ewt Compression

| prehiensible increase in storage and transmission capacities, more and more

effort has been put into using compression to increase the-amount of data

‘that can be handled. No matter how much storage space or transmission bandwidth

is available, someone always finds something to fill it with. It:seems that Parkinson’s
law applies to space as well as time.

The problem of representing information efficiently is nothing new. People have
always been interested in means for storing and communicating information, and
methods for compressing textto improve this process predate computers. For ex-
ample, the Braille code for the blind can include “contractions,” which represent
common words with two or three characters, and Morse code also “compresses”
data by using shorter representations for common characters.

Text compression on a computer invelves chafiging the répresentation of a file so
that it takes less space to store or less time to transmit, yet the originial file can be
reconstructed exactly from the compressed representation. Text compression tech-
niques are distinguished from the more gerieral data compression methods because
the original file can always be reconstructed exactly. For some types of data other +
than text, such as sound or images, small changes, or noise, in the reconstructed
data can be tolerated because it is a digital approximation to an.analog waveform
anyway. However, with text it must be possible to reproducethe original file exactly.

Many compression methods have been invented and reinvented over the years.
These range from numerous ad hoc techniques to more principled methods that can
give very good compression. One of the earliest and best-known methods of text
compression for computer storage and telecoinmunikcations is Huffman coding.'

A paradox-of modern computer technology is that despite an‘almost incom-

1 David Huffman, then a student at M.LT., devised his celebrated coding methed in response
to a challenge from his professor, and as a result managed to.avoid having to take the final
exam for the course!

971

21

CHAPTER TWO: TEXT COMPRESSION

This uses the same principle as Morse code: common symbols—conventionally,
characters—are coded in just a few bits, while rare ones have longer codewords.
First published in the early 1950s, Huffman-coding was regarded as one of-the best
methods of compression for several decades, until two breakthroughs in the late
1970s—Ziv-Lempel compression and arithmetic coding-—rmade higher compres-
sion rates possible. Both these ideas achieve their power through the use of adaptive
compression—a kind of dynamic coding where the input is compressed relative to
a model that is constructed from the text that has just been coded. By basing the
model on what has been seen so far, adaptive compression methods combine two
key virtues: they are able to encode in-a single pass through the input file, and they
are able to'compress a wide variety of inputs effectively rather than being fine-tuned
for one particular type of data such as English text.

Ziv-Lempel methods are adaptive compression techniques that give good com-
pression yet are generally very fast and do not require large amounts of memory.
The idea behind them was developed by two Israeli researchers, Jacob Ziv and Abra-
ham Lempel, in the late 1970s. Arithmetic coding is really an enabling technology
that makes a whole class of adaptive compression schemes feasible, rather than a
compression method in its own right. Early implementations -of character-level
Huffman coding were typically able to compress English text to about five bits per
character. Ziv-Lempel methods reduced this to féwer than four bits per character—
about half the original size. Methods based on arithmetic coding further improved
the compression to just over two bits per character. The price paid is slower com-
pression and decompression, and more memory required in the machines that do
the processing.

Some-of the best compression methods available are variants of a technique called
prediction by partial matching (PPM), which was developed in the early 1980s. PPM
relies on arithmetic ¢oding t6 obtain good compression performance. Sinice theén,
there has been little advance in the amount of compression that can be achieved,
other than some fine-tuning of the basic methods, and the development of a new
method called block sorting that gives similar performance to PPM. On the other
hand, many techniques have been discovered that improve the speed or memory
requirements of compression methods. Most of these achieve a significant reduction
in computing requirements in exchange for a slight loss of compression.

