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Approximation Algorithms

Many problems of practical significance are NP-complete, yet they are too impor-
tant to abandon merely because we don’t know how to find an optimal solution in
polynomial time. Even if a problem is NP-complete, there may be hope. We have at
least three ways to get around NP-completeness. First, if the actual inputs are small,
an algorithm with exponential running time may be perfectly satisfactory. Second,
we may be able to isolate important special cases that we can solve in polynomial
time. Third, we might come up with approaches to find near-optimal solutions in
polynomial time (either in the worst case or the expected case). In practice, near-
optimality is often good enough. We call an algorithm that returns near-optimal
solutions an approximation algorithm. This chapter presents polynomial-time ap-
proximation algorithms for several NP-complete problems.

Performance ratios for approximation algorithms

Suppose that we are working on an optimization problem in which each potential
solution has a positive cost, and we wish to find a near-optimal solution. Depending
on the problem, we may define an optimal solution as one with maximum possi-
ble cost or one with minimum possible cost; that is, the problem may be either a
maximization or a minimization problem.

We say that an algorithm for a problem has an approximation ratio of p(n) if,
for any input of size n, the cost C of the solution produced by the algorithm is
within a factor of p(n) of the cost C* of an optimal solution:

c* C
If an algorithm achieves an approximation ratio of p(n), we call it a p(n)-approx-
imation algorithm. The definitions of the approximation ratio and of a p(n)-
approximation algorithm apply to both minimization and maximization problems.
For a maximization problem, 0 < C < C*, and the ratio C*/C gives the factor
by which the cost of an optimal solution is larger than the cost of the approximate

max( ¢ S) < p(n). (35.1)
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solution. Similarly, for a minimization problem, 0 < C* < C, and the ratio C/C*
gives the factor by which the cost of the approximate solution is larger than the
cost of an optimal solution. Because we assume that all solutions have positive
cost, these ratios are always well defined. The approximation ratio of an approx-
imation algorithm is never less than 1, since C/C* < 1 implies C*/C > 1.
Therefore, a 1-approximation algorithm' produces an optimal solution, and an ap-
proximation algorithm with a large approximation ratio may return a solution that
is much worse than optimal.

For many problems, we have polynomial-time approximation algorithms with
small constant approximation ratios, although for other problems, the best known
polynomial-time approximation algorithms have approximation ratios that grow
as functions of the input size n. An example of such a problem is the set-cover
problem presented in Section 35.3.

Some NP-complete problems allow polynomial-time approximation algorithms
that can achieve increasingly better approximation ratios by using more and more
computation time. That is, we can trade computation time for the quality of the
approximation. An example is the subset-sum problem studied in Section 35.5.
This situation is important enough to deserve a name of its own.

An approximation scheme for an optimization problem is an approximation al-
gorithm that takes as input not only an instance of the problem, but also a value
€ > 0 such that for any fixed €, the scheme is a (1 + €)-approximation algorithm.
We say that an approximation scheme is a polynomial-time approximation scheme
if for any fixed € > 0, the scheme runs in time polynomial in the size n of its input
instance.

The running time of a polynomial-time approximation scheme can increase very
rapidly as € decreases. For example, the running time of a polynomial-time ap-
proximation scheme might be O(n2/€). Ideally, if € decreases by a constant factor,
the running time to achieve the desired approximation should not increase by more
than a constant factor (though not necessarily the same constant factor by which €
decreased).

We say that an approximation scheme is a fully polynomial-time approximation
scheme if it is an approximation scheme and its running time is polynomial in
both 1/€ and the size n of the input instance. For example, the scheme might have
a running time of O((1/€)?n?). With such a scheme, any constant-factor decrease
in € comes with a corresponding constant-factor increase in the running time.

en the approximation ratio is independent of 7, we use the terms “approximation ratio of p”” an
1'When the app t t dependent of the t PP t tio of p” and
“p-approximation algorithm,” indicating no dependence on 7.
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Chapter outline

