
34.4 NP-completeness proofs 1085

exactly 3 distinct literals. Whether p D 0 or p D 1, one of the clauses is
equivalent to l1_ l2, and the other evaluates to 1, which is the identity for AND.

! If Ci has just 1 distinct literal l , then include .l _ p _ q/ ^ .l _ p _ :q/ ^
.l _:p _ q/ ^ .l _:p _:q/ as clauses of !000. Regardless of the values of p
and q, one of the four clauses is equivalent to l , and the other 3 evaluate to 1.

We can see that the 3-CNF formula !000 is satisfiable if and only if ! is satisfiable
by inspecting each of the three steps. Like the reduction from CIRCUIT-SAT to
SAT, the construction of !0 from ! in the first step preserves satisfiability. The
second step produces a CNF formula !00 that is algebraically equivalent to !0. The
third step produces a 3-CNF formula !000 that is effectively equivalent to !00, since
any assignment to the variables p and q produces a formula that is algebraically
equivalent to !00.

We must also show that the reduction can be computed in polynomial time. Con-
structing !0 from ! introduces at most 1 variable and 1 clause per connective in !.
Constructing !00 from !0 can introduce at most 8 clauses into !00 for each clause
from !0, since each clause of !0 has at most 3 variables, and the truth table for
each clause has at most 23 D 8 rows. The construction of !000 from !00 introduces
at most 4 clauses into !000 for each clause of !00. Thus, the size of the resulting
formula !000 is polynomial in the length of the original formula. Each of the con-
structions can easily be accomplished in polynomial time.

Exercises
34.4-1
Consider the straightforward (nonpolynomial-time) reduction in the proof of The-
orem 34.9. Describe a circuit of size n that, when converted to a formula by this
method, yields a formula whose size is exponential in n.
34.4-2
Show the 3-CNF formula that results when we use the method of Theorem 34.10
on the formula (34.3).
34.4-3
Professor Jagger proposes to show that SAT !P 3-CNF-SAT by using only the
truth-table technique in the proof of Theorem 34.10, and not the other steps. That
is, the professor proposes to take the boolean formula !, form a truth table for
its variables, derive from the truth table a formula in 3-DNF that is equivalent
to :!, and then negate and apply DeMorgan’s laws to produce a 3-CNF formula
equivalent to !. Show that this strategy does not yield a polynomial-time reduction.



1086 Chapter 34 NP-Completeness

34.4-4
Show that the problem of determining whether a boolean formula is a tautology is
complete for co-NP. (Hint: See Exercise 34.3-7.)
34.4-5
Show that the problem of determining the satisfiability of boolean formulas in dis-
junctive normal form is polynomial-time solvable.
34.4-6
Suppose that someone gives you a polynomial-time algorithm to decide formula
satisfiability. Describe how to use this algorithm to find satisfying assignments in
polynomial time.
34.4-7
Let 2-CNF-SAT be the set of satisfiable boolean formulas in CNF with exactly 2
literals per clause. Show that 2-CNF-SAT 2 P. Make your algorithm as efficient as
possible. (Hint: Observe that x _ y is equivalent to :x ! y. Reduce 2-CNF-SAT
to an efficiently solvable problem on a directed graph.)

34.5 NP-complete problems

NP-complete problems arise in diverse domains: boolean logic, graphs, arithmetic,
network design, sets and partitions, storage and retrieval, sequencing and schedul-
ing, mathematical programming, algebra and number theory, games and puzzles,
automata and language theory, program optimization, biology, chemistry, physics,
and more. In this section, we shall use the reduction methodology to provide NP-
completeness proofs for a variety of problems drawn from graph theory and set
partitioning.

Figure 34.13 outlines the structure of the NP-completeness proofs in this section
and Section 34.4. We prove each language in the figure to be NP-complete by
reduction from the language that points to it. At the root is CIRCUIT-SAT, which
we proved NP-complete in Theorem 34.7.