Present compression techniques give compression of about two bits per character
for general English text, depending on what you mean by “general English text.”
Evidence suggests that compression better than one bit per character is not likely to
be achieved, and in order to approach this bound, compression methods will have
to draw both on the semantic content of the text and external world knowledge.
This is discussed further in Section 2.8, _

Improvements are still being made in processor and memory utilization dur-
ing compression, although both of these resources are becoming cheaper and more
plentiful. Generally speaking, the amount of compression achieved by the PPM
method increases as more memory becomes available. It is not competitive with
Ziv-Lempel methods until 100 Kbytes or more are available, and it does not ap-
proach its best performance until 500 Kbytes to 1 Mbyte is allocated. Because of

CHAPTER TWO: TEXT COMPRESSION 2 3

this requirement, when PPM was first proposed in the early 1980s: it was a labora-
tory curiesity, requiring a large minicomputer to test it. Now, most PCs have suffi-
cient comiputing power to execute it quite effectively. Furthermore, processor speed
is currently-improving at a faster rate than disk speeds and capacities. Since com-
pression decreases the demand on:storage'devices:at the expense of processing, it is
becoming more economical to:store data in a compressed form than uncompressed.

Most text compression methods can be placed in one of two classes: symbol-
wise methods and dictionary methods. Symbolwise methods work by estimating
the probabilities of symbols (often characters), coding one symbol at a time, using
shorter codewords for the most likely symbolsin the'same way that Morse code does.
Dictionary methods achieve compression by:replacing words and other fragments
of ‘text with: an index to an entry in a “dictionary.” The Braille code is a dictionary
method since special codes are used to.represent whole words.

Symbolwise methods are usually based on either Huffman coding.or arithmetic
coding, and they differ mainly in how they estimate probabilities for symbols. The
more accurately these estimates are made, the greater the compression that can be
dchijeved. To obtain good compression, the probability estimate is usually based
on the context in which a symbol occurs. The business of estimating probabilities is
called modeling, and good modeling is crucial to obtaining good compression. Con-
verting the:probabilities into a bitstream for transmission is:called coding. Coding is
well understood and can be performed very effectively using either Huffman coding
orarithmetic coding. Modeling is more of an art, and there does not appear to be
any sinigle “best” method.

Dictionary methods generally use quite simple representations to code references
to entries in the dictionary. They obtain compression by representing several sym-
bols as-one output codeword. This contrasts with.symbolwise methods, which rely
on generating good probability estimates for a symbol, since the length of the out-
put codeword is what determines compression performance; for this reason, sym-
bolwise methods are sometimes referred to as statistical methods, since they rely on
estimating accurate statistics. The most significant dictionary methoeds are based
on Ziv-Lempel coding, which uses the idea of replacing strings. of characters with a
reference to a previous occurrence of the string. This approach is adaptive, and it is
effective because most characters can be coded as part of a string that has occurred
earlier in the text. Compression is achieved if the reference, or pointer, is stored
in fewer bits than the string it replaces. There are many variations onr Ziv-Lempel
coding, with different pointer representations and different rules governing which
sttinigs ¢an be referenced.

The key distinction between symbolwise and dictionary methods is that sym-
bolwise methods generally base the coding of a symbol on the context in which it
occurs, wheéreas dictionary methods group symbols together, creating a kind of im-
plicit context. Hybrid schemes are possible, in which a group of symbols is coded
together and the coding is based on the context in which the group occurs. This
does not necessarily provide better compression than symbolwise methods, but it
can improve the speed of compression.

24

2.1

CHAPTER TWO: TEXT COMPRESSION

The following sections describe in more detail the main compression techniques
introduced above. We look at the modeling and coding components separately.
First the general idea of modeling is introduced, and then a particularly powerful
class of models, adaptive models, is discussed. Before locking at how models are
used in practice, we describe the two principal methods of coding used to repre-
sent symbols based on the probability distributions generated by models. Bach of
these descriptions begins with an overview of what the method is and how it works,
and each is followed by a much more detailed description of how the coding can be
implemented efficiently. These details are included becausg, although they lead to
extremely effective implementations, they are not obvious-and are hard to come by
in the literature; they should be skipped on a first reading. The two main classes of
models, symbolwise and dictionary, are then examined. There is a section that deals
with the problem of providing random-access to compressed text, which i§ impor-
tant for full-text retrieval systems. Finally; the practical performance of various text
compression methods is discussed.

