exactly 3 distinct literals. Whether p = 0 or p = 1, one of the clauses is equivalent to $l_1 \vee l_2$, and the other evaluates to 1, which is the identity for AND.

If C_i has just 1 distinct literal l, then include (l ∨ p ∨ q) ∧ (l ∨ p ∨ ¬q) ∧ (l ∨ ¬p ∨ q) ∧ (l ∨ ¬p ∨ ¬q) as clauses of φ^{'''}. Regardless of the values of p and q, one of the four clauses is equivalent to l, and the other 3 evaluate to 1.

We can see that the 3-CNF formula ϕ''' is satisfiable if and only if ϕ is satisfiable by inspecting each of the three steps. Like the reduction from CIRCUIT-SAT to SAT, the construction of ϕ' from ϕ in the first step preserves satisfiability. The second step produces a CNF formula ϕ'' that is algebraically equivalent to ϕ' . The third step produces a 3-CNF formula ϕ''' that is effectively equivalent to ϕ'' , since any assignment to the variables p and q produces a formula that is algebraically equivalent to ϕ'' .

We must also show that the reduction can be computed in polynomial time. Constructing ϕ' from ϕ introduces at most 1 variable and 1 clause per connective in ϕ . Constructing ϕ'' from ϕ' can introduce at most 8 clauses into ϕ'' for each clause from ϕ' , since each clause of ϕ' has at most 3 variables, and the truth table for each clause has at most $2^3 = 8$ rows. The construction of ϕ''' from ϕ'' introduces at most 4 clauses into ϕ''' for each clause of ϕ'' . Thus, the size of the resulting formula ϕ''' is polynomial in the length of the original formula. Each of the constructions can easily be accomplished in polynomial time.

Exercises

34.4-1

Consider the straightforward (nonpolynomial-time) reduction in the proof of Theorem 34.9. Describe a circuit of size n that, when converted to a formula by this method, yields a formula whose size is exponential in n.

34.4-2

Show the 3-CNF formula that results when we use the method of Theorem 34.10 on the formula (34.3).

34.4-3

Professor Jagger proposes to show that SAT \leq_P 3-CNF-SAT by using only the truth-table technique in the proof of Theorem 34.10, and not the other steps. That is, the professor proposes to take the boolean formula ϕ , form a truth table for its variables, derive from the truth table a formula in 3-DNF that is equivalent to $\neg \phi$, and then negate and apply DeMorgan's laws to produce a 3-CNF formula equivalent to ϕ . Show that this strategy does not yield a polynomial-time reduction.

1086 Chapter 34 NP-Completeness

34.4-4

Show that the problem of determining whether a boolean formula is a tautology is complete for co-NP. (*Hint:* See Exercise 34.3-7.)

34.4-5

Show that the problem of determining the satisfiability of boolean formulas in disjunctive normal form is polynomial-time solvable.

34.4-6

Suppose that someone gives you a polynomial-time algorithm to decide formula satisfiability. Describe how to use this algorithm to find satisfying assignments in polynomial time.

*34.4-*7

Let 2-CNF-SAT be the set of satisfiable boolean formulas in CNF with exactly 2 literals per clause. Show that 2-CNF-SAT \in P. Make your algorithm as efficient as possible. (*Hint:* Observe that $x \lor y$ is equivalent to $\neg x \rightarrow y$. Reduce 2-CNF-SAT to an efficiently solvable problem on a directed graph.)

34.5 NP-complete problems

NP-complete problems arise in diverse domains: boolean logic, graphs, arithmetic, network design, sets and partitions, storage and retrieval, sequencing and scheduling, mathematical programming, algebra and number theory, games and puzzles, automata and language theory, program optimization, biology, chemistry, physics, and more. In this section, we shall use the reduction methodology to provide NP-completeness proofs for a variety of problems drawn from graph theory and set partitioning.

Figure 34.13 outlines the structure of the NP-completeness proofs in this section and Section 34.4. We prove each language in the figure to be NP-complete by reduction from the language that points to it. At the root is CIRCUIT-SAT, which we proved NP-complete in Theorem 34.7.