34.5.1 The clique problem
A clique in an undirected graph G D .V; E/ is a subset V 0 " V of vertices, each
pair of which is connected by an edge in E. In other words, a clique is a complete
subgraph of G. The size of a clique is the number of vertices it contains. The
clique problem is the optimization problem of finding a clique of maximum size in



34.5 NP-complete problems 1087

CIRCUIT-SAT

SAT

3-CNF-SAT

CLIQUE

VERTEX-COVER

SUBSET-SUM

HAM-CYCLE

TSP

Figure 34.13 The structure of NP-completeness proofs in Sections 34.4 and 34.5. All proofs ulti-
mately follow by reduction from the NP-completeness of CIRCUIT-SAT.

a graph. As a decision problem, we ask simply whether a clique of a given size k
exists in the graph. The formal definition is
CLIQUE D fhG; ki W G is a graph containing a clique of size kg :

A naive algorithm for determining whether a graph G D .V; E/ with jV j ver-
tices has a clique of size k is to list all k-subsets of V , and check each one to
see whether it forms a clique. The running time of this algorithm is ".k2

!jV j
k

"
/,

which is polynomial if k is a constant. In general, however, k could be near jV j =2,
in which case the algorithm runs in superpolynomial time. Indeed, an efficient
algorithm for the clique problem is unlikely to exist.

Theorem 34.11
The clique problem is NP-complete.

Proof To show that CLIQUE 2 NP, for a given graph G D .V; E/, we use the
set V 0 " V of vertices in the clique as a certificate for G. We can check whether V 0

is a clique in polynomial time by checking whether, for each pair u; # 2 V 0, the
edge .u; #/ belongs to E.

We next prove that 3-CNF-SAT !P CLIQUE, which shows that the clique prob-
lem is NP-hard. You might be surprised that we should be able to prove such a
result, since on the surface logical formulas seem to have little to do with graphs.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let ! D
C1 ^ C2 ^ # # # ^ Ck be a boolean formula in 3-CNF with k clauses. For r D



1088 Chapter 34 NP-Completeness

x1

x1

x2x2

x3x3

:x1

:x2 :x3

C1 D x1 _ :x2 _:x3

C2 D :x1 _ x2 _ x3 C3 D x1 _ x2 _ x3

Figure 34.14 The graph G derived from the 3-CNF formula ! D C1 ^ C2 ^ C3, where C1 D
.x1 _ :x2 _ :x3/, C2 D .:x1 _ x2 _ x3/, and C3 D .x1 _ x2 _ x3/, in reducing 3-CNF-SAT to
CLIQUE. A satisfying assignment of the formula has x2 D 0, x3 D 1, and x1 either 0 or 1. This
assignment satisfies C1 with :x2, and it satisfies C2 and C3 with x3, corresponding to the clique
with lightly shaded vertices.

1; 2; : : : ; k, each clause Cr has exactly three distinct literals lr
1 , lr

2 , and lr
3 . We shall

construct a graph G such that ! is satisfiable if and only if G has a clique of size k.
We construct the graph G D .V; E/ as follows. For each clause Cr D

.lr
1 _ lr

2 _ lr
3 / in !, we place a triple of vertices #r

1 , #r
2 , and #r

3 into V . We put
an edge between two vertices #r

i and #s
j if both of the following hold:

! #r
i and #s

j are in different triples, that is, r ¤ s, and
! their corresponding literals are consistent, that is, lr

i is not the negation of ls
j .

We can easily build this graph from ! in polynomial time. As an example of this
construction, if we have
! D .x1 _ :x2 _ :x3/ ^ .:x1 _ x2 _ x3/ ^ .x1 _ x2 _ x3/ ;

then G is the graph shown in Figure 34.14.
We must show that this transformation of ! into G is a reduction. First, suppose

that ! has a satisfying assignment. Then each clause Cr contains at least one
literal lr

i that is assigned 1, and each such literal corresponds to a vertex #r
i . Picking

one such “true” literal from each clause yields a set V 0 of k vertices. We claim that
V 0 is a clique. For any two vertices #r

i ; #s
j 2 V 0, where r ¤ s, both corresponding

literals lr
i and ls

j map to 1 by the given satisfying assignment, and thus the literals



34.5 NP-complete problems 1089

cannot be complements. Thus, by the construction of G, the edge .#r
i ; #s

j / belongs
to E.

Conversely, suppose that G has a clique V 0 of size k. No edges in G connect
vertices in the same triple, and so V 0 contains exactly one vertex per triple. We can
assign 1 to each literal lr

i such that #r
i 2 V 0 without fear of assigning 1 to both a

literal and its complement, since G contains no edges between inconsistent literals.
Each clause is satisfied, and so ! is satisfied. (Any variables that do not correspond
to a vertex in the clique may be set arbitrarily.)

