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2.1 The Max-Cut Problem

Given an undirected graph G = (V,E), a cut in G is a subset S ⊆ V . Let S = V \S, and let
E(S, S) denote the set of edges with one vertex in S and one vertex in S. We will use the term
“cut” to refer variously to the partition (S, S) of the vertices, and also the set of edges E(S, S)
crossing between S and S; typically, we will use this term in a way that is unambiguous, and will
disambiguate where necessary.

The Max-Cut problem is to find the cut S that maximizes |E(S, S)|. In the weighted version of
Max-Cut, we are also given a edge weight function w : E → R, and the problem is to find a cut
with maximum weight. The Max-Cut problem is NP-hard, and is interesting to contrast with
the Min-Cut problem, which is solvable in polynomial time (e.g., by reducing to the s-t min-cut
problem, which is dual to the Max-Flow problem, and is solvable by algorithms such as one by
Edmonds and Karp [1].

2.1.1 Approx Max-Cut using Local Search

THe general idea in local search algorithms is the same: Start with a solution, find an improving
step to make a better solution, and repeat until stuck. In more detail:

1. Start with some arbitrary S0 ⊆ V .

2. In step i, let our current cut be denoted by Si.

3. If ∃v ∈ Si s.t. moving v to Si increases the resulting cut, then: Let Si+1 ← Si\{v}, go to
step 2.

4. Analogous statement for Si, i.e. If ∃v ∈ Si s.t. moving v to Si increases the resulting cut,
then: Let Si+1 ← Si ∪ {v}, go to step 2.

5. If no vertices can be moved to improve Si, terminate and output (Si, Si).

Theorem 2.1.1 The local search algorithm for Max-Cut terminates.

Proof: Each step must increase |E(Si, Si)| by at least 1. Since |E(Si, Si)| ≤ |E| = m, the
algorithm terminates in at most m steps.

Lemma 2.1.2 At a local optimum, the cut has at least m
2 edges.

Proof: Let the cut at the local optimum be S. Consider an arbitrary vertex v with degree dv.
Suppose v ∈ S; an identical argument applies if v ∈ S. Some of the edges adjacent to v have their
other endpoint in S (and hence don’t cross the cut (S, S)), while the other edges have their other
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endpoint in S (i.e., they cross the cut). At a local optimum, the number of edges crossing the cut
must be greater than the number of edges not crossing the cut, otherwise we could move v into S
to get a better cut. Hence, number of edges adjacent to v that are crossing the cut ≥ dv

2 .

Total size of cut = 1
2

∑

v∈V v’s edges crossing the cut

≥ 1
2

∑

v∈V
dv

2

= 2m
4 since

∑

v∈V dv = 2m

= m
2

Recall that for minimization problems, we had defined the approximation ratio to be

ρA = max
instances I

c(A(I))

opt(I)

For maximization problems, we can define the approximation ratio similarly:

ρA = max
instances I

opt(I)

c(A(I))

Note that in both cases, a lower value of ρA implies A is a better algorithm.

A general note: usually, it is difficult to estimate the value of the optimal solution (since the
problems are NP-hard), and hence to work out the worst case performance of A compared to the
optimum. Hence, for maximization problems, we look for upper bounds on opt(I), which we denote
by UBD(I). Note that this implies that

A(I) ≤ opt(I) ≤ UBD(I). (2.1.1)

Now, if we can show that UBD(I)
c(A(I)) ≤ α for all instances I, then we have ρA ≤ α.

Theorem 2.1.3 The local search algorithm described above is a 2-approximation algorithm.

Proof: It is easy to see that the number of edges m is an upper bound on Max-Cut (G), since
the maximum cut can’t have more edges than exist in the graph. Since the cut produced by the
local search algorithm always has at least m

2 edges, we have shown that for all instances I,

opt(I)

c(A(I))
≤

UBD(I)

c(A(I))
≤

m

m/2
= 2. (2.1.2)

Note that if we had a weighted instance of Max-Cut, then the local-search algorithm could poten-
tially run for Ω(

∑

e we) steps. (Can you construct such an example?) Since the size of the instance
is measured in the number of bits used to represent the instance, which is O(

∑

e log we), this would
be an exponential time algorithm. We will now present two other algorithms that can be modified
to handle arbitrary weights, and run in polynomial time in the size of the instance.
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2.1.2 Max-Cut using Greedy Algorithm

Fix an ordering on the vertices v1, v2, . . . , vn. Start with two empty bins S, S. Pick the first vertex
v1, put it in S. For each subsequent vertex, put it in the bin such that |E(S, S)| is maximized.

Theorem 2.1.4 The greedy algorithm is a 2-approximation algorithm for Max-Cut.

Proof: Consider any edge in the graph. One vertex must come first in the ordering. Call the
later vertex responsible for the edge.

Let ri be the number of edges that vi is responsible for. Since every edge has exactly one responsible
vertex,

∑n
i=1 ri = m.