34.5.1 The clique problem

A *clique* in an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices, each pair of which is connected by an edge in E. In other words, a clique is a complete subgraph of G. The *size* of a clique is the number of vertices it contains. The *clique problem* is the optimization problem of finding a clique of maximum size in

Figure 34.13 The structure of NP-completeness proofs in Sections 34.4 and 34.5. All proofs ultimately follow by reduction from the NP-completeness of CIRCUIT-SAT.

a graph. As a decision problem, we ask simply whether a clique of a given size k exists in the graph. The formal definition is

 $CLIQUE = \{ \langle G, k \rangle : G \text{ is a graph containing a clique of size } k \}$.

A naive algorithm for determining whether a graph G = (V, E) with |V| vertices has a clique of size k is to list all k-subsets of V, and check each one to see whether it forms a clique. The running time of this algorithm is $\Omega(k^2\binom{|V|}{k})$, which is polynomial if k is a constant. In general, however, k could be near |V|/2, in which case the algorithm runs in superpolynomial time. Indeed, an efficient algorithm for the clique problem is unlikely to exist.

Theorem 34.11

The clique problem is NP-complete.

Proof To show that CLIQUE \in NP, for a given graph G = (V, E), we use the set $V' \subseteq V$ of vertices in the clique as a certificate for G. We can check whether V' is a clique in polynomial time by checking whether, for each pair $u, v \in V'$, the edge (u, v) belongs to E.

We next prove that 3-CNF-SAT \leq_P CLIQUE, which shows that the clique problem is NP-hard. You might be surprised that we should be able to prove such a result, since on the surface logical formulas seem to have little to do with graphs.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$ be a boolean formula in 3-CNF with k clauses. For r =

1088

Figure 34.14 The graph *G* derived from the 3-CNF formula $\phi = C_1 \wedge C_2 \wedge C_3$, where $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3)$, $C_2 = (\neg x_1 \vee x_2 \vee x_3)$, and $C_3 = (x_1 \vee x_2 \vee x_3)$, in reducing 3-CNF-SAT to CLIQUE. A satisfying assignment of the formula has $x_2 = 0$, $x_3 = 1$, and x_1 either 0 or 1. This assignment satisfies C_1 with $\neg x_2$, and it satisfies C_2 and C_3 with x_3 , corresponding to the clique with lightly shaded vertices.

1, 2, ..., k, each clause C_r has exactly three distinct literals l_1^r , l_2^r , and l_3^r . We shall construct a graph G such that ϕ is satisfiable if and only if G has a clique of size k.

We construct the graph G = (V, E) as follows. For each clause $C_r = (l_1^r \vee l_2^r \vee l_3^r)$ in ϕ , we place a triple of vertices ν_1^r , ν_2^r , and ν_3^r into V. We put an edge between two vertices ν_i^r and ν_i^s if both of the following hold:

- v_i^r and v_i^s are in different triples, that is, $r \neq s$, and
- their corresponding literals are *consistent*, that is, l_i^r is not the negation of l_i^s .

We can easily build this graph from ϕ in polynomial time. As an example of this construction, if we have

$$\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3),$$

then G is the graph shown in Figure 34.14.

We must show that this transformation of ϕ into G is a reduction. First, suppose that ϕ has a satisfying assignment. Then each clause C_r contains at least one literal l_i^r that is assigned 1, and each such literal corresponds to a vertex v_i^r . Picking one such "true" literal from each clause yields a set V' of k vertices. We claim that V' is a clique. For any two vertices v_i^r , $v_j^s \in V'$, where $r \neq s$, both corresponding literals l_i^r and l_j^s map to 1 by the given satisfying assignment, and thus the literals

34.5 NP-complete problems

cannot be complements. Thus, by the construction of G, the edge (v_i^r, v_j^s) belongs to E.

Conversely, suppose that G has a clique V' of size k. No edges in G connect vertices in the same triple, and so V' contains exactly one vertex per triple. We can assign 1 to each literal l_i^r such that $v_i^r \in V'$ without fear of assigning 1 to both a literal and its complement, since G contains no edges between inconsistent literals. Each clause is satisfied, and so ϕ is satisfied. (Any variables that do not correspond to a vertex in the clique may be set arbitrarily.)