Models

Compiessiont methods obtain high compression by forming good models of the data
that is to be coded. The function of a model is to predict-symbols, which amounts
to providing a probability distribution for the next symbol that is to be coded. For
example, during the encoding of a text, the “prediction” for the next symbol might
include a probability of 2 percent for the letter 4, based on its relative frequency
in-a sample of text. The set of all possible symbols is called the alphabet, and the
probability distribution provides an estimated probability for each symbol in the
alphabet.

The model provides this probability distribution to the encoder, which uses it
to encode the symbol that actually occurs. The decoder uses an identical model
together with the output of the encoder to find out what the encoded symbol was.
Figure 2.1 illustrates the whole process..

The number of bits in which a symbol, s, should be coded is called the infor-
mation coritent of the symbol. The information content, I(s), is directly related to
the symbel’s predicted probability, Pr[s], by the function I(s) = —logPr[s] bits.2
For example, to transmit a symbol representing the fact that the outcome of a fair
‘coin toss was “heads,” the best an-encoder can do is to use —log(1/2) = 1 bit. The
average amount of information per symbol over the whole alphabetis known as the
entropy of the probability distribution, denoted by :H. It i$.given by

H =Y Prls]-I(s)=) —Pr[s] - logPr[s].

5

2 Alllogarithms in this book are to base two unless indicated otherwise.

-| model l model l

compressed

text R text (—d text

encoder

Figure21 Usinga model to compress text.

Provided that the symbols appear independently and with the assumed probabili-
ties, H is a lower bound on compression, measured in bits per symbol, that can be
achieved by any coding method. This is the celebrated source coding theorem of
Claude Shannon, a Bell Labs scientist who single-handedly developed the field of
information theory, and provides a bound that we can strive to attain but can never
beat (Shannon 1948).

Huffman coding often achieves compression performance close to the entropy,
but can, in some cases, be very inefficient. One such sjtuation is when very good
predictions are being made, in which case prebabilities close to one are generated.
This is exactly when entropy is minimized and “compressibility” is maximized and
is what we hope to achieve when designing data compression systems; hence it is
unfortunate that Huffman coding is inefficient in this situation. By way of contrast,
the more recent method of arithmetic coding-comes arbitrarily close to the entropy
even when probabilities are close to one and the-entropy of the probability distri-
bution is close to zero. These two methods are discussed in Sections 2.3 and 2.4.
What is impertant for the mode] is to provide a probability distribution that makes
the probability of the symbol that actually occurs:as high as possible. The above
relationship means that a low probability results in a high entropy and vice versa.
In the extreme case when Pr[s] = 1, only one symbol s is possible; and I(s) = 0
indicates that zero bits are needed to transmit it. This follows intuitively: if a symbol
is.certain to occur; then it conveys no information and need not be transmitted. To
paraphrase a well-worn truism, I(death) = 0 and I (taxes) = 0.

Conversely, I becomes arbitrarily large as Pr[s] approaches:zero, and a symbol
with zero probability cannot be coded. In practice, all symbols must be given a
nonzero probability because a zero-probability symbol could not be ¢oded if, by
unlucky chance, it did occur. Moreover, it is not possible:for the encoder to peek at
the next symbol and artificially boost its probability just for this step; the encoder
and decoder must use the same probability distribution, and the decoder clearly
cannot look ahead at symbols that have not yet been decoded. Hence the model
must take inte account all the informatien.available to the decoder and then gamble
on what the next symbol will be. The best compression is obtained when the model
is backing the symbols that actually occur.

26

CHAPTER TWO: TEXT COMPRESSION

a -
2
1 1
®3 % > 100
2 100

Figure 22 A simple finite-state model.