Claim: When vi is added, at least ri

2 edges are added to the cut. Because: each of the other vertices
adjacent to the ri edges that vi is responsible for have already been assigned to either S or S. The
set which contains the most endpoint vertices of these ri edges must contain at least ri

2 endpoint
vertices (i.e. it cannot be that both sets contain less than the average number of vertices per set).
By the greedy algorithm, vi will the added to the other set, thus adding at least ri

2 edges to the
cut.

Number of edges in final cut =
∑n

i=1 number of edges added by each responsible vertex

≥
∑n

i=1
ri

2

≥ m
2

Since opt(I) ≤ m, the algorithm is a 2-approximation.

2.1.3 Using a Randomized Algorithm

Here’s an algorithm that seems to work by sheer luck: we assign each vertex to either S or S
uniformly at random (i.e., there is a probability 1

2 of each happening).

Lemma 2.1.5 E[num. edges in cut] = m
2

Proof: Let us number the edges 1 to m. Define an indicator variable Xi for each edge i s.t.
Xi = 1 if the edge crosses the cut and Xi = 0 if the edge doesn’t cross the cut. Since we assigned
the vertices independently randomly, probability that both endpoints of i are in the same set =
probability that the endpoints are in different sets = 1

2 . Hence, E[Xi] = 1
2 . Expected total number

of edges crossing the cut =
∑m

i=1 E[Xi] = m
2 by linearity of expectation. Hence the random

algorithm is a 2-approx algorithm on expectation.

2.1.4 Improving the Algorithm

2.1.4.1 How good was the upper bound UBD(I) = m?

It is usually a good idea to think about how good the lower bounds are, when trying to look for
better approximation ratios. In this case, we can show instances where opt(I) ≈ m

2 = 1
2UBD(I).

Consider K2n, the complete graph on 2n nodes: this has m = n(2n − 1) edges. For any cut with
|S| = i, |S| = 2n − i, each of the i vertices in S has 2n − i edges going across the cut to each of
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the vertices in S. Hence the total number of edges in the cut is i(2n− i). This is maximized when
i = n, and hence the largest cut in this graph has n2 edges.

Using UBD = m, we have UBD
OPT

= 2 − 1
n
, which gets arbitrarily close to 2 as n gets large. And

hence, with this upper bound, even the optimal algorithm could never be considered better than a
2-approximation. Hence no approximation algorithm can be better than 2-approx with an upper
bound of m, which indicates that we may want to look for better lower bounds.

2.1.4.2 How good are these algorithms?

Of course, there may be instances where the algorithm performs poorly as well, and one needs to
find these examples. For the Max-Cut problem, we will consider K2n,2n, the complete bipartite
graph with 2n nodes on each side. Clearly, the largest cut has 4n2 edges crossing it. Let us divide
each side into equal subsets of size n as below.

The Local Search Algorithm. Consider a cut (A∪C,B∪D). Each vertex has exactly n edges
crossing the cut (and n edges not crossing the cut). Hence, no benefit is gained by moving any
vertex from one side of the cut to another, and this will be a local optimum. Since the total edges
in this locally optimal cut = 2n2, we know that the local search algorithm cannot be better than
2-approximate, even with an improved upper-bound on the optimum.

The Greedy Algorithm. Consider processing the vertices in round-robin order from the sets
A,B,C,D. i.e. Let A = a1, . . . , an, B = b1, . . . , bn, C = c1, . . . , cn, D = d1, . . . , dn. Process the
vertices in the order a1,b1,c1,d1,a2,b2,c2,d2,. . . , dn.

Then it is possible to achieve a cut (A ∪C,B ∪D). We keep alternating the set in which we place
each vertex that is being processed; at any point in time each vertex that is being processed is
indifferent between being placed in S or S. Hence the greedy algorithm also achieves a cut of 2n2

edges in the worst case for this instance.

The Best-known Approximation Algorithm for Max-Cut In 1994, Goemans and Williamson [2]
used a Semidefinite programming relaxation of the Max-Cut problme to obtain an performance
guarantee of ρGW = 1

0.87856 . It is conjectured that ρGW may be the best possible approximation
assuming P 6= NP .
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2.2 Proving Inapproximability

Recall that to prove some (decision) problem is NP -hard, we reduce some NP-hard problem to the
problem at hand. For example, consider the decision Max-Cut problem: For a given graph G and
given parameter k, does there exist a cut of size ≥ k in G? To prove that this problem is NP -hard,
we could perform a polynomial time reduction f from some NP -hard problem (e.g. 3SAT).

In the above figure, I≥k denotes graph instances with a solution of value k or more, while I<k

denotes graph instances with a solution of value less than k. I.e., the set I≥k would contain all
graphs with a max-cut of k edges or more, while I<k would contain all the graphs with a max-cut
of less than k edges.

The reduction f maps an instance of 3SAT into a graph G such that the 3SAT expression is
satisfiable iff G ∈ I≥k. The existence of this mapping shows that deciding membership in I≥k is at
least as hard as deciding satisfiability in 3SAT, hence it is NP -hard.