The first four sections of this chapter present some examples of polynomial-time
approximation algorithms for NP-complete problems, and the fifth section presents
a fully polynomial-time approximation scheme. Section 35.1 begins with a study
of the vertex-cover problem, an NP-complete minimization problem that has an
approximation algorithm with an approximation ratio of 2. Section 35.2 presents
an approximation algorithm with an approximation ratio of 2 for the case of the
traveling-salesman problem in which the cost function satisfies the triangle in-
equality. It also shows that without the triangle inequality, for any constant p > 1,
a p-approximation algorithm cannot exist unless P = NP. In Section 35.3, we
show how to use a greedy method as an effective approximation algorithm for the
set-covering problem, obtaining a covering whose cost is at worst a logarithmic
factor larger than the optimal cost. Section 35.4 presents two more approximation
algorithms. First we study the optimization version of 3-CNF satisfiability and
give a simple randomized algorithm that produces a solution with an expected ap-
proximation ratio of 8/7. Then we examine a weighted variant of the vertex-cover
problem and show how to use linear programming to develop a 2-approximation
algorithm. Finally, Section 35.5 presents a fully polynomial-time approximation
scheme for the subset-sum problem.

35.1 The vertex-cover problem

Section 34.5.2 defined the vertex-cover problem and proved it NP-complete. Recall
that a vertex cover of an undirected graph G = (V, E) is a subset V' C V such
that if (1, v) is an edge of G, then either v € V' or v € V' (or both). The size of a
vertex cover is the number of vertices in it.

The vertex-cover problem is to find a vertex cover of minimum size in a given
undirected graph. We call such a vertex cover an optimal vertex cover. This prob-
lem is the optimization version of an NP-complete decision problem.

Even though we don’t know how to find an optimal vertex cover in a graph G
in polynomial time, we can efficiently find a vertex cover that is near-optimal.
The following approximation algorithm takes as input an undirected graph G and
returns a vertex cover whose size is guaranteed to be no more than twice the size
of an optimal vertex cover.
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Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7
vertices and 8 edges. (b) The edge (b, ¢), shown heavy, is the first edge chosen by APPROX-VERTEX-
COVER. Vertices b and ¢, shown lightly shaded, are added to the set C containing the vertex cover
being created. Edges (a, b), (¢, €),and (c, d ), shown dashed, are removed since they are now covered
by some vertex in C. (c) Edge (e, f) is chosen; vertices e and f are added to C. (d) Edge (d, g)
is chosen; vertices d and g are added to C. (e) The set C, which is the vertex cover produced by
APPROX-VERTEX-COVER, contains the six vertices b, ¢, d, e, f, g. (f) The optimal vertex cover for
this problem contains only three vertices: b, d, and e.

APPROX-VERTEX-COVER (G)

1 C=90

2 E' =G.E

3 while £ £ 0

4 let (u, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on an example
graph. The variable C contains the vertex cover being constructed. Line 1 ini-
tializes C to the empty set. Line 2 sets E’ to be a copy of the edge set G.E of
the graph. The loop of lines 3—6 repeatedly picks an edge (u, v) from E’, adds its
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endpoints u and v to C, and deletes all edges in E’ that are covered by either u
or v. Finally, line 7 returns the vertex cover C. The running time of this algorithm
is O(V + E), using adjacency lists to represent E’.

Theorem 35.1
APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof We have already shown that APPROX-VERTEX-COVER runs in polyno-
mial time.

The set C of vertices that is returned by APPROX-VERTEX-COVER is a vertex
cover, since the algorithm loops until every edge in G.E has been covered by some
vertex in C.

To see that APPROX-VERTEX-COVER returns a vertex cover that is at most twice
the size of an optimal cover, let A denote the set of edges that line 4 of APPROX-
VERTEX-COVER picked. In order to cover the edges in A, any vertex cover—in
particular, an optimal cover C* —must include at least one endpoint of each edge
in A. No two edges in A share an endpoint, since once an edge is picked in line 4,
all other edges that are incident on its endpoints are deleted from E’ in line 6. Thus,
no two edges in A are covered by the same vertex from C*, and we have the lower
bound

IC*| = 14] (35.2)

on the size of an optimal vertex cover. Each execution of line 4 picks an edge for
which neither of its endpoints is already in C, yielding an upper bound (an exact
upper bound, in fact) on the size of the vertex cover returned:

ICl=2]4] . (35.3)
Combining equations (35.2) and (35.3), we obtain
ICl = 2]4]
= 2|C7,
thereby proving the theorem. ]

