-complete problem to achieve this goal.

On the practical side, the phenomenon of NP-completeness may prevent
wasting time searching for a nonexistent polynomial time algorithm to solve
a particular problem. Even though we may not have the necessary mathematics
to prove that the problem is unsolvable in polynomial time, we believe that P is
unequal to NP, so proving that a problem is NP-complete is strong evidence of
its nonpolynomiality.

The first NP-complete problem that we present is called the satisfiability
problem. Recall that variables that can take on the values TRUE and FALSE are
called Boolean variables (see Section 0.2). Usually, we represent TRUE by 1 and
FALSE by 0. The Boolean operations AND, OR, and NOT, represented by the
symbols A, V, and —, respectively, are described in the following list. We use the
overbar as a shorthand for the — symbol, so Z means — z.

0A0=0 ovo=0 0
0OANl=0 ovli=1 1
1A0=0 1vo=1
IAL=1 1vli=1

1
0

A Boolean formula is an expression involving Boolean variables and opera-
tions. For example,

¢=(TNy)V (zAZ)

is a Boolean formula. A Boolean formula is satisfiable if some assignment of Os
and 1s to the variables makes the formula evaluate to 1. The preceding formula is
satisfiable because the assignment z = 0, y = 1, and z = 0 makes ¢ evaluate to 1.
We say the assignment satisfies ¢. The satisfiability problem is to test whether a
Boolean formula is satisfiable. Let

SAT = {(¢)| ¢ is a satisfiable Boolean formula}.

Now we state the Cook-Levin theorem, which links the complexity of the
SAT problem to the complexities of all problems in NP.

272 CHAPTER 7 / TIME COMPLEXITY

THEOREM 7.27 ...
Cook-Levin theorem SAT € P iff P = NP,

--

Next, we develop the method that is central to the proof of the Cook-Levin
theorem.

POLYNOMIAL TIME REDUCIBILITY

In Chapter 5 we defined the concept of reducing one problem to another. When
problem A reduces to problem B, a solution to B can be used to solve A. Now
we define a version of reducibility that takes the efficiency of computation into
account. When problem A is efficiently reducible to problem B, an efficient
solution to B can be used to solve A efficiently.

DEFINITION 7.28

A function f: ¥*—— X~ is a polynomial time computable function
if some polynomial time Turing machine M exists that halts with
just f(w) on its tape, when started on any input w.

DEFINITION 7.29

Language A is polynomial time mapping reducible,' or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥*— X* exists, where for every
w,

w e A< f(w) € B.

The function f is called the polynomial time reduction of A to B.

Polynomial time reducibility is the efficient analog to mapping reducibility
as defined in Section 5.3. Other forms of efficient reducibility are available, but
polynomial time reducibility is a simple form that is adequate for our purposes
so we won’t discuss the others here. The following figure illustrates polynomial
time reducibility.

1t is called polynomial time many—-one reducibility in some other textbooks.

7.4 NP-COMPLETENESS 273

FIGURE 7.30
Polynomial time function f reducing A to B

As with an ordinary mapping reduction, a polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B, but now the conversion is done efficiently. To test whether w € A, we use
the reduction f to map w to f(w) and test whether f(w) € B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain a polynomial time solution to the
original language, as in the following theorem.

THEOREM 7.3' R T T T T LR T T L L Ll LEL LR T P TP T TP T ey Py Y o) B T T L LT LT T Ty P T L L T
If A<p Band B € P, then A € P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

We have w € A whenever f(w) € B because f is a reduction from A to B.
Thus M accepts f(w) whenever w € A. Moreover, N runs in polynomial time
because each of its two stages runs in polynomial time. Note that stage 2 runs in
polynomial time because the composition of two polynomials is a polynomial.

