CHAPTER 4

Tail Inequalities

IN this chapter we present some general bounds on the tail of the distribution of
the sum of independent random variables, with some extensions to the case of
dependent or correlated random variables. These bounds are derived via the use
of moment generating functions and result in “Chernoff-type” or “exponential”
tail bounds. These Chernoff bounds are applied to the analysis of algorithms
for global wiring in chips and routing in parallel communications networks. For
applications in which the random variables of interest cannot be modeled as
sums of independent random variables, martingales are a powerful probabilistic
tool for bounding the divergence of a random variable from its expected value.
We introduce the concept of conditional expectation as a random wariable,
and use this to develop a simplified definition of martingales. Using measure-
theoretic ideas, we provide a more general description of martingales. Finally,
we present an exponential tail bound for martingales and apply it to the analysis
of an occupancy problem.

4.1. The Chernoff Bound

In Chapter 3 we initiated the study of techniques for bounding the probability
that a random variable deviates far from its expectation. In this chapter we
focus on techniques for obtaining considerably sharper bounds on such tail
probabilities.

The random variables we will be most concerned with are sums of independent
Bernoulli trials; for example, the outcomes of tosses of a coin. In designing
and analyzing randomized algorithms in various settings, it is extremely useful
to have an understanding of the behavior of this sum. Let X,, ..., X, be
independent Bernoulli trials such that, for 1 < i < n, Pr[X;=1] = p and
Pr[X;=0] = 1—p. Let X =3[ X;; then X is said to have the binomial
distribution. More generally, let X, ..., X,, be independent coin tosses such that,
for 1 <i<n, Pr[X;=1] = p; and Pr[X; =0] = 1 — p;. Such coin tosses are
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TAIL INEQUALITIES

referred to as Poisson trials. Our discussion below will focus on the random
variable X = Y7 | X; where the X; are Poisson trials. Of course, all our
bounds apply to the special case when the X; are Bernoulli trials with identical
probabilities, so that X has the binomial distribution.

We consider wo questions regarding the deviation of X from its expectation
p = >i_, pi. For a real number 6 > 0, we might ask “what is the probability
that X exceeds (1 + 8)u?” We thus seek a bound on the tail probability of the
sum of Poisson trials. An answer to this type of question is useful in analyzing
an algorithm, showing that the chance it fails to achieve a certain performance
is small. We face a different type of question in designing an algorithm: how
large must & be in order that the tail probability is less than a prescribed value
€?

Tight answers to such questions come from a technique known as the Chernoff
bound. This technique proves to be extremely useful in designing and analyzing
randomized algorithms. We focus on the Chernoff bound on the sum of
independent Poisson trials.

For a random variable X, the quantity E[e'¥] is called the moment generating
function of X. This is because E[e'X] can be written as a power-series with terms
of the form **E[X*]/k!, and E[X¥] is the kth moment of X for any positive
integer k. The basic idea behind the Chernoff bound technique is to take the
moment generating function of X and apply the Markov inequality to it. The
sum of independent random variables appears in the exponent, and this turns
into the product of random variables whose expectation we then bound.

Theorem 4.1: Let X,, X,, ..., X, be independent Poisson trials such that, for
1 <i<n Pr[X;=1] = p;, where 0 < p; < 1. Then, for X = " X;, u =
E[X] =3, pi and any 6 > 0,

) u
Pr[X > (14 )y < [(I';‘fs’)?ﬁﬁ] . (4.1)

PROOF: For any positive real ¢,
Pr(X > (1 +6)u] = Prlexp(tX) > exp(t(1 + 8)u)].

Applying the Markov inequality to the right-hand side, we have

E[exp(tX)]
exp(t(1 + o))’

Notice that the inequality is strict: this stems from our assumption that the
p: are not all identically O or 1, so that X assumes more than one value. The
reader may wish to recall the proof of the Markov inequality to see this.

We bound the right-hand side by observing that

PriX > (1496)u] < 4.2)

Elexp(tX)] = E[exp(t Y _ X;)] = E[f[ exp(tX;)].

i=] i=1
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41 THE CHERNOFF BOUND

Since the X; are independent, the random variables exp(tX;) are also inde-
pendent. It follows that E[[];._, exp(tX;)] = []i, Elexp(tX;)]. Using these facts
in (4.2) gives
[Ti-; Elexp(¢X;)]

exp(t(1 +d)u)
The random variable e assumes the value ¢ with probability p;, and the

value 1 with probability 1 — p;. Computing E[¢'X/] from these observations, we
have that

PriX > (1+6)u] <

(4.3)

[T, [pie* + 1 —pi]
PriX > +om < S T+ om

[T [1 + pi(e — 1)]
exp(t(1 + &)p)

Now we use the inequality 1 + x < e* with x = p,(¢' — 1), to obtain

(4.4)

[1i-; exp(pi(ef — 1))
PriX > (1+6)u] < e)l(p(t(l + d)u)

exp(3_i pi(e' — 1))
exp(t(1 + d)u)
exp((e’ — 1)p)
= == = P 45
exp(t(1 4+ d)u) (43)
Observe that all of the above has been proved for any positive real ¢; we are
now free to choose a particular value for ¢ that yields the best possible bound.
For this, we differentiate the last expression with respect to t and set to zero;
solving for ¢ now yields t = In(1 + &), which is positive for § > 0. Substituting
this value for t, we obtain our theorem. O

There were three main ingredients in the above proof:

1. We studied the random variable ¢'X rather than X.

2. The expectation of the product of the e’*i turns into the product of their expec-
tations owing to independence.

3. We pick a value of t to obtain the best possible upper bound - indeed, we choose
a value of t that depends on the deviation 6.