At the beginning of this section the probability of a u was estimated as 2 percent.
This corresponds to an information content of 5.6 bits; that is, if it does happen to
be the next symbol, u should be transmitted in 5.6 bits. Nothing has been said yet
about how the probabilities should be estimated. It turns out that predictions can
usually be improved by taking account of the previous symbol. If a ¢ has just been
encountered, the probability of 4 may jump to 95 percent, based on how often ¢
is followed by u in a sample of text. This gives a much lower information content
foru of 0.074 bits. Of course, other symbeols must have lower probabilities and
therefore longer ¢odewords to compensate, and if the prediction is incorrect (as in
Iraq or Qantas), the price paid is extra bits in the output. But averaged over many
appearances of the context g, the number ofbits required to decode each appearance
of u can be expected to decrease.

Models that take a few immediately preceding symbols into account to make a
prediction are called finite-context models of order m, where m is the number of
previous symbols used to make the prediction. Such models are effective in a vari-
ety of compression applications, and the best text compression methods known are
based on this appreach.

Other approaches to modeling are possible, and although potentially more pow-
erful, they have not proved as popular as finite-context models. One-approach is
to use a finite-state model, in which each state of a finite-state machine stores a dif-
ferent probability distribution for the next symbol. Figure 2.2 shows such a model.
This particular model is for strings in which the symbol a is expected to eccur in
pairs. Encoding starts in state 1, where a and b are predicted with equal probability,
1/2. Using the formula above, we find that each should be coded in one bit (not
surprisingly). If a bis received, the encoder stays in §tate 1 and uses the same proba-
bility distribution for the next'symbol. However, if an g is received, it moves to state
2, where the probability of a b is now only 1/100 and requires 6.6 bits to be encoded,
as opposed to 0.014 bits to encode an a. This model captures behavior that cannot
be represented accurately by a finite-context model because a state model is able to
keep track of whether an odd or even number of as have occurréd consecutively.

22

2.2 ADAPTIVE MODELS 27

It is important that the decoder works with an identical probability distribution
in order to decode symbols correctly. This is achieved by ensuring that it has an
identical model to the encoder’s and that it starts in the same state as the encoder.
The encoder transmits the symbol and then follows a transition; the decoder recov-
ers the symbol and can then follow the same transition, so it is now in the same state
as the encoder and will use the same probability distribution for the next symbol.
Error-free transmission is assumed, for if any errors were to occur, the encoder and
decoder would lose synchronization, with potentially catastrophic results.

If the text being compressed is in a-formal language such as C or Java, a grammar
can be used to model the language. Thetext is represented by sending the sequence
of productions, or rules, that would generate:the text from the grammar. By esti-
mating the probability of a particular production occurring, more frequently used
productions can be coded in fewer bits, thus achieving good compression. It is hard
to obtain a formal grammar for texts written in natural languages, so to.date, gram-
mar models have been applied only to artificial languages such as programming
languages.

Adaptive models

There are many ways to estimate the probabilities in 2 model. We could conceivably
guess suitable probabilities when setting up a compression system and use the same
distribution for all input texts. However; it is easier, and more accurate, to estimate
the probabilities from a sample of the kind of text that is being encoded.

The method that always uses the same model regardless of what text is being
coded is called static modeling. Clearly, this:runs the risk of receiving an input that
is .quite different from the one for which the model was set up—for example, a
model for the English language will probably not perform well with a file of num-
bers and vice versa. One example of such-a mismatch occurs when numeric data
is transmitted using Morse code. Because the digits are all relatively rare in normal
text, they are assigned long codewords, and so transmission times increase if docu-
menis such as financial statements are sent. Another example is shown in Figure 2.3,
which is'the opening sentence of a rather contorted book—Gadsby by E. V. Wright,
published in 1939. You may care to try‘to work out what is unusual about the text
before reading on. In fact, the reason that thie text reads strarigely is that it does not
contain a single occurrence of what is usually the most common letter in normal
English text—e. A static mode] designed for normal English text -would perform
poorly inthis case.