In the example of Figure 34.14, a satisfying assignment of ϕ has $x_2 = 0$ and $x_3 = 1$. A corresponding clique of size k = 3 consists of the vertices corresponding to $\neg x_2$ from the first clause, x_3 from the second clause, and x_3 from the third clause. Because the clique contains no vertices corresponding to either x_1 or $\neg x_1$, we can set x_1 to either 0 or 1 in this satisfying assignment.

Observe that in the proof of Theorem 34.11, we reduced an arbitrary instance of 3-CNF-SAT to an instance of CLIQUE with a particular structure. You might think that we have shown only that CLIQUE is NP-hard in graphs in which the vertices are restricted to occur in triples and in which there are no edges between vertices in the same triple. Indeed, we have shown that CLIQUE is NP-hard only in this restricted case, but this proof suffices to show that CLIQUE is NP-hard in general graphs. Why? If we had a polynomial-time algorithm that solved CLIQUE on general graphs, it would also solve CLIQUE on restricted graphs.

The opposite approach—reducing instances of 3-CNF-SAT with a special structure to general instances of CLIQUE—would not have sufficed, however. Why not? Perhaps the instances of 3-CNF-SAT that we chose to reduce from were "easy," and so we would not have reduced an NP-hard problem to CLIQUE.

Observe also that the reduction used the instance of 3-CNF-SAT, but not the solution. We would have erred if the polynomial-time reduction had relied on knowing whether the formula ϕ is satisfiable, since we do not know how to decide whether ϕ is satisfiable in polynomial time.

34.5.2 The vertex-cover problem

A *vertex cover* of an undirected graph G = (V, E) is a subset $V' \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ (or both). That is, each vertex "covers" its incident edges, and a vertex cover for G is a set of vertices that covers all the edges in E. The *size* of a vertex cover is the number of vertices in it. For example, the graph in Figure 34.15(b) has a vertex cover $\{w, z\}$ of size 2.

The *vertex-cover problem* is to find a vertex cover of minimum size in a given graph. Restating this optimization problem as a decision problem, we wish to

Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G = (V, E) with clique $V' = \{u, v, x, y\}$. (b) The graph \overline{G} produced by the reduction algorithm that has vertex cover $V - V' = \{w, z\}$.

determine whether a graph has a vertex cover of a given size k. As a language, we define

VERTEX-COVER = { $\langle G, k \rangle$: graph G has a vertex cover of size k}.

The following theorem shows that this problem is NP-complete.

Theorem 34.12

The vertex-cover problem is NP-complete.

Proof We first show that VERTEX-COVER \in NP. Suppose we are given a graph G = (V, E) and an integer k. The certificate we choose is the vertex cover $V' \subseteq V$ itself. The verification algorithm affirms that |V'| = k, and then it checks, for each edge $(u, v) \in E$, that $u \in V'$ or $v \in V'$. We can easily verify the certificate in polynomial time.

We prove that the vertex-cover problem is NP-hard by showing that CLIQUE \leq_P VERTEX-COVER. This reduction relies on the notion of the "complement" of a graph. Given an undirected graph G = (V, E), we define the *complement* of G as $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{(u, v) : u, v \in V, u \neq v, \text{ and } (u, v) \notin E\}$. In other words, \overline{G} is the graph containing exactly those edges that are not in G. Figure 34.15 shows a graph and its complement and illustrates the reduction from CLIQUE to VERTEX-COVER.

The reduction algorithm takes as input an instance $\langle G, k \rangle$ of the clique problem. It computes the complement \overline{G} , which we can easily do in polynomial time. The output of the reduction algorithm is the instance $\langle \overline{G}, |V| - k \rangle$ of the vertex-cover problem. To complete the proof, we show that this transformation is indeed a

34.5 NP-complete problems

reduction: the graph G has a clique of size k if and only if the graph \overline{G} has a vertex cover of size |V| - k.