In the example of Figure 34.14, a satisfying assignment of ! has x2 D 0 and
x3 D 1. A corresponding clique of size k D 3 consists of the vertices correspond-
ing to :x2 from the first clause, x3 from the second clause, and x3 from the third
clause. Because the clique contains no vertices corresponding to either x1 or :x1,
we can set x1 to either 0 or 1 in this satisfying assignment.

Observe that in the proof of Theorem 34.11, we reduced an arbitrary instance
of 3-CNF-SAT to an instance of CLIQUE with a particular structure. You might
think that we have shown only that CLIQUE is NP-hard in graphs in which the
vertices are restricted to occur in triples and in which there are no edges between
vertices in the same triple. Indeed, we have shown that CLIQUE is NP-hard only
in this restricted case, but this proof suffices to show that CLIQUE is NP-hard in
general graphs. Why? If we had a polynomial-time algorithm that solved CLIQUE
on general graphs, it would also solve CLIQUE on restricted graphs.

The opposite approach—reducing instances of 3-CNF-SAT with a special struc-
ture to general instances of CLIQUE—would not have sufficed, however. Why
not? Perhaps the instances of 3-CNF-SAT that we chose to reduce from were
“easy,” and so we would not have reduced an NP-hard problem to CLIQUE.

Observe also that the reduction used the instance of 3-CNF-SAT, but not the
solution. We would have erred if the polynomial-time reduction had relied on
knowing whether the formula ! is satisfiable, since we do not know how to decide
whether ! is satisfiable in polynomial time.

34.5.2 The vertex-cover problem
A vertex cover of an undirected graph G D .V; E/ is a subset V 0 " V such that
if .u; #/ 2 E, then u 2 V 0 or # 2 V 0 (or both). That is, each vertex “covers” its
incident edges, and a vertex cover for G is a set of vertices that covers all the edges
in E. The size of a vertex cover is the number of vertices in it. For example, the
graph in Figure 34.15(b) has a vertex cover fw; ´g of size 2.

The vertex-cover problem is to find a vertex cover of minimum size in a given
graph. Restating this optimization problem as a decision problem, we wish to



1090 Chapter 34 NP-Completeness

u v

y x

z w

(a)

u v

y x

z w

(b)

Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G D .V; E/ with
clique V 0 D fu; #; x; yg. (b) The graph G produced by the reduction algorithm that has vertex cover
V $ V 0 D fw; ´g.

determine whether a graph has a vertex cover of a given size k. As a language, we
define
VERTEX-COVERD fhG; ki W graph G has a vertex cover of size kg :

The following theorem shows that this problem is NP-complete.

Theorem 34.12
The vertex-cover problem is NP-complete.

Proof We first show that VERTEX-COVER 2 NP. Suppose we are given a graph
G D .V; E/ and an integer k. The certificate we choose is the vertex cover V 0 " V
itself. The verification algorithm affirms that jV 0j D k, and then it checks, for each
edge .u; #/ 2 E, that u 2 V 0 or # 2 V 0. We can easily verify the certificate in
polynomial time.

We prove that the vertex-cover problem is NP-hard by showing that CLIQUE !P
VERTEX-COVER. This reduction relies on the notion of the “complement” of a
graph. Given an undirected graph G D .V; E/, we define the complement of G
as G D .V; E/, where E D f.u; #/ W u; # 2 V; u ¤ #; and .u; #/ 62 Eg. In other
words, G is the graph containing exactly those edges that are not in G. Figure 34.15
shows a graph and its complement and illustrates the reduction from CLIQUE to
VERTEX-COVER.

The reduction algorithm takes as input an instance hG; ki of the clique problem.
It computes the complement G, which we can easily do in polynomial time. The
output of the reduction algorithm is the instance hG; jV j $ ki of the vertex-cover
problem. To complete the proof, we show that this transformation is indeed a



34.5 NP-complete problems 1091

reduction: the graph G has a clique of size k if and only if the graph G has a vertex
cover of size jV j $ k.