One solution is to generate a model specifically for each file that is to be com-
pressed. An initial pass is made through the file to estimate symbol probabilities,
and these are transmitted to the decoder before transmitting the-encoded symbols.
This approach is called semi-static modeling. (Semi-stati¢c modeling has also been
réferred to-as semi-adaptive modeling, but we prefer the term: “semi-static” because
the implementation of these models has niore in common with static models than
adaptive ones.) Semi-static modeling has the advantage that the model is invariably

28

CHAPTER TWO: TEXT COMPRESSION

If Youth, throughout all history, had had a champion to stand

up for it; to show a doubting world that a child can think;

and, possibly, do it practically; you wouldn’t constantly run
across folks today who claim that ‘‘a child don't kmow anything.’’

Figure 23 The first sentence of an unusual book.

"I never heerd a skilful old married feller of twenty
years' standing pipe ‘‘my wife’’ in a more used note
than ‘a did," said Jacocb Smallbury. "It migh

Figure 24 Sample text.

better suited to the input than a static one, but the penalty paid is having to transmit
the model first, as well as the preliminary pass over the data to accumulate symbol
probabilities. In some situations, such as interactive data communications, it may
be impractical to make two passes over the data, and for complex models the cost of
pretransmitting the model might be a considerable overhead.

Adaptive modeling is an elegant solution to these problems. An adaptive model
begins with a bland probability distribution and gradually alters it as more symbols
are encountered. As an example, consider an adaptive model that uses the previ-
ously encoded part of a string as a sample to estimate probabilities. We will use
a model that operates character by character, with no context used to predict the
next symbol—in other words, each character of the input is treated as an indepen-
dent symbol. Technically, this is called a zero-order (equivalently, order-0) model: in
full, an adaptive, zero-order, character-level model. Now consider the text of Fig-
ure 2.4, excerpted from Thomas Hardy’s book Far from the Madding Crowd. It is
from the final scene in the book, in which a group is jesting with a néwlywed cou-
ple. The archaic language in this excerpt is another reminder of the desirability of
using adaptive codes.

The zero-order probability that the next character after the excerpt is ¢ is esti-
mated to be 49,983 / 768,078 = 6.5 percént, since in the previous text, 49,983 of
the 768,078 characters were ts. Using the same system, an € has probability 9.4
percent, and an z has probability 0.11 percent. The model provides this-estimated
probability distribution to an encoder such as an arithmetic coder (see Section 2.4).
In fact, the next character is a ¢, which an arithmetic coder represents in about
—1og 0.065 = 3.94 bits. The decoder is able to generate the'same model since it has
just decoded all the characters up to (but not including) the £. It makes the same
probability estimates as the encoder and so is able to decode the ¢ correctly when it
is received. In practice, the encoder and decoder do not extractthe statistics from
the prior text each time they are needed, but instéad keéep a ranning tally of the
character counts.

2.2 ADAPTIVE MODELS 2 9

Some details of the adaptive:system need to be.considered. First, the system must
avoid the situation in which a character is predicted with a:probability of zero. In
the example:above; the character Z has never occurred in the text up to this point
and would be predicted with zero probability. Such events cannot be coded, yet
they might occur; this is referred to as the zero-frequency problem (Witten and Bell
1991). The text It mighZ is very unlikely, but'it can occur. If nowhere else, it has just
occurred in this book.

There are several ways to solve the zero-frequency problem. One is to allow one
extra count, which is divided evenly among anysymbols that havenot been observed
in the input. In the Hardy example, the total count would be increased by one
to 768,079. A total of 82 different characters have been seen so far, so 46 of the
128 ASCII characters have not occurred by thispoint. Each of these gets 1/46 of
the spare proportion of 1/768,079. Thus, a Z character is given a probability of
1/(46 x 768,079) = 1/35,331,634, corresponding to 25.07 bits in the output.