These ingredients are generic and do not hinge on the particular case of the
sum of Poisson trials. For example, Problem 4.4 is concerned with applying this
technique to the sum of geometrically distributed random variables.

For succinctness in what follows, we define an upper tail bound function for
the sum of Poisson trials.

> Definition 4.1: F*(1,6) 2 [¢8/(1 + §)1+9]*,

» Example 4.1: The Arkansas Aardvarks win each game they play with probability
1/3. Assuming that the outcomes of the games are independent, derive an upper
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bound on the probability that they have a winning season in a season lasting n
games.

Let X; be 1 if the Aardvarks win the ith game and 0 otherwise; let Y, = Y[, X..
Applying Theorem 4.1 to Y, we find that Pr[Y, > n/2] < F*(n/3,1/2) < (0.965)".
Thus, the probability that the Aardvarks have a winning season in n games is
exponentially small in n, suggesting that the longer they play the more likely it is
that their true colors show through.

The reader should verify that the term within the brackets in F*(y,J) is always
strictly less than 1. Since the power u is always positive, we will always get an
upper bound that is less than 1.

The right-hand side of (4.1) is difficult to interpret, especially since we will
require answers to questions such as “how large need & be in order that
Pr(X > (1 + é)u] is at most 0.01?” We will presently work on simplifying it. But
first, we consider deviations of X below its expectation p.

Theorem 4.2: Let X, X3, ..., X, be independent Poisson trials such that, for
1 <i<n PrXi=1] = p;, where 0 < p; < 1. Then, for X = Y\ X;, p =
EX] =" ,p,and 0<dé <1,

Pr[X < (1 —6)u] < exp(—ud?/2). (4.6)

PROOF: The proof is very similar to the proof for the upper tail we saw in
Theorem 4.1. As before,
PriX <(1-96)u] = Pr[-X>—(1-6)y]
= Prlexp(—tX) > exp(—t(1 — §)p)],

for any positive real t. Applying the Markov inequality and proceeding as in
equations (4.2—4.3), we obtain that

[Ti=1 Elexp(—tX;)]
exp(—t(1 —d)u)
Computing E[exp(—tX;)] and proceeding as in equations (4.4-4.5),

Pr[X <(1-9)u] <

exp(u(e™ — 1))
Pr[X < (1-9d)u] < xp—t(1=3))’

This time, we let t = In(1/(1 — §)) to obtain that

-5 M
PriX < (1—8)u] < [(f"—e—é)—“:ﬁ] .

We simplify this by noting that for é € (0, 1],
(1—=6)'""° > exp(=d + 6%/2),
using the McLaurin expansion for In(1 — ). This yields the desired result. [J

We define the lower tail bound function for the sum of Poisson trials as
follows.
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» Definition 4.2: F—(4,46) 2 exp (:-‘5—‘5—2) .

It is immediate that F~(u,d) is always less than 1 for positive u and 8. Note
two differences between the proofs of Theorems 4.1 and 4.2. First, we directly
apply the basic Chernoff technique to the random variable —X rather than
apply Theorem 4.1 to Y = n— X (a plausible option, which leads, however,
to a slightly weaker bound than the one derived below). Second, the form of
the McLaurin expansion for In(1 — §) allows us to obtain a “cleaner” closed
form here, whereas the McLaurin expansion for In(1 + ) did not permit this in
Theorem 4.1.

» Example 4.2: The Arkansas Aardvarks hire a new coach, and critics revise their
estimates of the probability of their winning each game to 0.75. What is the
probability that the Aardvarks suffer a losing season assuming the critics are
right and the outcomes of their games are independent of one another?

Setting up the random variable Y, as before, we find that Pr[Y, < n/2]
< F7(0.75n,1/3). which evaluates to < (0.9592)". Thus, this probability is also
exponentially small in n.

The bounds in Theorems 4.1 and 4.2 do not depend on n, but only on x and
6. These bounds do not distinguish, for instance, between 1000 trials each with
pi = 0.02 and 100 each with p; = 0.2, even though the distributions of X are
different in the two cases. Thus, even if the actual tail probabilities are different
in these cases, our estimates are the same in both cases. .

We make the following definitions to facilitate our second kind of question,
ie.,“how large need & be for Pr[X > (1 + 8)u] to be less than €?”