Suppose that G has a clique V 0 " V with jV 0j D k. We claim that V $ V 0 is a
vertex cover in G. Let .u; #/ be any edge in E. Then, .u; #/ 62 E, which implies
that at least one of u or # does not belong to V 0, since every pair of vertices in V 0 is
connected by an edge of E. Equivalently, at least one of u or # is in V $ V 0, which
means that edge .u; #/ is covered by V $ V 0. Since .u; #/ was chosen arbitrarily
from E, every edge of E is covered by a vertex in V $ V 0. Hence, the set V $ V 0,
which has size jV j $ k, forms a vertex cover for G.

Conversely, suppose that G has a vertex cover V 0 " V , where jV 0j D jV j $ k.
Then, for all u; # 2 V , if .u; #/ 2 E, then u 2 V 0 or # 2 V 0 or both. The
contrapositive of this implication is that for all u; # 2 V , if u 62 V 0 and # 62 V 0,
then .u; #/ 2 E. In other words, V $V 0 is a clique, and it has size jV j$jV 0j D k.

Since VERTEX-COVER is NP-complete, we don’t expect to find a polynomial-
time algorithm for finding a minimum-size vertex cover. Section 35.1 presents a
polynomial-time “approximation algorithm,” however, which produces “approxi-
mate” solutions for the vertex-cover problem. The size of a vertex cover produced
by the algorithm is at most twice the minimum size of a vertex cover.

Thus, we shouldn’t give up hope just because a problem is NP-complete. We
may be able to design a polynomial-time approximation algorithm that obtains
near-optimal solutions, even though finding an optimal solution is NP-complete.
Chapter 35 gives several approximation algorithms for NP-complete problems.

34.5.3 The hamiltonian-cycle problem
We now return to the hamiltonian-cycle problem defined in Section 34.2.

Theorem 34.13
The hamiltonian cycle problem is NP-complete.

Proof We first show that HAM-CYCLE belongs to NP. Given a graph G D
.V; E/, our certificate is the sequence of jV j vertices that makes up the hamiltonian
cycle. The verification algorithm checks that this sequence contains each vertex
in V exactly once and that with the first vertex repeated at the end, it forms a cycle
in G. That is, it checks that there is an edge between each pair of consecutive
vertices and between the first and last vertices. We can verify the certificate in
polynomial time.

We now prove that VERTEX-COVER !P HAM-CYCLE, which shows that
HAM-CYCLE is NP-complete. Given an undirected graph G D .V; E/ and an



1092 Chapter 34 NP-Completeness

[u,v,1]
[u,v,2]
[u,v,3]
[u,v,4]
[u,v,5]
[u,v,6]

[v,u,1]
[v,u,2]
[v,u,3]
[v,u,4]
[v,u,5]
[v,u,6]

Wuv

(a)

Wuv

(b)

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

Wuv

(c)

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

Wuv

(d)

[u,v,1]

[u,v,6]

[v,u,1]

[v,u,6]

Figure 34.16 The widget used in reducing the vertex-cover problem to the hamiltonian-cycle prob-
lem. An edge .u; #/ of graph G corresponds to widget Wu! in the graph G0 created in the reduction.
(a) The widget, with individual vertices labeled. (b)–(d) The shaded paths are the only possible ones
through the widget that include all vertices, assuming that the only connections from the widget to
the remainder of G0 are through vertices Œu; #; 1$, Œu; #; 6$, Œ#; u; 1$, and Œ#; u; 6$.

integer k, we construct an undirected graph G0 D .V 0; E 0/ that has a hamiltonian
cycle if and only if G has a vertex cover of size k.

Our construction uses a widget, which is a piece of a graph that enforces certain
properties. Figure 34.16(a) shows the widget we use. For each edge .u; #/ 2 E, the
graph G0 that we construct will contain one copy of this widget, which we denote
by Wu! . We denote each vertex in Wu! by Œu; #; i $ or Œ#; u; i $, where 1 ! i ! 6, so
that each widget Wu! contains 12 vertices. Widget Wu! also contains the 14 edges
shown in Figure 34.16(a).