--

Before demonstrating a polynomial time reduction we introduce 3SAT, a spe-
cial case of the satisfiability problem whereby all formulas are in a special form. A

274 CHAPTER 7 / TIME COMPLEXITY

literal is a Boolean variable or a negated Boolean variable, as in = or Z. A clause
is several literals connected with Vs, as in (27 V T3 V T3 V 24). A Boolean for-
mula is in conjunctive normal form, called a cnf-formula, if it comprises several
clauses connected with As, as in

(1 VT2 VT3V ze) A (23VT5Vag) A (z3VTe).
It is a 3cnf-formula if all the clauses have three literals, as in
(x1 VT2 VT3) A (23 VT5 Vae) A (X3 VT Vaa) A (x4 V 25V T6).

Let 3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula}. In a satisfiable cnf-formula,
each clause must contain at least one literal that is assigned 1.

The following theorem presents a polynomial time reduction from the 3SAT
problem to the CLIQUE problem.

THEOREM F B2 cooermmiiiimissaiisi s s i st sttt sssarsssssssssssns
3SAT is polynomial time reducible to CLIQUE.

PROOF IDEA The polynomial time reduction f that we demonstrate from
3SAT to CLIQUE converts formulas to graphs. In the constructed graphs,
cliques of a specified size correspond to satistying assignments of the formula.
Structures within the graph are designed to mimic the behavior of the variables
and clauses.

PROOF Let ¢ be a formula with & clauses such as
dp=(a1VbiVer) A (aaVbaVer) A -+ A (ag Vb V).

The reduction f generates the string (G, k), where G is an undirected graph
defined as follows.

The nodes in G are organized into k groups of three nodes each called the
triples, t,, ..., tx. Each triple corresponds to one of the clauses in ¢, and each
node in a triple corresponds to a literal in the associated clause. Label each node
of G with its corresponding literal in ¢.

The edges of G connect all but two types of pairs of nodes in G. No edge
is present between nodes in the same triple and no edge is present between two
nodes with contradictory labels, as in z3 and Z3. The following figure illustrates
this construction when ¢ = (21 V1 V22) A (Tr VT2 VT2) A (T1 V22 V 22).

7.4 NP-COMPLETENESS 275

FIGURE 7.33
'The graph that the reduction produces from
p=(xryVarVa) N (T1VZT2VT2) A (T1 Va2 V)

Now we demonstrate why this construction works. We show that ¢ is satisfi-
able iff G has a k-clique.

Suppose that ¢ has a satistying assignment. In that satisfying assignment, at
least one literal is true in every clause. In each triple of G, we select one node
corresponding to a true literal in the sadsfying assignment. If more than one
literal is true in a particular clause, we choose one of the true literals arbitrarily.
The nodes just selected form a k-clique. The number of nodes selected is &,
because we chose one for each of the £ triples. Each pair of selected nodes is
joined by an edge because no pair fits one of the exceptions described previously.
They could not be from the same triple because we selected only one node per
triple. They could not have contradictory labels because the associated literals
were both true in the satistying assignment. Therefore G contains a k-clique.

Suppose that G has a k-clique. No two of the clique’s nodes occur in the same
triple because nodes in the same triple aren’t connected by edges. Therefore
each of the k triples contains exactly one of the & clique nodes. We assign truth
values to the variables of ¢ so that each literal labeling a clique node is made
true. Doing so is always possible because two nodes labeled in a contradictory
way are not connected by an edge and hence both can’t be in the clique. This
assignment to the variables satisfies ¢ because each triple contains a clique node
and hence each clause contains a literal that is assigned TRUE. Therefore ¢ is
satisfiable.

--

Theorems 7.31 and 7.32 tell us that, if CLIQUE is solvable in polynomial
time, so is 3SAT. At first glance, this connection between these two problems
appears quite remarkable because, superficially, they are rather different. But
polynomial time reducibility allows us to link their complexities. Now we turn
to a definition that will allow us similarly to link the complexities of an entire
class of problems.

276 CHAPTER 7 / TIME COMPLEXITY

DEFINITION OF NP-COMPLETENESS

DEFINITION 7.34
A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM 735 s s stesmest s sessrssesessisssssssessss
It B is NP-complete and B € P, then P = NP.

PROOF 'This theorem follows directly from the definition of polynomial time
reducibility.

