
7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.
In Section 5.3, we randomized our algorithm by explicitly permuting the in-

put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.
The changes to PARTITION and QUICKSORT are small. In the new partition

procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.

7.4 Analysis of quicksort 181

observation gives us the bound max0!q!n"1.q2 C .n " q " 1/2/ ! .n " 1/2 D
n2 " 2n C 1. Continuing with our bounding of T .n/, we obtain
T .n/ ! cn2 " c.2n " 1/ C ‚.n/

! cn2 ;

since we can pick the constant c large enough so that the c.2n " 1/ term dom-
inates the ‚.n/ term. Thus, T .n/ D O.n2/. We saw in Section 7.2 a specific
case in which quicksort takes ".n2/ time: when partitioning is unbalanced. Al-
ternatively, Exercise 7.4-1 asks you to show that recurrence (7.1) has a solution of
T .n/ D ".n2/. Thus, the (worst-case) running time of quicksort is ‚.n2/.

7.4.2 Expected running time
We have already seen the intuition behind why the expected running time of
RANDOMIZED-QUICKSORT is O.n lg n/: if, in each level of recursion, the split
induced by RANDOMIZED-PARTITION puts any constant fraction of the elements
on one side of the partition, then the recursion tree has depth ‚.lg n/, and O.n/
work is performed at each level. Even if we add a few new levels with the most un-
balanced split possible between these levels, the total time remains O.n lg n/. We
can analyze the expected running time of RANDOMIZED-QUICKSORT precisely
by first understanding how the partitioning procedure operates and then using this
understanding to derive an O.n lg n/ bound on the expected running time. This
upper bound on the expected running time, combined with the ‚.n lgn/ best-case
bound we saw in Section 7.2, yields a‚.n lg n/ expected running time. We assume
throughout that the values of the elements being sorted are distinct.

Running time and comparisons
The QUICKSORT and RANDOMIZED-QUICKSORT procedures differ only in how
they select pivot elements; they are the same in all other respects. We can therefore
couch our analysis of RANDOMIZED-QUICKSORT by discussing the QUICKSORT
and PARTITION procedures, but with the assumption that pivot elements are se-
lected randomly from the subarray passed to RANDOMIZED-PARTITION.
The running time of QUICKSORT is dominated by the time spent in the PARTI-

TION procedure. Each time the PARTITION procedure is called, it selects a pivot
element, and this element is never included in any future recursive calls to QUICK-
SORT and PARTITION. Thus, there can be at most n calls to PARTITION over the
entire execution of the quicksort algorithm. One call to PARTITION takes O.1/
time plus an amount of time that is proportional to the number of iterations of the
for loop in lines 3–6. Each iteration of this for loop performs a comparison in
line 4, comparing the pivot element to another element of the array A. Therefore,

182 Chapter 7 Quicksort

if we can count the total number of times that line 4 is executed, we can bound the
total time spent in the for loop during the entire execution of QUICKSORT.

Lemma 7.1
Let X be the number of comparisons performed in line 4 of PARTITION over the
entire execution of QUICKSORT on an n-element array. Then the running time of
QUICKSORT is O.n C X/.

Proof By the discussion above, the algorithm makes at most n calls to PARTI-
TION, each of which does a constant amount of work and then executes the for
loop some number of times. Each iteration of the for loop executes line 4.
Our goal, therefore, is to computeX , the total number of comparisons performed

in all calls to PARTITION. We will not attempt to analyze how many comparisons
are made in each call to PARTITION. Rather, we will derive an overall bound on the
total number of comparisons. To do so, we must understand when the algorithm
compares two elements of the array and when it does not. For ease of analysis, we
rename the elements of the array A as ´1; ´2; : : : ; ´n, with ´i being the i th smallest
element. We also define the set Zij D f´i ; ´iC1; : : : ; j́ g to be the set of elements
between ´i and j́ , inclusive.
When does the algorithm compare ´i and j́ ? To answer this question, we first

observe that each pair of elements is compared at most once. Why? Elements
are compared only to the pivot element and, after a particular call of PARTITION
finishes, the pivot element used in that call is never again compared to any other
elements.
Our analysis uses indicator random variables (see Section 5.2). We define