Another possibility is to artificially inflate the count of every character in the
alphabet by one, thereby ensuring that none has a zero frequency. This is equivalent
to starting the model assuming that we have already processed a stretch of text in
which each possible character appeared exactly once. In the above example, allowing
for the Asc1I alphabet of 128 characters, 128 would be added to the total number of
characters seen so far, giving Z a relative frequency of 1/768,206 = 0.00013 percent,
corresponding to 19.6 bits in the output.

Several other solutions to the zero-frequency problem are possible, although in
general none offers a particularly significant compression performance advantage
over the others. The problem is mostacute near the beginning of a text where there
are few, if any, samples on which to base estimates; so at face value the choice of
method is more critical for small texts than for large ones. The method is also
important for models that use very many different contexts because many of the
contexts will be used only a few-times.

The example above used a zero-order model, in which each character’s probabil-
ity was estimated without regard to context. For a higher-order model, such as a
first-otder model, the probability is estimated by how often that character has oc-
curred in the current context. For example, thie excerpt used above to illustrate a
zero-order model was coding the letter ¢ in the context of the phrase It migh, but
in reality made no use at all of the characters comprising that phrase. On the other
hand, a first-order model would use the final / as a context with which to condition
the probability estimates. The letter has occurred 37,525 times in the prior text,
and 1,133 of these times it was followed by a ¢. Ignoring for a moment the zero-
frequency problem, the probability of a ¢ occurring after an h can be estimated to be
1,133/37,525 = 3.02 percent, which-would have it coded in 5.05 bits. This is actually
worse than the zero-order estimate because the letter ¢ is rare in this context—an h
is much more likely to be followed by an €, and so here is an example where use of
more information caused inferior compression. On the other hand, a second-order
model does substantially better. It uses the relative frequency that the context gh is
followed by-a t, which is 1,129 times out of 1,754, or'64.4 percent, and results in the
t being coded in just 0.636 bits.

30

23

CHAPTER TWO: TEXT COMPRESSION

So far we have suggested how the probabilities in a model can be adapted, but
it is also possible—and effective—to adapt-a model’s structure. In a finite-context
model, the structure determines which contexts are used; in a finite-state model, the
structure is the set of states and transitions available. Adaptation usually involves
adding more detail to an area of the model that is heavily used. For example, if the
first-order context h is being used frequently, it might be worthwhile to add more
specific contexts, such as the second-order contexts ¢k and sh. So long:as the encoder
and decoder use the same rules for adding contexts, and the decision to add contexts
is based on the previously encoded text only, they will remain synchronized.

Adaptive modeling is a powerful tool for compression and is the basis of many
successful methods. It is robust, reliable, and flexible. The principal disadvantage is
that it is not suitable for random access to files—a text:can be decoded only from the
beginning; since the model used for coding a particular part of the text is determined
from all the preceding text. Hence, adaptive modeling is ideal for general-purpose
compression utilities but is not necessarily appropriate for full-text retrieval. This
point will be taken up again in Section 2.7.

Huffman coding

Coding is the task of determining the output representation of a symbol, based on a
probability distribution supplied by a model. The general idea is that a coder should
output short codewords for likely symbols and long codewords for rare ones. There
are theoretical limits on how short the average length of a codeword can be for a
given probability distribution, and much effort has been put into finding coders
that achieve this limit. Another important consideration is the speed of the coder—
a reasonable amount of computation is required to generate near-optimal codes. If
speed is important, we might use a coder that sacrifices compression performance to
reduce the amount of effort required. For example; if there are 256 possible symbols
to be coded, we might use a coder that represents the 15 most probable symbols in
4 bits and the remainder in 12 bits. The extreme of this sort of approximation is just
to c¢ode all symbols in 8 bits. It gives no ¢compression but is very fast. In fact, many
dictionary-based methods use a simple coder like this, with the implicit assumption
that the symbols (which in this kind of model are actually groups of characters) are
equally likely.

