
388 

3.1 Partitioned Compact Pat Trees To control 
the accesses to secondary storage during searching we 
use the method suggested by Gonnet et a1.[7]: decom- 
posing the tree into disk block sized pieces (each called a 
partition). Each partition of the tree is stored using the 
CPT structure from the previous sections. The only 
change required to the CPT structure for storing the 
partitions is that the offset pointers in a block may now 
point to either a suffix in the text or a subtree (partition) 
so an extra bit is required to distinguish these two cases. 
We use a greedy bottom up partitioning algorithm and 
show that such a partitioning minimizes the maximum 
number of blocks accessed when traveling from the root 
to any leaf. The algorithm for building the index on 
secondary storage will be described in the full version 
of the paper. 

The partitioning algorithm starts by assigning each 
leaf its own partition and a page depth of 1. Working 
upward, we apply the rules below at each node. A 
simple induction proof shows that the rules above 
produce a min-max optimal partitioning of the tree such 
that no other optimal partitioning has a smaller root 
block. The proof of optimality parallels the partitioning 
rules. 

If both children have the same page depth 
(1) if both children’s partitions and the 

current node will fit in a block, 
merge the partitions of the children 

and add the current node 
set the page depth of the current 

node to that of the children 
(2) else 

close off the partitions of the 
children 

create a new partition for the 
current node 

set the page depth of the current 
node to one more than that of 
the children 

else 
close off the partition of the child 

with the lesser depth 
(3) if the current node plus the partition 

of the larger child will fit on 
a block 

add the current node to the child’s 
part it ion 

set the page depth of the current 
node to match the child 

(4) else 
close off the partition of the 

remaining child 

CLARKANDMUNRO 

create a new partition for the 
current node 

set the page depth of the current 
node to one more than that of 
the child 

While the partitioning rules minimize the maximum 
number of secondary storage accesses, they can produce 
many small pages and poor fill ratios. There are several 
possible methods to alleviate this problem, including: 

1. 

2. 

3. 

4. 

when a page is closed off, scan its children from 
smallest to largest to determine if they can be 
merged with the parent, 

modify the rules to ensure a certain minimum fill 
ratio (e.g. all pages have to be l/4 or l/5 full), 

pack multiple logical pages in each physical page, 

ignore physical page boundaries when placing logi- 
cal pages on disk. 

Change one should be a part of any implementation 
of these rules. Change two will result in non-optimal 
partitioning in some cases but should be worthwhile in a 
practical system. The third technique should drastically 
minimize the storage requirements in practice but has a 
low guaranteed storage utilization and introduces some 
complications in the management of secondary storage. 
The last technique minimizes the storage requirements 
at a small cost for the potential transfer of an extra page 
of data on each access. In our current implementation 
for static text we use the first and fourth techniques. 

We can bound the maximum number of pages 
traversed on any root leaf path in terms of the number 
of nodes in the Pat tree and the depth of the Pat tree. 

THEOREM 3.1. The page depth is less than 1 + 

kkJlr 1 +- 2log, n where H is the height of the Pat tree. 
Szpankowski shows that under very reasonable condi- 
tions on the text, H is logarithmic in n with probability 
one[22]. Linking these two results we obtain an expected 
performance bound logarithmic in n. 

3.2 Empirical Results When producing the empiri- 
cal results for indices on secondary storage, the optimal 
skip field sizes from the primary storage case were used 
for Holmes and the Bible (see Table 3). For the OED, 
a skip field size of six was used based on the experience 
with the Bible. 

In each case, the depth of the tree is equal to 
the number of accesses to secondary storage needed to 
perform a search if the root block is held in memory. In 
the static case, we do not enforce page alignment so an 
access will consist of a seek followed by the transfer of at 
most two pages worth of data. The results above are for 
full suffix pointers. Truncating the suffix offsets would 