--

THEOREM Z 30 v i s isose st s sstsassserst sseaseses

If B is NP-complete and B <p C for C in NP, then C is NP-complete.

PROOF We already know that C is in NP, so we must show that every A in
NP is polynomial time reducible to C. Because B is NP-complete, every lan-
guage in NP is polynomial tme reducible to B, and B in turn is polynomial
time reducible to C. Polynomial time reductions compose; that s, if A4 is poly-
nomial time reducible to B and B is polynomial time reducible to C, then A
is polynomial time reducible to C. Hence every language in NP is polynomial
time reducible to C.

--

THE COOK—-LEVIN THEOREM

Once we have one NP-complete problem, we may obtain others by polynomial
time reduction from it. However, establishing the first NP-complete problem is
more difficult. Now we do so by proving that SAT is NP-complete.

T H Eo R E M 7.37 ...
SAT is NP-complete.?

This theorem restates Theorem 7.27, the Cook-Levin theorem, in another
form.

2 An alternative proof of this theorem appears in Section 9.3 on page 351.

7.4 NP-COMPLETENESS 277

PROOF IDEA Showing that SAT is in NP is easy, and we do so shortly. The
hard part of the proof is showing that any language in NP is polynomial time
reducible to SAT.

"To do so we construct a polynomial time reduction for each language A in NP
to SAT. The reduction for A takes a string w and produces a Boolean formula
¢ that simulates the NP machine for A on input w. If the machine accepts, ¢
has a satisfying assignment that corresponds to the accepting computation. If
the machine doesn’t accept, no assignment satisfies ¢. Therefore w is in A if and
only if ¢ 1s satisfiable.

Actually constructing the reduction to work in this way is a conceptually
simple task, though we must cope with many details. A Boolean formula may
contain the Boolean operations AND, OR, and NOT, and these operations form
the basis for the circuitry used in electronic computers. Hence the fact that we
can design a Boolean formula to simulate a Turing machine isn’t surprising. The
details are in the implementation of this idea.

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula ¢ and accept if the
assignment satisfies ¢.

Next, we take any language A in NP and show that A is polynomial time
reducible to SAT. Let N be a nondeterministic Turing machine that decides A
in n* time for some constant k. (For convenience we actually assume that N
runs in time n* — 3, but only those readers interested in details should worry
about this minor point.) The following notion helps to describe the reduction.

A tableau for N on w is an n* x n* table whose rows are the configurations of
a branch of the computation of N on input w, as shown in the following figure.

g0 |wy ”LUQ’ cee ‘wﬂﬂ . —[U | # | start configuration
| second configuration
#
window
L+
nk /«»/

nkth configuration

(—
H#*
#

FIGURE 7.38
A tableau is an n* x n* table of configurations

278 CHAPTER 7 / TIME COMPLEXITY

For convenience later we assume that each configuration starts and ends with
a # symbol, so the first and last columns of a tableau are all #s. The first row
of the tableau is the starting configuration of N on w, and each row follows the
previous one according to N’s transition function. A tableau is accepting if any
row of the tableau is an accepting configuration.

Every accepting tableau for N on w corresponds to an accepting computation
branch of N on w. Thus the problem of determining whether N accepts w is
equivalent to the problem of determining whether an accepting tableau for N
on w exists.

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢. We begin by describing
the variables of ¢. Say that @ and I are the state set and tape alphabet of N. Let
C = QUL U{#}. For each i and j between 1 and n* and for each s in C we have
a variable, z; ; ;.

Each of the (n*)? entries of a tableau is called a cell. The cell in row i and
column j is called cellli, j] and contains a symbol from C'. We represent the
contents of the cells with the variables of ¢. If z; ; ; takes on the value 1, it
means that cell[i, j] contains an s,

Now we design ¢ so that a sadsfying assignment to the variables does corre-
spond to an accepting tableau for N on w. The formula ¢ is the AND of four
Parts Geell A Gstare A Pmove A Paccepe- We describe each partin turn,

As we mentioned previously, turning variable ; ; s on corresponds to placing
symbol s in cell[i, j]. The first thing we must guarantee in order to obtain a cor-
respondence between an assignment and a tableau is that the assignment turns
on exactly one variable for each cell. Formula ¢, ensures this requirement by
expressing it in terms of Boolean operations:

bt =\ [(\/ ri’j’s> " (/A (mvwi’j’t))}.