Let us reflect on this proof. At first, you might wonder how we can possibly
prove that the size of the vertex cover returned by APPROX-VERTEX-COVER is at
most twice the size of an optimal vertex cover, when we do not even know the size
of an optimal vertex cover. Instead of requiring that we know the exact size of an
optimal vertex cover, we rely on a lower bound on the size. As Exercise 35.1-2 asks
you to show, the set A of edges that line 4 of APPROX-VERTEX-COVER selects is
actually a maximal matching in the graph G. (A maximal matching is a matching
that is not a proper subset of any other matching.) The size of a maximal matching
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is, as we argued in the proof of Theorem 35.1, a lower bound on the size of an
optimal vertex cover. The algorithm returns a vertex cover whose size is at most
twice the size of the maximal matching A. By relating the size of the solution
returned to the lower bound, we obtain our approximation ratio. We will use this
methodology in later sections as well.

Exercises

35.1-1
Give an example of a graph for which APPROX-VERTEX-COVER always yields a
suboptimal solution.

35.1-2
Prove that the set of edges picked in line 4 of APPROX-VERTEX-COVER forms a
maximal matching in the graph G.

35.1-3 *

Professor Biindchen proposes the following heuristic to solve the vertex-cover
problem. Repeatedly select a vertex of highest degree, and remove all of its in-
cident edges. Give an example to show that the professor’s heuristic does not have
an approximation ratio of 2. (Hint: Try a bipartite graph with vertices of uniform
degree on the left and vertices of varying degree on the right.)

35.14
Give an efficient greedy algorithm that finds an optimal vertex cover for a tree in
linear time.

35.1-5

From the proof of Theorem 34.12, we know that the vertex-cover problem and the
NP-complete clique problem are complementary in the sense that an optimal vertex
cover is the complement of a maximum-size clique in the complement graph. Does
this relationship imply that there is a polynomial-time approximation algorithm
with a constant approximation ratio for the clique problem? Justify your answer.

35.2 The traveling-salesman problem

In the traveling-salesman problem introduced in Section 34.5.4, we are given a
complete undirected graph G = (V, E) that has a nonnegative integer cost ¢(u, v)
associated with each edge (u,v) € E, and we must find a hamiltonian cycle (a
tour) of G with minimum cost. As an extension of our notation, let ¢(A4) denote
the total cost of the edges in the subset A C E:



1112

Chapter 35  Approximation Algorithms

c(d)= > clu.v).

(u,v)eAd

In many practical situations, the least costly way to go from a place u to a place w
is to go directly, with no intermediate steps. Put another way, cutting out an inter-
mediate stop never increases the cost. We formalize this notion by saying that the
cost function c satisfies the triangle inequality if, for all vertices u, v, w € V,

c(u,w) <c(u,v)+c,w).

The triangle inequality seems as though it should naturally hold, and it is au-
tomatically satisfied in several applications. For example, if the vertices of the
graph are points in the plane and the cost of traveling between two vertices is the
ordinary euclidean distance between them, then the triangle inequality is satisfied.
Furthermore, many cost functions other than euclidean distance satisfy the triangle
inequality.

As Exercise 35.2-2 shows, the traveling-salesman problem is NP-complete even
if we require that the cost function satisfy the triangle inequality. Thus, we should
not expect to find a polynomial-time algorithm for solving this problem exactly.
Instead, we look for good approximation algorithms.

In Section 35.2.1, we examine a 2-approximation algorithm for the traveling-
salesman problem with the triangle inequality. In Section 35.2.2, we show that
without the triangle inequality, a polynomial-time approximation algorithm with a
constant approximation ratio does not exist unless P = NP.

35.2.1 The traveling-salesman problem with the triangle inequality

Applying the methodology of the previous section, we shall first compute a struc-
ture—a minimum spanning tree—whose weight gives a lower bound on the length
of an optimal traveling-salesman tour. We shall then use the minimum spanning
tree to create a tour whose cost is no more than twice that of the minimum spanning
tree’s weight, as long as the cost function satisfies the triangle inequality. The fol-
lowing algorithm implements this approach, calling the minimum-spanning-tree
algorithm MST-PRIM from Section 23.2 as a subroutine. The parameter G is a
complete undirected graph, and the cost function c¢ satisfies the triangle inequality.

