
38

Cache-aware suffix 
trees [Clark and Munro]



39

Greedy paging of nodes 

Bottom up greedy paging 
(pd = page depth, binary trees)

! pd(leaf) = 1



40

Greedy paging of nodes

! Same pd in the children (balanced case)
" Children+parent fit in B ) keep pd
! Else, pd(parent) = pd(children)+1

+1



41

Greedy paging of nodes

" Different pd in the children (unbalanced)
! Child+parent fit in B ) retain largest pd

! Else, pd(parent) = largest pd(children)+1

=



42

Example

B = 4



43

Bounds of CA suffix trees

" Nearly optimal pattern search cost = 
O(P/pB + lgB n) block transfers

! Space O(N/B) blocks: 
pack multiple logical blocks into the same 
physical block

! Some technicalities to insert/delete nodes



44

Cache-oblivious 
suffix trees



45

General scheme for static trees
[Altstrup,Bender,Demaine,Farach-Colton,Munro, Rauhe,Thorup]

! In our case: apply Clark-Munro with 
block size B = n, n/2, n/4, …, O(1)

! Caution: paging blocks must be nested!

! Assign same integer id to nodes belonging to 
the same page, for any chosen B



46

Example

B = 4



47

Example

B = 8,4



Example

B = 8,4



49

Cache-oblivious suffix trees

! Assign each node a signature of the resulting lg n 
integer ids

! Sort lexicographically the nodes by their signatures

! Store them into an array in that order ) 
any (unknown) B achieves
 
cache-oblivious cost < 2 x cache-aware cost