1<4,j<nk = scC s,teC
s#t

The symbols A and \/ stand for iterated AND and OR. For example, the
expression in the preceding formula

V @i

seC

is shorthand for
Tigsy VY Tigsa VooV Tigs

where C' = {s1, S2, ..., s1}. Hence ¢ is actually a large expression that con-
tains a fragment for each cell in the tableau because i and j range from 1 to n*.
The first part of each fragment says that at least one variable is turned on in the
corresponding cell. The second part of each fragment says that no more than
one variable is turned on (literally, it says that in each pair of variables, at least
one is turned off) in the corresponding cell. These fragments are connected by
A operations.

7.4 NP-COMPLETENESS 279

The first part of ¢y inside the brackets stipulates that at least one variable
that is associated to each cell is on, whereas the second part stipulates that no
more than one variable is on for each cell. Any assignment to the variables that
satisfies ¢ (and therefore ¢.;) must have exactly one variable on for every cell.
Thus any satisfying assignment specifies one symbol in each cell of the table.
Parts ¢sarts move, and Paccepe €nsure that these symbols actually correspond to an
accepting tableau as follows.

Formula g, ensures that the first row of the table is the starting configu-
ration of N on w by explicitly stipulating that the corresponding variables are
on:

Gstare = L1,1,8 N T1,2,goN
T1,3,w1 NT1 4w N NT1ng20, N

T1,n43,u VANIRAN $1’nk_1,u A T1nkg -

Formula ¢uccepe guarantees that an accepting configuration occurs in the
tableau. It ensures that gsccepr, the symbol for the accept state, appears in one
of the cells of the tableau, by stipulating that one of the corresponding variables
is on:

(baccept = \/ L4,5, Gaccept *

1<i,j<nk

Finally, formula ¢neve guarantees that each row of the table corresponds to a
configuration that legally follows the preceding row’s configuration according to
N’s rules. It does so by ensuring that each 2 x 3 window of cells is legal. We say
that a 2 x 3 window is Jegal if that window does not violate the actions specified
by N’s transition function. In other words, a window is legal if it might appear
when one configuration correctly follows another.’

For example, say that a, b, and ¢ are members of the tape alphabet and ¢; and
g2 are states of N. Assume that, when in state ¢; with the head reading an a, N
writes a b, stays in state g1 and moves right, and that when in state ¢; with the
head reading a b, N nondeterministically either

1. writes a c, enters g2 and moves to the left, or

2. writes an a, enters gz and moves to the right.

Expressed formally, 6(q1,a) = {(¢1,b,R)} and é(q1,b) = {(gz,c,L), (q2,2,R)}.
Examples of legal windows for this machine are shown in Figure 7.39.

%We could give a precise definition of legal window here, in terms of the transition func-
tion. But doing so is quite tedious and would distract us from the main thrust of the
proof argument. Anyone desiring more precision should refer to the related analysis in
the proof of Theorem 5.15, the undecidability of the Post Correspondence Problem.

280 CHAPTER 7/ TIME COMPLEXITY

alg| b alq|Db alalq
(a) (b) (©)

|l alc a|algqge afal|b
q #| bl a a|b|a ¢ b
(d) P (e) NEP () -

FIGURE 7.39
Examples of legal windows

In Figure 7.39, windows (a) and (b) are legal because the transition function
allows N to move in the indicated way. Window (c) is legal because, with ¢;
appearing on the right side of the top row, we don’t know what symbol the head
is over. That symbol could be an a, and ¢; might change it to a b and move to the
right. That possibility would give rise to this window, so it doesn’t violate N’s
rules. Window (d) is obviously legal because the top and bottom are identical,
which would occur if the head weren’t adjacent to the location of the window.
Note that # may appear on the left or right of both the top and bottom rows
in a legal window. Window (e) is legal because state ¢; reading a b might have
been immediately to the right of the top row, and it would then have moved to
the left in state g2 to appear on the right-hand end of the bottom row. Finally,
window (f) is legal because state g; might have been immediately to the left of
the top row and it might have changed the b to a ¢ and moved to the left.