Along with the internal structure of the widget, we enforce the properties we
want by limiting the connections between the widget and the remainder of the
graph G0 that we construct. In particular, only vertices Œu; #; 1$, Œu; #; 6$, Œ#; u; 1$,
and Œ#; u; 6$ will have edges incident from outside Wu! . Any hamiltonian cycle
of G0 must traverse the edges of Wu! in one of the three ways shown in Fig-
ures 34.16(b)–(d). If the cycle enters through vertex Œu; #; 1$, it must exit through
vertex Œu; #; 6$, and it either visits all 12 of the widget’s vertices (Figure 34.16(b))
or the six vertices Œu; #; 1$ through Œu; #; 6$ (Figure 34.16(c)). In the latter case,
the cycle will have to reenter the widget to visit vertices Œ#; u; 1$ through Œ#; u; 6$.
Similarly, if the cycle enters through vertex Œ#; u; 1$, it must exit through ver-
tex Œ#; u; 6$, and it either visits all 12 of the widget’s vertices (Figure 34.16(d)) or
the six vertices Œ#; u; 1$ through Œ#; u; 6$ (Figure 34.16(c)). No other paths through
the widget that visit all 12 vertices are possible. In particular, it is impossible to
construct two vertex-disjoint paths, one of which connects Œu; #; 1$ to Œ#; u; 6$ and
the other of which connects Œ#; u; 1$ to Œu; #; 6$, such that the union of the two paths
contains all of the widget’s vertices.



34.5 NP-complete problems 1093

[w,x,1]

[w,x,6]

[x,w,1]

[x,w,6]

Wwx

(b)
[x,y,1]

[x,y,6]

[y,x,1]

[y,x,6]

Wxy

[w,y,1]

[w,y,6]

[y,w,1]

[y,w,6]

Wwy

[w,z,1]

[w,z,6]

[z,w,1]

[z,w,6]

Wwz

s1

s2

w x

z y
(a)

Figure 34.17 Reducing an instance of the vertex-cover problem to an instance of the hamiltonian-
cycle problem. (a) An undirected graph G with a vertex cover of size 2, consisting of the lightly
shaded vertices w and y. (b) The undirected graph G0 produced by the reduction, with the hamilto-
nian path corresponding to the vertex cover shaded. The vertex cover fw; yg corresponds to edges
.s1; Œw; x; 1$/ and .s2; Œy; x; 1$/ appearing in the hamiltonian cycle.

The only other vertices in V 0 other than those of widgets are selector vertices
s1; s2; : : : ; sk . We use edges incident on selector vertices in G0 to select the k
vertices of the cover in G.

In addition to the edges in widgets, E 0 contains two other types of edges, which
Figure 34.17 shows. First, for each vertex u 2 V , we add edges to join pairs
of widgets in order to form a path containing all widgets corresponding to edges
incident on u in G. We arbitrarily order the vertices adjacent to each vertex
u 2 V as u.1/; u.2/; : : : ; u.degree.u//, where degree.u/ is the number of vertices
adjacent to u. We create a path in G0 through all the widgets corresponding
to edges incident on u by adding to E 0 the edges f.Œu; u.i/; 6$; Œu; u.iC1/; 1$/ W
1 ! i ! degree.u/ $ 1g. In Figure 34.17, for example, we order the vertices ad-
jacent to w as x; y; ´, and so graph G0 in part (b) of the figure includes the edges



1094 Chapter 34 NP-Completeness

.Œw; x; 6$; Œw; y; 1$/ and .Œw; y; 6$; Œw; ´; 1$/. For each vertex u 2 V , these edges
in G0 fill in a path containing all widgets corresponding to edges incident on u
in G.

The intuition behind these edges is that if we choose a vertex u 2 V in the vertex
cover of G, we can construct a path from Œu; u.1/; 1$ to Œu; u.degree.u//; 6$ in G0 that
“covers” all widgets corresponding to edges incident on u. That is, for each of these
widgets, say Wu;u.i/ , the path either includes all 12 vertices (if u is in the vertex
cover but u.i/ is not) or just the six vertices Œu; u.i/; 1$; Œu; u.i/; 2$; : : : ; Œu; u.i/; 6$ (if
both u and u.i/ are in the vertex cover).