» Definition 4.3: For any positive u and €, A*(u, ) is that value of  that satisfies

F*(u,A*(u,€)) =e. 4.7)
Similarly, A=(u, €) is that value of & that satisfies

F (1, A" (n,€)) = €. 4.8)

In other words, a deviation of § = A*(y, €) suffices to keep Pr[X > (1 + 8)y]
below e, irrespective of the values of n and the p;’s.

A nice feature of the bound in Theorem 4.2 is the convenient form of the
right-hand side: it is easy to derive A~(y,€) explicitly. Equating the right-hand
side of (4.6) to € yields

4.9)

» Example 4.3: Suppose that p; = 0.75. How large must § be so that Pr[X < (1—
8)y] is less than n=3? Using (4.9), we find that the value of § that suffices for €
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A=(0.75n,n~5) = ,/%97]’5‘—:.

Thus, to obtain a tail probability that is inversely polynomial in n, we need only
go slightly away from the expectation - in this case out to 6 = /(13.333Inn)/n.

What if we wanted that Pr[X < (1 — )u] be less than e~1*"? Using (4.9), we
find that for € = e~ 157,

to be less than n=3 is

3n _
0.75n

which tells us nothing (for deviations below the expectation, values of § bigger
than 1 cannot occur).

A~(0.75n,e7 ") = 2,

We return to the simplification of (4.1) to obtain tractable estimates for
A*(u,e€).

Exercise 4.1: Prove that
Fr(u,8) < [e/(1 + 8)) 1o, (4.10)
Hence infer that if 6 > 2e — 1,

F+(;t,5) < 248

Exercise 4.1 gives us a simple form for F*(u,5) when § is “large.” For such
deviations, we have the bound

Aty €) < 1—0—3-2—15 -1 @.11)

We now present the following simplification of F*(u,d) for § in a restricted
range (0, U]. A pointer to the proof is given in the Notes section.
Theorém 4.3: For 0<d < U,
F*(u,8) < exp(—c(U)us?),
where ¢(U) = [(1 + U)In(1 + U) — U}/ U2

For U = 2e — 1, this simplifies to F*(u,d) < exp(—ud?/4). Consequently,
provided é < 2e — 1, we can use the estimate

4Inl/e

+
AT (u,€) < PR (4.12)

Thus, between Theorem 4.3 and Exercise 4.1, we have bounds on A*(y,e);
however, we require some idea of the correct value of A*(u,e€) before deciding
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which of these forms to use. Moreover, the result of Exercise 4.1 may be slack
for some values of u and ¢, as in the following example. This example uses
Chernoff bounds to approach the occupancy problem considered in Section 3.1.

» Example 44: Consider throwing n balls uniformly and independently into n
bins. Let the random variable Y; denote the number of balls that fall into the
first bin. We wish to determine z quantity m such that Pr[Y; > m] < 1/n2.

Consider the Bernoulli trials mdicating whether or not the ith ball falls into
the first bin. Each of the p/’s is thus 1/n. It follows that u = 1; the number m
we seek is 1 + A*(1,1/n?). Guessing that A*(1,1/n?) is larger than 2e, we use the
result in (4.11) to obtain A*(1,1 n?) <2log,n— 1.

Unfortunately, this is not the nghtest possible answer in this case. Returning
to (4.1), we can apply it with 6 = (1.5Inn)/ Inlnn and simplify to obtain F*(u,J)
less than n~2, so that our original estimate of 2log, n — 1 was asymptotically an
overestimate.

A good rule of thumb from examples like this is: for e of the order of n™
(a value arising often in algorithmic applications), estimates such as (4.11) and
(4.12) are satisfactory provided u is Q(logn); when u is smaller, we must return
to (4.1) in order to obtain the tightest possible estimate.

» Example 4.5 (Set Balancing): This problem is known variously as set-balancing,
or two-coloring a family of vectors. Given an n x n matrix A4 all of whose entries
are 0 or 1, find a column vector & € {—1,+1}" minimizing || 45||..

Consider the following algoritam for choosing b: each entry of b is indepen-
dently and equiprobably chosen from {—1,+1}. Note that this choice ignores the
given matrix 4. Clearly the inner product of any row of 4 with our randomly
chosen b has expectation 0. We now study the deviation of this inner product
from 0.

Consider the ith row of 4. Applying (4.9), the probability that the inner
product of this row with b is bounded by —4./nlInn is less than n~2. An identical
argument shows that the probability that the inner product of this row with 5
exceeds 4./nInn is less than n—>. Thus, the probability that the absolute value of
the inner product exceeds 4./nln = is less than 2n~2.

Let us say that the ith bad event occurs if the absolute value of the inner
product of the ith row of 4 witk b exceeds 4./nlnn. There are n possible bad
events, one for each row, and the argument of the previous paragraph shows that
the probability that any of them occurs is at most 2n—2. The probability of the
union of the bad events is no more than the sum of their probabilities, which
is 2/n. In other words, with probability at least 1 — 2/n, we find a vector b for
which ||4b||, < 4/nlnn.
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