APPROX-TSP-TOUR(G, ¢)

1 select avertex r € G.V to be a “root” vertex

2 compute a minimum spanning tree 7" for G from root r
using MST-PRIM(G, ¢, 1)

3 let H be a list of vertices, ordered according to when they are first visited
in a preorder tree walk of T

4 return the hamiltonian cycle H
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Figure 35.2 The operation of APPROX-TSP-TOUR. (a) A complete undirected graph. Vertices lie
on intersections of integer grid lines. For example, f is one unit to the right and two units up from /.
The cost function between two points is the ordinary euclidean distance. (b) A minimum spanning
tree 7' of the complete graph, as computed by MST-PRIM. Vertex a is the root vertex. Only edges
in the minimum spanning tree are shown. The vertices happen to be labeled in such a way that they
are added to the main tree by MST-PRIM in alphabetical order. (¢) A walk of 7', starting at a. A
full walk of the tree visits the vertices in the order a, b, c,b,h,b,a,d, e, f.e,g,e,d,a. A preorder
walk of T lists a vertex just when it is first encountered, as indicated by the dot next to each vertex,
yielding the ordering a,b,c,h,d, e, f,g. (d) A tour obtained by visiting the vertices in the order
given by the preorder walk, which is the tour H returned by APPROX-TSP-TOUR. Its total cost
is approximately 19.074. (e) An optimal tour H™* for the original complete graph. Its total cost is
approximately 14.715.

Recall from Section 12.1 that a preorder tree walk recursively visits every vertex
in the tree, listing a vertex when it is first encountered, before visiting any of its
children.

Figure 35.2 illustrates the operation of APPROX-TSP-TOUR. Part (a) of the fig-
ure shows a complete undirected graph, and part (b) shows the minimum spanning
tree 7" grown from root vertex a by MST-PRIM. Part (c) shows how a preorder
walk of T visits the vertices, and part (d) displays the corresponding tour, which is
the tour returned by APPROX-TSP-TOUR. Part (e) displays an optimal tour, which
is about 23% shorter.
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By Exercise 23.2-2, even with a simple implementation of MST-PRIM, the run-
ning time of APPROX-TSP-TOUR is ®(V?). We now show that if the cost function
for an instance of the traveling-salesman problem satisfies the triangle inequality,
then APPROX-TSP-TOUR returns a tour whose cost is not more than twice the cost
of an optimal tour.

Theorem 35.2
APPROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for the
traveling-salesman problem with the triangle inequality.

Proof We have already seen that APPROX-TSP-TOUR runs in polynomial time.

Let H* denote an optimal tour for the given set of vertices. We obtain a spanning
tree by deleting any edge from a tour, and each edge cost is nonnegative. Therefore,
the weight of the minimum spanning tree 7' computed in line 2 of APPROX-TSP-
TOUR provides a lower bound on the cost of an optimal tour:

o(T) < c(H*). (35.4)

A full walk of T lists the vertices when they are first visited and also whenever
they are returned to after a visit to a subtree. Let us call this full walk W. The full
walk of our example gives the order

a,b,c,b,h,b,a,d,e, f,e,g,e,d,a .

Since the full walk traverses every edge of 7" exactly twice, we have (extending
our definition of the cost ¢ in the natural manner to handle multisets of edges)

c(W)=2c(T). (35.5)
Inequality (35.4) and equation (35.5) imply that
c(W) <2c(HY), (35.6)

and so the cost of W is within a factor of 2 of the cost of an optimal tour.

Unfortunately, the full walk W is generally not a tour, since it visits some ver-
tices more than once. By the triangle inequality, however, we can delete a visit to
any vertex from W and the cost does not increase. (If we delete a vertex v from W
between visits to u and w, the resulting ordering specifies going directly from u
to w.) By repeatedly applying this operation, we can remove from W all but the
first visit to each vertex. In our example, this leaves the ordering

a,b,c,h,d,e, f, g .