Suppose that \underline{G} has a clique $V' \subseteq V$ with |V'| = k. We claim that V - V' is a vertex cover in \overline{G} . Let (u, v) be any edge in \overline{E} . Then, $(u, v) \notin E$, which implies that at least one of u or v does not belong to V', since every pair of vertices in V' is connected by an edge of E. Equivalently, at least one of u or v is in V - V', which means that edge (u, v) is covered by V - V'. Since (u, v) was chosen arbitrarily from \overline{E} , every edge of \overline{E} is covered by a vertex in V - V'. Hence, the set V - V', which has size |V| - k, forms a vertex cover for \overline{G} .

Conversely, suppose that \overline{G} has a vertex cover $V' \subseteq V$, where |V'| = |V| - k. Then, for all $u, v \in V$, if $(u, v) \in \overline{E}$, then $u \in V'$ or $v \in V'$ or both. The contrapositive of this implication is that for all $u, v \in V$, if $u \notin V'$ and $v \notin V'$, then $(u, v) \in E$. In other words, V - V' is a clique, and it has size |V| - |V'| = k.

Since VERTEX-COVER is NP-complete, we don't expect to find a polynomialtime algorithm for finding a minimum-size vertex cover. Section 35.1 presents a polynomial-time "approximation algorithm," however, which produces "approximate" solutions for the vertex-cover problem. The size of a vertex cover produced by the algorithm is at most twice the minimum size of a vertex cover.

Thus, we shouldn't give up hope just because a problem is NP-complete. We may be able to design a polynomial-time approximation algorithm that obtains near-optimal solutions, even though finding an optimal solution is NP-complete. Chapter 35 gives several approximation algorithms for NP-complete problems.

34.5.3 The hamiltonian-cycle problem

We now return to the hamiltonian-cycle problem defined in Section 34.2.

Theorem 34.13

The hamiltonian cycle problem is NP-complete.

Proof We first show that HAM-CYCLE belongs to NP. Given a graph G = (V, E), our certificate is the sequence of |V| vertices that makes up the hamiltonian cycle. The verification algorithm checks that this sequence contains each vertex in V exactly once and that with the first vertex repeated at the end, it forms a cycle in G. That is, it checks that there is an edge between each pair of consecutive vertices and between the first and last vertices. We can verify the certificate in polynomial time.

We now prove that VERTEX-COVER \leq_P HAM-CYCLE, which shows that HAM-CYCLE is NP-complete. Given an undirected graph G = (V, E) and an

Chapter 34 NP-Completeness

Figure 34.16 The widget used in reducing the vertex-cover problem to the hamiltonian-cycle problem. An edge (u, v) of graph *G* corresponds to widget W_{uv} in the graph *G'* created in the reduction. (a) The widget, with individual vertices labeled. (b)–(d) The shaded paths are the only possible ones through the widget that include all vertices, assuming that the only connections from the widget to the remainder of *G'* are through vertices [u, v, 1], [u, v, 6], [v, u, 1], and [v, u, 6].

integer k, we construct an undirected graph G' = (V', E') that has a hamiltonian cycle if and only if G has a vertex cover of size k.

Our construction uses a *widget*, which is a piece of a graph that enforces certain properties. Figure 34.16(a) shows the widget we use. For each edge $(u, v) \in E$, the graph G' that we construct will contain one copy of this widget, which we denote by W_{uv} . We denote each vertex in W_{uv} by [u, v, i] or [v, u, i], where $1 \le i \le 6$, so that each widget W_{uv} contains 12 vertices. Widget W_{uv} also contains the 14 edges shown in Figure 34.16(a).

