David Clark. Compact Pat Trees.
PhD thesis, U. Waterloo, 1996

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 63

4.1 Partitioned Compact PAT Trees

In order to control the number of accesses to secondary storage required during
CPT operations, we partition the tree into connected components each of which
fits in a disk block. We call each component a page because of the similarity of
this problem to the problem of efficiently laying out a tree or other data structure
in a paged virtual memory system([21]. If the disk block size is such that it can
hold two internal nodes then the PAT tree of Figure 1.6 could be partitioned as
shown in Figure 4.1. In this case we need to perform three accesses to secondary

@
Figure 4.1: Tree Partition

storage to reach leaf 1, 5 or 8 from the root. The alternative partitioning in
Figure 4.2 can reach any leaf in two accesses and so might be preferred.

Figure 4.2: Alternative Tree Partition

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 64
Two possible criteria for choosing one partitioning over others are:

o the number of pages accessed when traversing from the root to a leaf,

averaged over all the leaves, and

e the maximum number of pages accessed when traversing from the root to
any leaf.

We call page partitionings that minimize these measures average case optimal and
worst case optimal respectively. Let ¢; be the number of pages accessed to reach
the i’th leaf (under some ordering of the leaves). Then these partitionings
minimize ¥; ¢ and max¢; respectively. Implicit in these measures is the
assumption that we consider all leaves equally important. Lukes[32] and Gil and
Itai[21] consider more general cases where nodes and edges can have weights

associated with them.

The partitionings considered here are restricted such that each page holds a
connected portion of the tree. Gil and Itai use the term convez to describe such
partitionings and show that loosening this restriction does not allow for better
average case partitioning[21]. Because of this restriction, each page will itself be a
tree and can be stored using the CPT structure from Chapter 2. The only change
required to the CPT structure for storing the pages is that the leaf data may now
point to either a suffix in the text or a sub-tree page so an extra bit is required to
distinguish these two cases. We let the value p denote the number of internal
nodes in the largest sub-tree we can place in a block. Using the representation

from Chapter 3, p =~ ign +1;g-l{ggl%n e The restriction to connected sub-trees

allows us to refer to the root of the sub-tree in a page as the root of the page. In
addition we will refer to the page containing the sibling node of a page’s root as
the page’s sibling. Note that in some cases a page’s root and its sibling may be
the same page (consider the rightmost internal node of Figure 4.2).

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 65

Lukes[32] presents a dynamic programming method for finding an average case
optimal partitioning in O(np?) time. A related method for finding a worst case
optimal partitioning in O(np) time is reported in Carlisle et al.[9]. Unfortunately
both of these methods require np words of storage to compute the partitioning
and so are not practical for trees of the size we are considering. Gil and Itai[21]
develop a similar dynamic programming method for the average case that
operates in much less memory. However, their algorithm performs multiple passes
over the tree and so is unlikely to be efficient enough for our purposes.
Additionally, these dynamic programming methods do not adapt well to the
dynamic trees needed in the next chapter. Carlisle et al.[9] also discuss a top
down greedy heuristic that is conceptually simple and works well on some classes
of trees but can require O(log n) extra page accesses on average to reach any leaf.

In the remainder of this chapter we present a new bottom up greedy algorithm for
constructing a worst case optimal partitioning of a binary tree and demonstrate

its use on the CPT.

4.2 Partitioning Algorithm

Define the page height of a node in a partitioned tree as the maximum number of
pages that need to be read when traversing from the node to any leaf in its
sub-tree and the page height of a page as the page height of its root. In each case
we include the current page in the page height count. For any given assignment of
nodes to pages, also define the local page size of a node as the number of
descendents of that node that are on the same page as the node, plus one for the
original node. The page height and local page size of a node may be defined for a
partial partitioning provided the node and all of its descendents have been placed

on pages.

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 66

We present a partitioning algorithm that starts by assigning each leaf its own
page and a page height of one. Working upward, we apply the rule in Figure 4.3
at each node.
if both children have the same page height
if the sum of the local page sizes of the children is less than p,

merge the pages of the children and add the node
set the page height of the node to that of the children

else
close off the pages of the children
create a nev page for the current node
set the page height of the node to that of the children plus one

else
close off the page of the child with the lesser height
if the local page size of the remaining child is less than p,
add the node to the child’s page
set the page height of the node to match the child

else
close off the page of the remaining child
create a new page for the node
set the page height of the node to that of the child plus one

Figure 4.3: Tree Partitioning Rules

Theorem 4.1 A worst case optimal convez partitioning of a binary tree can be

computed in linear time, irrespective of the page size.

Proof: Using induction on the tree height, we show that the rule in Figure 4.3
produces a worst case optimal partitioning of the tree such that no other optimal
partitioning has a smaller root page and moreover that this holds for each

sub-tree. The basis case, k = 1, consists of a tree with a single node and so is

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 67

trivial. Assume the statement for 1..k — 1 and then consider the root of a tree of
height k. There are several possible cases:

1. The root has only one child. In which case either the root fits on the
topmost page of the child or it does not.

e Root fits (the local page size of the child is less than p): Place the root
in the topmost page. Any partitioning of smaller page height or top
most page must contain a partitioning for the child of larger page
height that violates the induction hypothesis for & — 1.