This ordering is the same as that obtained by a preorder walk of the tree 7. Let H
be the cycle corresponding to this preorder walk. It is a hamiltonian cycle, since ev-
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ery vertex is visited exactly once, and in fact it is the cycle computed by APPROX-
TSP-TOUR. Since H is obtained by deleting vertices from the full walk W, we
have

c(H) <c(W). (35.7)
Combining inequalities (35.6) and (35.7) gives c(H) < 2c¢(H ™), which completes
the proof. ]

In spite of the nice approximation ratio provided by Theorem 35.2, APPROX-
TSP-TOUR is usually not the best practical choice for this problem. There are other
approximation algorithms that typically perform much better in practice. (See the
references at the end of this chapter.)

35.2.2 The general traveling-salesman problem

If we drop the assumption that the cost function ¢ satisfies the triangle inequality,
then we cannot find good approximate tours in polynomial time unless P = NP.

Theorem 35.3
If P # NP, then for any constant p > 1, there is no polynomial-time approximation
algorithm with approximation ratio p for the general traveling-salesman problem.

Proof The proof is by contradiction. Suppose to the contrary that for some num-

ber p > 1, there is a polynomial-time approximation algorithm A with approx-

imation ratio p. Without loss of generality, we assume that p is an integer, by

rounding it up if necessary. We shall then show how to use A4 to solve instances

of the hamiltonian-cycle problem (defined in Section 34.2) in polynomial time.

Since Theorem 34.13 tells us that the hamiltonian-cycle problem is NP-complete,

Theorem 34.4 implies that if we can solve it in polynomial time, then P = NP.
Let G = (V, E) be an instance of the hamiltonian-cycle problem. We wish to

determine efficiently whether G contains a hamiltonian cycle by making use of

the hypothesized approximation algorithm A. We turn G into an instance of the

traveling-salesman problem as follows. Let G’ = (V, E’) be the complete graph

on V; that is,

E' ' ={(u,v):u,veVandu # v} .

Assign an integer cost to each edge in £’ as follows:

1 if (u,v) € E,

c(u,v) = .

plV|+1 otherwise .

We can create representations of G’ and ¢ from a representation of G in time poly-
nomial in |V| and |E|.
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Now, consider the traveling-salesman problem (G’, ¢). If the original graph G
has a hamiltonian cycle H, then the cost function ¢ assigns to each edge of H a
cost of 1, and so (G’, ¢) contains a tour of cost |V|. On the other hand, if G does
not contain a hamiltonian cycle, then any tour of G’ must use some edge not in E.
But any tour that uses an edge not in E has a cost of at least

eVi+D+(VI=-1) = p|V]I+|V]
> pl|V].

Because edges not in G are so costly, there is a gap of at least p | V| between the cost
of a tour that is a hamiltonian cycle in G (cost |V']) and the cost of any other tour
(cost at least p|V| + |V|). Therefore, the cost of a tour that is not a hamiltonian
cycle in G is at least a factor of p + 1 greater than the cost of a tour that is a
hamiltonian cycle in G.

Now, suppose that we apply the approximation algorithm A to the traveling-
salesman problem (G’,c). Because A is guaranteed to return a tour of cost no
more than p times the cost of an optimal tour, if G contains a hamiltonian cycle,
then A must return it. If G has no hamiltonian cycle, then A returns a tour of cost
more than p |V'|. Therefore, we can use A to solve the hamiltonian-cycle problem
in polynomial time. ]

The proof of Theorem 35.3 serves as an example of a general technique for
proving that we cannot approximate a problem very well. Suppose that given an
NP-hard problem X, we can produce in polynomial time a minimization prob-
lem Y such that “yes” instances of X correspond to instances of ¥ with value at
most k (for some k), but that “no” instances of X correspond to instances of Y
with value greater than pk. Then, we have shown that, unless P = NP, there is no
polynomial-time p-approximation algorithm for problem Y.

Exercises

35.2-1

Suppose that a complete undirected graph G = (V, E) with at least 3 vertices has
a cost function c¢ that satisfies the triangle inequality. Prove that ¢ (u, v) > 0 for all
u,vel.

35.2-2

Show how in polynomial time we can transform one instance of the traveling-
salesman problem into another instance whose cost function satisfies the triangle
inequality. The two instances must have the same set of optimal tours. Explain
why such a polynomial-time transformation does not contradict Theorem 35.3, as-
suming that P # NP.