Along with the internal structure of the widget, we enforce the properties we want by limiting the connections between the widget and the remainder of the graph G' that we construct. In particular, only vertices [u, v, 1], [u, v, 6], [v, u, 1], [u, v, 6], [u, v, 6], [v, u, 1], [u, v, 6], [u, v, 6], [v, u, 1], [u, v, 6], [u, v, 0], [u, v, v], [u, v,and [v, u, 6] will have edges incident from outside W_{uv} . Any hamiltonian cycle of G' must traverse the edges of $W_{\mu\nu}$ in one of the three ways shown in Figures 34.16(b)–(d). If the cycle enters through vertex [u, v, 1], it must exit through vertex [u, v, 6], and it either visits all 12 of the widget's vertices (Figure 34.16(b)) or the six vertices [u, v, 1] through [u, v, 6] (Figure 34.16(c)). In the latter case, the cycle will have to reenter the widget to visit vertices [v, u, 1] through [v, u, 6]. Similarly, if the cycle enters through vertex [v, u, 1], it must exit through vertex [v, u, 6], and it either visits all 12 of the widget's vertices (Figure 34.16(d)) or the six vertices [v, u, 1] through [v, u, 6] (Figure 34.16(c)). No other paths through the widget that visit all 12 vertices are possible. In particular, it is impossible to construct two vertex-disjoint paths, one of which connects [u, v, 1] to [v, u, 6] and the other of which connects [v, u, 1] to [u, v, 6], such that the union of the two paths contains all of the widget's vertices.

1092

Figure 34.17 Reducing an instance of the vertex-cover problem to an instance of the hamiltoniancycle problem. (a) An undirected graph G with a vertex cover of size 2, consisting of the lightly shaded vertices w and y. (b) The undirected graph G' produced by the reduction, with the hamiltonian path corresponding to the vertex cover shaded. The vertex cover $\{w, y\}$ corresponds to edges $(s_1, [w, x, 1])$ and $(s_2, [y, x, 1])$ appearing in the hamiltonian cycle.

The only other vertices in V' other than those of widgets are *selector vertices* s_1, s_2, \ldots, s_k . We use edges incident on selector vertices in G' to select the k vertices of the cover in G.

In addition to the edges in widgets, E' contains two other types of edges, which Figure 34.17 shows. First, for each vertex $u \in V$, we add edges to join pairs of widgets in order to form a path containing all widgets corresponding to edges incident on u in G. We arbitrarily order the vertices adjacent to each vertex $u \in V$ as $u^{(1)}, u^{(2)}, \ldots, u^{(degree(u))}$, where degree(u) is the number of vertices adjacent to u. We create a path in G' through all the widgets corresponding to edges incident on u by adding to E' the edges $\{([u, u^{(i)}, 6], [u, u^{(i+1)}, 1]) :$ $1 \le i \le degree(u) - 1\}$. In Figure 34.17, for example, we order the vertices adjacent to w as x, y, z, and so graph G' in part (b) of the figure includes the edges

1093

Chapter 34 NP-Completeness

1094

([w, x, 6], [w, y, 1]) and ([w, y, 6], [w, z, 1]). For each vertex $u \in V$, these edges in G' fill in a path containing all widgets corresponding to edges incident on u in G.

The intuition behind these edges is that if we choose a vertex $u \in V$ in the vertex cover of G, we can construct a path from $[u, u^{(1)}, 1]$ to $[u, u^{(\text{degree}(u))}, 6]$ in G' that "covers" all widgets corresponding to edges incident on u. That is, for each of these widgets, say $W_{u,u^{(i)}}$, the path either includes all 12 vertices (if u is in the vertex cover but $u^{(i)}$ is not) or just the six vertices $[u, u^{(i)}, 1], [u, u^{(i)}, 2], \ldots, [u, u^{(i)}, 6]$ (if both u and $u^{(i)}$ are in the vertex cover).

The final type of edge in E' joins the first vertex $[u, u^{(1)}, 1]$ and the last vertex $[u, u^{(degree(u))}, 6]$ of each of these paths to each of the selector vertices. That is, we include the edges

$$\{(s_j, [u, u^{(1)}, 1]) : u \in V \text{ and } 1 \le j \le k\} \\ \cup \{(s_j, [u, u^{(\text{degree}(u))}, 6]) : u \in V \text{ and } 1 \le j \le k\}.$$