¢ Root does not fit (the local page size of the child is p): Create a new
page for the root. Clearly there cannot be a partitioning with fewer
than one vertex in the topmost page so any violation must be on the
page height constraint. The existence of partitioning of lesser page
height would imply a partitioning at height k — 1 with room for the
new root but the partitioning of the height k — 1 sub-tree was
completely full and also had smallest topmost page amongst all optimal

partitioning so this situation cannot occur.

2. Next consider the case where the root has two children that differ in page
height. By the rules above, the child of lesser page height is closed off. The
root is placed in the topmost page of the other child if at all possible, and
on a new page if not. There are two cases that are argued exactly as case 1

above. Case 1 is actually a specialization of case 2 so this is not surprising.

3. Finally assume the root has two children each of equal page height. Under
the rules above the new partitioning is formed by merging the topmost
pages of the two children and adding the root if the combined page is not
too large. If the combined page is too large, the topmost pages of both
children are closed and a new page is started for the root.

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 68

® Root fits (sum of children’s local page sizes is less than p): the page
height of the new partitioning is the same as that of the children so the
existence of a partitioning of lesser page height would violate the
induction hypothesis for k — 1. If there is a partitioning of the same
page height but smaller topmost page then it must contain a height
k — 1 partitioning for one of the two children that violates the
induction hypothesis.

e Root does not fit (sum of children’s local page sizes is at least p): Again
the topmost page has size one so no other partitioning of the same
page height can have a smaller topmost page. If there is a partitioning
of smaller page height then as before, it must contain a partitioning for
one of the two children that violates the induction hypothesis.

The “moreover” part holds because we never go back and invalidate the

optimality of the partitioning of sub-trees.

The rule in Figure 4.3 performs a constant amount of work at each node and so
can be applied in linear time. QED

Based on Theorem 4.1 we will refer to a partitioning resulting from the rules in
Figure 4.3 as the “optimal bottom up partitioning” of a tree. The optimal bottom
up partitioning is optimal in the sense that it minimizes the number of pages
accessed in the worst case root-leaf traversal. However, it can produce a large
number of very small pages. This problem results from the automatic closing off
of a page if its sibling has a greater page height. Because we do not worry about
aligning pages on block boundaries in the static text case, these small pages do not
cause serious problems. However, it is still worthwhile running a post-processing
pass that merges small pages into their parent whenever possible because each
page has some small amount of storage overhead. The results reported later in

this chapter include the use of such a pass. We will have to return to this problem

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 69

in the next chapter where small pages can cause storage management problems.

In order to judge the overall performance of data structures using the optimal
bottom up partitioning, we want to bound the page height in terms of the number
of nodes and the tree height, H. Before proving the bound, two simpler results
are needed.

Lemma 4.1 In an optimal bottom up partitioning, each sub-tree in a tree encoded
in a page of page height k > 1 contains at least one node having children with page
height k — 1.

Proof: If all its children have page height k — 2 or lower, split off the sub-tree
into its own page and obtain a partitioning with a smaller root node. The
difference in page heights allows us to make this change without increasing the
page height of the root. QED

Lemma 4.1 allows the simple observation that, under an optimal bottom up

partitioning, all nodes in a page have the same page height.

Lemma 4.2 While on a root-leaf path of pages in an optimal bottom up
partitioning, the leaves within a page height k page where k > 1 either have one
child page with page height k ~ 1 containing p nodes or two child pages with page
height k — 1 containing a total of at least p nodes.

Proof: Each leaf node is a sub-tree so by Lemma 4.1, it contains at least one
page height k& — 1 child. If neither of the conditions are met, then the parent
would have been moved in with either or both of the children and a partitioning
with a smaller root node obtained for that sub-tree. QED

Theorem 4.2 Let 0 <t < 1 be an arbitrary constant. The page height of the

worst case optimal partitioning of a tree is bounded above by

1+ [g] + [i-l:log,n] (4.1)

CHAPTER 4. STATIC TEXT ON SECONDARY STORAGE 70

where H is the height of the tree and n is the number of nodes in the tree.

Proof: Our proof is based on the optimal bottom up partitioning. Given such a
partitioning, we construct a sequence of pages on a deepest path, in the page
sense, such that at each stage we either divide the number of nodes in the current
sub-tree by [p*~*] or reduce the height (in the node sense) of the sub-tree by [p*].
At each point in the construction we consider either a single page or a pair of
sibling pages. Start the construction at the root page and select any node in the
page that has children at page height k — 1 and consider its page height & — 1
children. By Lemma 4.2, we know that there are at least p nodes in these child

pages. Because there are p nodes, one of the following two conditions must be met:

1. there are at least [p'~*] children pointing to child pages with page height
k — 2, in which case we select the child whose page height ¥ — 2 children

have the smallest portion of the entire sub-tree, or

2. there is at least one node pointing to pages at page height k — 2 such that
the length of the path from the root of the page to the node has length at
least [p*]. Select that node’s page height k — 2 children for the next step.

If neither of these conditions are met, then we could not be dealing with p nodes.
Case one can only occur [log [-t] n] times and case two can only occur [TE‘HT]
times. Add one for the root page, remove the inner ceilings, and simplify the log
to obtain an upper bound on the length of the path constructed. Because this
path is a deepest path in the page sense, the bound also applies to the page
height of the tree. QED

Two corollaries can be obtained by selecting specific values of t. Choosing ¢ = 1,
we obtain a bound of the form 1 + [%] + [2 log, n] which is interesting for its

simplicity. (N