So far this approach can show that a problem is NP -hard. To show that the problem is inap-
proximable to some factor, we must now show that our mapping can map to problem instances
where the max-cut satisfies a certain “gap-property”: we must exhibit a reduction f that maps
an instance of 3SAT into a graph G such that G ∈ I≥k1

iff the 3SAT instance is satisfiable and
G ∈ I<k2

iff the 3SAT instance is unsatisfiable. (Here k1 > k2, and the “gap” refers to the gap
between the values k1 and k2.)

Note that a k1

k2
approximation algorithm for Max-Cut can determine membership in either I≥k1

or I<k2
. This is because given a graph in I≥k1

, the algorithm can always produce a cut with at
least k1/

k1

k2
= k2 edges, while graphs in I<k2

always yield cuts of less than k2 edges since the
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algorithm cannot do better than the optimum. Hence, the existence of such a reduction f proves
that approximating the problem (in this case, Max-Cut) to within k1

k2
is NP -hard.

In other cases, we can exhibit a reduction of a known inapproximable problem to our problem to
show that our problem is also inapproximable.

A canonical example of an inapproximable problem is the Max-3SAT problem. Recall that a
3SAT formula ϕ is the conjunction (AND) of many clauses, and each clause is the disjunction (OR)
of three literals. The Max-3SAT problem seeks to find a truth assignment that maximizes the
number of satisfied clauses in ϕ. It is clear that the Max-3SAT problem is NP-hard, since it can
distinguish between satisfiable and unsatisfiable formulae φ.

Note that Max-3SAT is 8
7 approximable by a simple randomized algorithm: set the truth value of

each variable to be true or false uniformly at random. Since each clause requires just one literal to
be true for the clause to be satisfied, and each literal has a probability of 1

2 to be true, the probability
that at least one out of the three literals in a clause is satisfied is 7

8 . By linearity of expectations,
the expected number of clauses that are satisfied is 7

8 of all the clauses in the expression. The
following theorem of H̊astad shows that this may be the best possible approximation algorithm for
the problem.

Theorem 2.2.1 (H̊astad [3, 4]) MAX-3SAT approximable to less than 8
7 implies P = NP .

2.2.1 An Inapproximability Result

Let us now prove an inapproximability result using the general approach we have sketched in the
preceeding discussion. We will prove this result for the K-center problem: Given a complete
graph G = (V,

(

V
2

)

) with a length de on each edge e satisfying the triangle inequality (i.e., satisfying
duv + dvw ≥ duw), pick set of vertices S with |S| = K, such that S minimizes maxv∈V d(v, S).
(Here, d(v, S) is defined as minx∈S dvx.) Intuitively, can we pick K vertices in G such that every
vertex in G is “close” to one of the K vertices picked?

Theorem 2.2.2 For any ǫ > 0, the K-center problem is not (2− ǫ)-approximable unless P = NP .

Proof: We will prove this by a reduction from the dominating set problem. Recall that the
NP -hard Dominating Set problem is the following: Given a graph G = (V,E) and integer K,
is there a set D of at most K nodes such that each vertex not in the set D is adjacent to some
node in D? We will exhibit a reduction of instances G of the dominating set problem to instances
Ĝ of the K-center problem, such that “Yes” instances for Dominating set are mapped to K-center

6



instances with solution value 1, and “No” instances are mapped to instances with solution value 2.

Given an instance (G = (V,E),K) of the dominating set problem, define a complete graph Ĝ on
the vertex set V . Define a length function on the edges: if (i, j) is an edge in E, define the length
dij in Ĝ to be 1; if (i, j) is not an edge in E, let the length of (i, j) in Ĝ be dij = 2. Note that
since all distances in Ĝ are either 1 or 2, the solution value of any K center instance must be one
of these two numbers.

Note that if we have a “Yes” instance of dominating set, then there is a dominating set D of size
K: now placing a center at each of the vertices in D would ensure that each vertex in V \D would
be at unit distance to D in Ĝ, and hence the solution value of the K-center instance would be 1.
Conversely, if there is a solution to the K-center instance with value 1, then there is a subset S ⊆ V
such that all other vertices are at distance 1 from it. By construction, each of these vertices must
have an edge to some vertex in S, and hence S is a dominating set of size K.

Let us recall that any polynomial time algorithm that achieves (2 − ǫ)-approximation can disam-
biguate whether Ĝ has a K-center with distance 1 or distance 2. Indeed, suppose such a (2 − ǫ)-
approximation algorithm exists where ǫ > 0. Then such an algorithm, when applied to an instance
of Ĝ where the optimal solution is 1, will always return a solution with a value of 1(2− ǫ) < 2. On
the other hand, it can never do better than optimal on any instance where the optimal value is 2, so
in such a case it will always return a solution of at most 2. Hence the algorithm returns a solution
with value less than 2 iff the problem instance Ĝ had a K-center of distance 1. This allows us to
solve the decision dominating set problem in polynomial time since G has a dominating set of K
nodes iff Ĝ has a K-center with distance 1. Hence, for any ǫ > 0, K-center cannot be approximated
to 2− ǫ if P 6= NP .
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