The windows shown in the following figure aren’t legal for machine N.

(a) (b) (©)

FIGURE 7.40
Examples of illegal windows

In window (a) the central symbol in the top row can’t change because a state
wasn’t adjacent to it. Window (b) isn’t legal because the transition function spec-
ifies that the b gets changed to a ¢ but not to an a. Window (c) isn’t legal because
two states appear in the bottom row.

cLAIM 7.41

If the top row of the table is the start configuration and every window in the
table is legal, each row of the table is a configuration that legally follows the
preceding one.

7.4 NP-COMPLETENESs 281

We prove this claim by considering any two adjacent configurations in the
table, called the upper configuration and the lower configuration. In the upper
configuration, every cell that isn’t adjacent to a state symbol and that doesn’t
contain the boundary symbol #, is the center top cell in a window whose top row
contains no states. Therefore that symbol must appear unchanged in the center
bottom of the window. Hence it appears in the same position in the bottom
configuration.

The window containing the state symbol in the center top cell guarantees that
the corresponding three positions are updated consistently with the transition
function. Therefore, if the upper configuration is a legal configuration, so is the
lower configuration, and the lower one follows the upper one according to N’s
rules. Note that this proof, though straightforward, depends crucially on our
choice of a 2 x 3 window size, as Exercise 7.39 shows.

Now we return to the construction of ¢meyve. It stipulates that all the windows
in the tableau are legal. Each window contains six cells, which may be set in
a fixed number of ways to yield a legal window. Formula ¢pove says that the
settings of those six cells must be one of these ways, or

¢move = /\ (the (’L,j) window is legal)

1<i<nk, 1<j<nk

We replace the text “the (7, j) window is legal” in this formula with the following
formula. We write the contents of six cells of a window as aq, ..., as.

\/ (551,00 AN Tigias N Tijal,as A Titlj—1,as N Tirljas N Tit1,j+1,a0)

A1,y ...,06
is a legal window

Next we analyze the complexity of the reduction to show that it operates in
polynomial time. To do so we examine the size of ¢. First, we estimate the
number of variables it has. Recall that the tableau is an n*¥ x n* table, so it
contains n?* cells. Each cell has [variables associated with it, where [is the
number of symbols in C. Because | depends only on the TM N and not on the
length of the input n, the total number of variables is O(n?*).

We estimate the size of each of the parts of ¢. Formula ¢ contains a fixed-
size fragment of the formula for each cell of the tableau, so its size is O(n?¥).
Formula ¢, has a fragment for each cell in the top row, so its size is O(n*).
Formulas ¢move and ¢yccepe €ach contain a fixed-size fragment of the formula for
each cell of the tableau, so their size is O(n?*). Thus ¢'s total size is O(n?¥).
That bound is sufficient for our purposes because it shows that the the size of
¢ is polynomial in n. If it were more than polynomial, the reduction wouldn’t
have any chance of generating it in polynomial time. (Actually our estimates are
low by a factor of O(log n) because each variable has indices that can range up
to n* and so may require O(logn) symbols to write into the formula, but this
additional factor doesn’t change the polynomiality of the result.)

To see that we can generate the formula in polynomial time, observe its highly
repetitive nature. Each component of the formula is composed of many nearly

282 CHAPTER 7 / TIME COMPLEXITY

identical fragments, which differ only at the indices in a simple way. Therefore
we may easily construct a reduction that produces ¢ in polynomial time from the
input w.