Xij D I f´i is compared to j́ g ;

where we are considering whether the comparison takes place at any time during
the execution of the algorithm, not just during one iteration or one call of PARTI-
TION. Since each pair is compared at most once, we can easily characterize the
total number of comparisons performed by the algorithm:

X D
n"1X

iD1

nX

j DiC1

Xij :

Taking expectations of both sides, and then using linearity of expectation and
Lemma 5.1, we obtain

E ŒX ! D E
"

n"1X

iD1

nX

j DiC1

Xij

#

7.4 Analysis of quicksort 183

D
n"1X

iD1

nX

j DiC1

E ŒXij !

D
n"1X

iD1

nX

j DiC1

Pr f´i is compared to j́ g : (7.2)

It remains to compute Pr f´i is compared to j́ g. Our analysis assumes that the
RANDOMIZED-PARTITION procedure chooses each pivot randomly and indepen-
dently.
Let us think about when two items are not compared. Consider an input to

quicksort of the numbers 1 through 10 (in any order), and suppose that the first
pivot element is 7. Then the first call to PARTITION separates the numbers into two
sets: f1; 2; 3; 4; 5; 6g and f8; 9; 10g. In doing so, the pivot element 7 is compared
to all other elements, but no number from the first set (e.g., 2) is or ever will be
compared to any number from the second set (e.g., 9).
In general, because we assume that element values are distinct, once a pivot x

is chosen with ´i < x < j́ , we know that ´i and j́ cannot be compared at any
subsequent time. If, on the other hand, ´i is chosen as a pivot before any other item
in Zij , then ´i will be compared to each item in Zij , except for itself. Similarly,
if j́ is chosen as a pivot before any other item in Zij , then j́ will be compared to
each item inZij , except for itself. In our example, the values 7 and 9 are compared
because 7 is the first item fromZ7;9 to be chosen as a pivot. In contrast, 2 and 9will
never be compared because the first pivot element chosen from Z2;9 is 7. Thus, ´i

and j́ are compared if and only if the first element to be chosen as a pivot fromZij

is either ´i or j́ .
We now compute the probability that this event occurs. Prior to the point at

which an element fromZij has been chosen as a pivot, the whole setZij is together
in the same partition. Therefore, any element of Zij is equally likely to be the first
one chosen as a pivot. Because the setZij has j "iC1 elements, and because pivots
are chosen randomly and independently, the probability that any given element is
the first one chosen as a pivot is 1=.j " i C 1/. Thus, we have
Pr f´i is compared to j́ g D Pr f´i or j́ is first pivot chosen from Zij g

D Pr f´i is first pivot chosen from Zij g
C Pr f j́ is first pivot chosen from Zij g

D
1

j " i C 1
C

1

j " i C 1

D
2

j " i C 1
: (7.3)

184 Chapter 7 Quicksort

The second line follows because the two events are mutually exclusive. Combining
equations (7.2) and (7.3), we get that

E ŒX ! D
n"1X

iD1

nX

j DiC1

2

j " i C 1
:

We can evaluate this sum using a change of variables (k D j " i) and the bound
on the harmonic series in equation (A.7):

E ŒX ! D
n"1X

iD1

nX

j DiC1

2

j " i C 1

D
n"1X

iD1

n"iX

kD1

2

k C 1

<

n"1X

iD1

nX

kD1

2

k

D
n"1X

iD1

O.lg n/

D O.n lg n/ : (7.4)
Thus we conclude that, using RANDOMIZED-PARTITION, the expected running
time of quicksort is O.n lg n/ when element values are distinct.

Exercises
7.4-1
Show that in the recurrence
T .n/ D max

0!q!n"1
.T .q/ C T .n " q " 1// C ‚.n/ ;

T .n/ D ".n2/.
7.4-2
Show that quicksort’s best-case running time is ".n lg n/.
7.4-3
Show that the expression q2 C .n " q " 1/2 achieves a maximum over q D
0; 1; : : : ; n " 1 when q D 0 or q D n " 1.
7.4-4
Show that RANDOMIZED-QUICKSORT’s expected running time is ".n lg n/.