The final type of edge in E 0 joins the first vertex Œu; u.1/; 1$ and the last vertex
Œu; u.degree.u//; 6$ of each of these paths to each of the selector vertices. That is, we
include the edges
f.sj ; Œu; u.1/; 1$/ W u 2 V and 1 ! j ! kg

[ f.sj ; Œu; u.degree.u//; 6$/ W u 2 V and 1 ! j ! kg :

Next, we show that the size of G0 is polynomial in the size of G, and hence we
can construct G0 in time polynomial in the size of G. The vertices of G0 are those
in the widgets, plus the selector vertices. With 12 vertices per widget, plus k ! jV j
selector vertices, we have a total of
jV 0j D 12 jEj C k

! 12 jEj C jV j

vertices. The edges of G0 are those in the widgets, those that go between widgets,
and those connecting selector vertices to widgets. Each widget contains 14 edges,
totaling 14 jEj in all widgets. For each vertex u 2 V , graph G0 has degree.u/ $ 1
edges going between widgets, so that summed over all vertices in V ,
X

u2V

.degree.u/ $ 1/ D 2 jEj $ jV j

edges go between widgets. Finally, G0 has two edges for each pair consisting of a
selector vertex and a vertex of V , totaling 2k jV j such edges. The total number of
edges of G0 is therefore
jE 0j D .14 jEj/C .2 jEj $ jV j/C .2k jV j/

D 16 jEj C .2k $ 1/ jV j
! 16 jEj C .2 jV j $ 1/ jV j :

Now we show that the transformation from graph G to G0 is a reduction. That is,
we must show that G has a vertex cover of size k if and only if G0 has a hamiltonian
cycle.



34.5 NP-complete problems 1095

Suppose that G D .V; E/ has a vertex cover V ! " V of size k. Let
V ! D fu1; u2; : : : ; ukg. As Figure 34.17 shows, we form a hamiltonian cy-
cle in G0 by including the following edges10 for each vertex uj 2 V !. Include
edges ˚.Œuj ; u.i/

j ; 6$; Œuj ; u.iC1/
j ; 1$/ W 1 ! i ! degree.uj / $ 1

#, which connect all
widgets corresponding to edges incident on uj . We also include the edges within
these widgets as Figures 34.16(b)–(d) show, depending on whether the edge is cov-
ered by one or two vertices in V !. The hamiltonian cycle also includes the edges
f.sj ; Œuj ; u.1/

j ; 1$/ W 1 ! j ! kg

[ f.sj C1; Œuj ; u
.degree.uj //

j ; 6$/ W 1 ! j ! k $ 1g

[ f.s1; Œuk ; u.degree.uk//
k ; 6$/g :

By inspecting Figure 34.17, you can verify that these edges form a cycle. The cycle
starts at s1, visits all widgets corresponding to edges incident on u1, then visits s2,
visits all widgets corresponding to edges incident on u2, and so on, until it returns
to s1. The cycle visits each widget either once or twice, depending on whether one
or two vertices of V ! cover its corresponding edge. Because V ! is a vertex cover
for G, each edge in E is incident on some vertex in V !, and so the cycle visits each
vertex in each widget of G0. Because the cycle also visits every selector vertex, it
is hamiltonian.

Conversely, suppose that G0 D .V 0; E 0/ has a hamiltonian cycle C " E 0. We
claim that the set
V ! D fu 2 V W .sj ; Œu; u.1/; 1$/ 2 C for some 1 ! j ! kg (34.4)
is a vertex cover for G. To see why, partition C into maximal paths that start at
some selector vertex si , traverse an edge .si ; Œu; u.1/; 1$/ for some u 2 V , and end
at a selector vertex sj without passing through any other selector vertex. Let us call
each such path a “cover path.” From how G0 is constructed, each cover path must
start at some si , take the edge .si ; Œu; u.1/; 1$/ for some vertex u 2 V , pass through
all the widgets corresponding to edges in E incident on u, and then end at some
selector vertex sj . We refer to this cover path as pu, and by equation (34.4), we
put u into V !. Each widget visited by pu must be Wu! or W!u for some # 2 V .
For each widget visited by pu, its vertices are visited by either one or two cover
paths. If they are visited by one cover path, then edge .u; #/ 2 E is covered in G
by vertex u. If two cover paths visit the widget, then the other cover path must
be p! , which implies that # 2 V !, and edge .u; #/ 2 E is covered by both u and #.

10Technically, we define a cycle in terms of vertices rather than edges (see Section B.4). In the
interest of clarity, we abuse notation here and define the hamiltonian cycle in terms of edges.