In contrast to dictionary methods, symbolwise schemes depend heavily on a good
coder to achieve compression, and most research on coders has been performed
with symbolwise methods in mind. This section and the next describe the two main
methods of coding: Huffinan coding and arithmetic coding. Huffman coding tends
to be faster than arithmetic coding, but arithmetic coding is capable of yielding
compression that is close to optimal given the probability distribution supplied by
the model. For each of these two types of coder, we first look at the principle by
which they achieve compression and then give details of how they are implemented
in practice. We begin with Huffman coding (Huffman 1952).

2.3 HUFFMAN CODING 3]

Symbel Codeword Probability

a 0000 0.05
b 0001 0.05
c 001 0.1
d o1 0.2
e 10 0.3
f 110 0.2
g 111 0.1
0 1
0 1

L30b08:

Figure 25 A Huffman code tree.

Table 2.1 shows codewords for the seven-symbol alphabet a, b, ¢, d, e, f, and g.
A phrase is coded by replacing each of its symbols with the codeword given by the
table. For example, the phrase eefggfed is coded as 10101101111111101001.
Decoding is performed from left to right. The input to the decoder begins with
10.... , and the only codeword that begins with this is the-one for e, which is there-
fore taken as the first symbol. Decoding then proceeds with the remainder of the
string, 1011011

Figure 2.5 shows a tree that can be used for decoding. The tree is traversed by
starting at the root and following the branch corresponding to the next bit in the
coded text. The path from the root to each symbol (at a leaf) corresponds to the
codewords in Table 2.1. This type-oficode is-called-a prefix code—or more accurately,
a prefix-free code—because no-codeword isthe prefix of another symbol’s codeword.

31

‘CHAPTER TWO: TEXT COMPRESSION

If that were not the case, the decoding tree would have symbols at internal nodes,
which leads t6 ambiguity in-decoding.

The code in Table 2.1 was produced by the technique of Huffman coding, which
generates codewords for a set of symbols, given some probability distribution for
the symbols. The codewords generated yield the best compression possible for a
prefix-free code for the given probability distribution.

Huffman’s algorithm works by constructing the decoding tree from the bottom
up. For the example symbol set, with the:probabilities shown in Table 2.1, it starts by
creating for each symbol a leaf node containinig the symbol and its probability (Fig-
ure 2.6a). Then the two nodes with the smallest probabilities become siblings under
a parent node, which is given a probability equal to the sum of its two children’s
probabilities (Figure 2.6b).

The combining operation is repeated, choosing the two nodes with the smallest
probabilities and ignoring nodes that are already children. For example, at the next
step the new node formed by combining a and b is joined with the node for ¢ to
make a new node with probability p = 0.2. The process continues until there is
only one node without a parent, which becomes the root of the decoding tree (Fig-
ure 2.6¢). The two branches from every nonleaf node are then labeled 0 and 1 (the
order is not important) to form the tree.

Figure 2.7 shows the general algorithm for constructing a Huffman code. The
algorithm is expressed in terms of a set T" that recursively contains other sets, with
each subset corresponding to a node in the tree. When the algorithm terminates, 7"
contains one set, which itself contains two sets—the descriptions of the two:subtrees
of the root. A more detailed description of how Huffman coding is implemented
appears later in this section.

Huffman coding is generally fast for both encoding and decoding, provided that
the probability distribution is static. There are also algorithms for adaptive Huff-
man coding, where localized adjustments are made to the tree to maintain the cor-
rect structure as the probabilities change (Gallager 1978; Cormack and Horspool
1984; Knuth 1985; Vitter 1989). However, the better adaptive symbolwise models
usually use many different probability distributions at the same time, with the ap-
propriate distribution being chosen depending on the context of the symbol being
¢oded. Huffman coding requires that multiple trees be maintained in this situatjon,
whiich ¢an become démanding on memory. The alternative is for-each tree to be re-
generated whenever it is required, but this is:slow. Hence, for adaptive compression,
arithmetic coding (described in the next section) is-usually preferable, as its speed is
comparable to that of adaptive Huffman coding, yet it requires less memory and is
able to achieve better compression—particularly when high-probability events are
being coded.