Next, we show that the size of G' is polynomial in the size of G, and hence we can construct G' in time polynomial in the size of G. The vertices of G' are those in the widgets, plus the selector vertices. With 12 vertices per widget, plus $k \le |V|$ selector vertices, we have a total of

$$|V'| = 12 |E| + k \leq 12 |E| + |V|$$

vertices. The edges of G' are those in the widgets, those that go between widgets, and those connecting selector vertices to widgets. Each widget contains 14 edges, totaling 14 |E| in all widgets. For each vertex $u \in V$, graph G' has degree(u) - 1 edges going between widgets, so that summed over all vertices in V,

$$\sum_{u \in V} (\text{degree}(u) - 1) = 2 |E| - |V|$$

edges go between widgets. Finally, G' has two edges for each pair consisting of a selector vertex and a vertex of V, totaling 2k |V| such edges. The total number of edges of G' is therefore

$$|E'| = (14 |E|) + (2 |E| - |V|) + (2k |V|)$$

= 16 |E| + (2k - 1) |V|
 \leq 16 |E| + (2 |V| - 1) |V|.

Now we show that the transformation from graph G to G' is a reduction. That is, we must show that G has a vertex cover of size k if and only if G' has a hamiltonian cycle.

34.5 NP-complete problems

Suppose that G = (V, E) has a vertex cover $V^* \subseteq V$ of size k. Let $V^* = \{u_1, u_2, \ldots, u_k\}$. As Figure 34.17 shows, we form a hamiltonian cycle in G' by including the following edges¹⁰ for each vertex $u_j \in V^*$. Include edges $\{([u_j, u_j^{(i)}, 6], [u_j, u_j^{(i+1)}, 1]) : 1 \leq i \leq \text{degree}(u_j) - 1\}$, which connect all widgets corresponding to edges incident on u_j . We also include the edges within these widgets as Figures 34.16(b)–(d) show, depending on whether the edge is covered by one or two vertices in V^* . The hamiltonian cycle also includes the edges

$$\begin{aligned} \{(s_j, [u_j, u_j^{(1)}, 1]) : 1 \le j \le k\} \\ & \cup \{(s_{j+1}, [u_j, u_j^{(\text{degree}(u_j))}, 6]) : 1 \le j \le k-1\} \\ & \cup \{(s_1, [u_k, u_k^{(\text{degree}(u_k))}, 6])\}. \end{aligned}$$

By inspecting Figure 34.17, you can verify that these edges form a cycle. The cycle starts at s_1 , visits all widgets corresponding to edges incident on u_1 , then visits s_2 , visits all widgets corresponding to edges incident on u_2 , and so on, until it returns to s_1 . The cycle visits each widget either once or twice, depending on whether one or two vertices of V^* cover its corresponding edge. Because V^* is a vertex cover for *G*, each edge in *E* is incident on some vertex in V^* , and so the cycle visits each vertex in each widget of *G'*. Because the cycle also visits every selector vertex, it is hamiltonian.

Conversely, suppose that G' = (V', E') has a hamiltonian cycle $C \subseteq E'$. We claim that the set

$$V^* = \{ u \in V : (s_j, [u, u^{(1)}, 1]) \in C \text{ for some } 1 \le j \le k \}$$
(34.4)

is a vertex cover for *G*. To see why, partition *C* into maximal paths that start at some selector vertex s_i , traverse an edge $(s_i, [u, u^{(1)}, 1])$ for some $u \in V$, and end at a selector vertex s_j without passing through any other selector vertex. Let us call each such path a "cover path." From how *G'* is constructed, each cover path must start at some s_i , take the edge $(s_i, [u, u^{(1)}, 1])$ for some vertex $u \in V$, pass through all the widgets corresponding to edges in *E* incident on *u*, and then end at some selector vertex s_j . We refer to this cover path as p_u , and by equation (34.4), we put *u* into *V**. Each widget visited by p_u must be W_{uv} or W_{vu} for some $v \in V$. For each widget visited by p_u , its vertices are visited by either one or two cover paths. If they are visited by one cover path, then edge $(u, v) \in E$ is covered in *G* by vertex *u*. If two cover paths visit the widget, then the other cover path must be p_v , which implies that $v \in V^*$, and edge $(u, v) \in E$ is covered by both *u* and *v*.

¹⁰Technically, we define a cycle in terms of vertices rather than edges (see Section B.4). In the interest of clarity, we abuse notation here and define the hamiltonian cycle in terms of edges.