Thus we have concluded the proof of the Cook-Levin theorem, showing that
SAT 1s NP-complete. Showing the NP-completeness of other languages gen-
erally doesn’t require such a lengthy proof. Instead NP-completeness can be
proved with a polynomial time reduction from a language that is already known
to be NP-complete. We can use SAT for this purpose, but using 3SAT, the spe-
cial case of SAT that we defined on page 274, is usually easier. Recall that the
formulas in 3SAT are in conjunctive normal form (cnf) with three literals per
clause. First, we must show that 3SAT itself is NP-complete. We prove this
assertion as a corollary to Theorem 7.37.

COROLLARY 7.42
3SAT is NP-complete.

PROOF Obviously 3SAT is in NP, so we only need to prove that all languages
in NP reduce to 3SAT in polynomial time. One way to do so is by showing
that SAT polynomial time reduces to 3SAT. Instead, we modify the proof of
Theorem 7.37 so that it directly produces a formula in conjunctive normal form
with three literals per clause.

Theorem 7.37 produces a formula that is already almost in conjunctive nor-
mal form. Formula ¢ is a big AND of subformulas, each of which contains a
big OR and a big AND of ORs. Thus ¢ is an AND of clauses and so is already
in cnf. Formula ¢s,. is a big AND of variables. Taking each of these variables to
be a clause of size 1 we see that ¢y is in cnf. Formula ¢ccepe is a big OR of vari-
ables and is thus a single clause. Formula ¢y is the only one that isn’t already
in cnf, but we may easily convert it into a formula that is in cnf as follows.

Recall that ¢peve is a big AND of subformulas, each of which is an OR of ANDs
that describes all possible legal windows. The distributive laws, as described in
Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of
ORs. Doing so may significantly increase the size of each subformula, but it can
only increase the total size of ¢meve by a constant factor because the size of each
subformula depends only on N. The result is a formula that is in conjunctive
normal form.

Now that we have written the formula in cnf, we convert it to one with three
literals per clause. In each clause that currently has one or two literals, we repli-
cate one of the literals until the total number is three. In each clause that has
more than three literals, we split it into several clauses and add additional vari-
ables to preserve the satisfiability or nonsatisfiability of the original.

For example, we replace clause (a1 V az V a3 V as), wherein each a; is a literal,
with the two-clause expression (a1 V as V z) A (Z V az V as), wherein z is a new

7.5 ADDITIONAL NP-COMPLETE PROBLEMS 283

variable. If some setting of the a;’s satisfies the original clause, we can find some
setting of z so that the two new clauses are satisfied. In general, if the clause
contains [literals,

(al\/ag\/"'\/al),
we can replace it with the [— 2 clauses
(a1 VazVzi)A(FiVazsVz))A(ZmVas V) A A(Z3 Va—1Va).

We may easily verify that the new formula is satisfiable iff the original formula
was, so the proof is complete.

--

/.5

ADDITIONAL NP-COMPLETE PROBLEMS

The phenomenon of NP-completeness is widespread. NP-complete problems
appear in many fields. For reasons that are not well understood, most naturally
occurring NP-problems are known either to be in P or to be NP-complete. If
you seek a polynomial time algorithm for a new NP-problem, spending part of
your effort attempting to prove it NP-complete is sensible because doing so may
prevent you from working to find a polynomial time algorithm that doesn’t exist.

In this section we present additional theorems showing that various languages
are NP-complete. These theorems provide examples of the techniques that are
used in proofs of this kind. Our general strategy is to exhibit a polynomial time
reduction from 3SAT to the language in question, though we sometimes reduce
from other NP-complete languages when that is more convenient.

When constructing a polynomial time reduction from 3SAT to a language, we
look for structures in that language that can simulate the variables and clauses in
Boolean formulas. Such structures are sometimes called gadgets. For example,
in the reduction from 3SAT to CLIQUE presented in Theorem 7.32, individual
nodes simulate variables and triples of nodes simulate clauses. An individual
node may or may not be a member of the clique, which corresponds to a variable
that may or may not be true in a satisfying assignment. Each clause must contain
a literal that is assigned TRUE and that corresponds to the way each triple must
contain a node in the clique if the target size is to be reached. The following
corollary to Theorem 7.32 states that CLIQUE is NP-complete.

COROLLARY 743 s s s s s s e s
CLIQUE is NP-complete.