Nevertheless, Huffman coding turns out to be very useful for some applications.
For example, when coupled with a word-based (rather than charactér-based) model,
it gives good compression, and its speed and ease of random access make it more
attractive than arithmetic coding. Furthermore, there is a slightly different repre-
sentation of a Huffman code that decodes very efficiently despite the extremely large
models that might arise with a word-based model. This representation is called the

2.3 HUFFMAN CODING 3 3

v (@) () () (@) (@) (@) (@)

0 1
c a
0.1 0.2

Figure 26 Constructing the Huffman tree: (a) leaf nodes; (b) combining nodes; (c) the
finished Huffman tree.

{c)

34

CHAPTER TWO: TEXT COMPRESSION

To calculate a Huffman code,
1. SetT' < aset of n singleton sets, each containing one of the n symbols and
its probability.
2. Repeatn — 1 times
(a) Setm;and m, < the two subsets of least probability in T'.
(b) Replace m, and m; with a set {m,, m,} whose probability is the sum
of that of m, and m,.

3. T now contains only one item, which corresponds to the root of a Huffman
tree; the length of the codeword for each symbol is given by the number of
times it was joined with another set.

Figure 27 Assigning a Huffman code.

canonical Huffman code (Hirschberg and Lelewer 1990). It uses the same codeword
lengths as a Huffman code, but imposes a particular choice on the codeword bits.

Table 2.2 shows part of a canonical Huffman code for the Hardy book, where the
alphabet has been chosen to be the words that appear in the book. The frequency
of each word has been counted, and, as in the conventional Huffman method, the
codewords have been chosen to minimize the size of the compressed file for this
model. In the terminology introduced on page 28, this is a static zero-order word-
level model. The codewords are shown in decreasing order of length, and therefore
in increasing order of word frequency—except that within each block of codes of
the same length, words are ordered alphabetically rather than by frequency. The list
begins with the thousands of words (and numbers) that appear only once. Words
that occur only once in a text are called hapax legomena, a term that we will meet
again on several occasions. Many of the words, such as yopur and youmg, occar
only once because they are typographical errors. The numbers 100, 101, ... come
from page numbers that are recorded in the file. (They start at 100 rather than a
smaller number because words of the same codeword length are sorted in lexical—
not numerical—order, so that 90, 91, . . . appear later in the sequence.)

The table shows the codewords sorted from longest to shortest. An important
feature of a canonical code like this is that when the codewords are sorted in lexical
order—that is, when they are in the sequence they would be in if they were entries
in a dictionary—they are also in order from the longest to the shortest codeword.
On the other hand the code of Table 2.1 does not exhibit this property: although the
codewords are ordered lexicographically, this-does not result in them being sorted
by length.

The key to using canonical codes efficiently is to notice that a word’s encoding
can be determined quickly from the length of its codeword, how far through the list
it is, and the codeword for the first word of that length. For example, the word said
is the 10th seven-bit codeword. Given this information and that the first seven-bit

2.3

HUFFMAN CODING

35

Symbol Codewaord

Length Bits
100 17 00000000000000000
101 17 00000000000000001
102 17 000000000000000610
103 17 00000006000000011
yopur 17 00001101010100100
youmg 17 00001101010100101
youthful 17 00001101010100110
zeed 17 00001101016100111
zephyr 17 00001101010101000
zigzag 17 00001101010101001
11th 16 0000110101010101
120 16 0000110101010110
were 8 10100110
which 8 10100111
as 7 1010100
at 7 1010101
for 7 1010110
had 7 1010111
he 7 1011000
her 7 1011001
his 7 1011010
it 7 1011011
s 7 1011100
said 7 1011101
she 7 1011110
that 7 1011111
with 7 1100000
you 7 1100001
| 6 110001
in 6 110010
was 6 110011
a 5 11010
and 5 11011
of 5 11100
to 5 11101
the 4 1111

