Cost-Aware WWW Proxy Caching Algorithms

Pei Cao

cao@cs.wisc.edu
Department of Computer Science,
University of Wisconsin-Madison.

Abstract

Web caches can not only reduce network traffic and
downloading latency, but can also affect the distri-
bution of web traffic over the network through cost-
aware caching. This paper introduces GreedyDual-
Size, which incorporates locality with cost and size
concerns in a simple and non-parameterized fashion
for high performance. Trace-driven simulations show
that with appropriate cost definition, GreedyDual-
Size outperforms various existing web cache replace-
ment algorithms in many aspects, including hit ratios,
latency reduction and network cost reduction. In ad-
dition, GreedyDual-Size can potentially improve the
performance of main-memory caching of Web docu-
ments.

1 Introduction

As the World Wide Web has grown in popularity in
recent years, the percentage of network traffic due
to HTTP requests has steadily increased. Recent re-
ports show that Web traffic has constituted 40% of
the network traffic in 1996, compared to only 19%
in 1994. Since the majority of Web documents re-
quested are static documents (i.e. home pages, audio
and video files), caching at various network points
provides a natural way to reduce web traffic. A com-
mon form of web caching is caching at HTTP proxies,
which are intermediateries between browser processes
and web servers on the Internet (for example, one can
choose a proxy by setting the network preference in
the Netscape Navigator!).

There are many benefits of proxy caching. It
reduces network traffic, average latency of fetching
Web documents, and the load on busy Web servers.
Since documents are stored at the proxy cache, many
HTTP requests can be satisfied directly from the cache
instead of generating traffic to and from the Web

INavigator is a trademark of Netscape Inc.

Sandy Irani

irani@jics.uci.edu

Information and Computer Science Department,

University of California-Irvine.

server. Numerous studies [WASAF96] have shown
that the hit ratio for Web proxy caches can be as
high as over 50%. This means that if proxy caching
is utilized extensively, the network traffic can poten-
tially be reduced by as much as 20%.

Key to the effectiveness of proxy caches is a doc-
ument replacement algorithm that can yield high hit
ratio. Unfortunately, conventional wisdom which has
been gained in the context of file caching and vir-
tual memory page replacement does not necessarily
transfer to Web caching.

There are three primary differences between Web
caching and conventional paging problems. First,
web caching is variable-size caching: due to the re-
striction in HTTP protocols that support whole file
transfers only, a cache hit only happens if the entire
file is cached, while web documents vary dramatically
in size depending on the information they carry (text,
image, video, etc.). Second, web pages take different
amount of time to download. A proxy that wishes
to reduce the average latency of web accesses may
want to adjust its replacement strategy based on the
downloading latency. Third, access streams seen by
the proxy cache are the union of web access streams
from tens to thousands of users, instead of coming
from a few programmed sources as in the case of op-
erating system paging.

In addition, proxy caches are in a unique position
to affect web traffic on the Internet. Since the replace-
ment algorithm decides which documents are cached
and which documents are replaced, it affects which
future requests will be cache hits. Thus, if the insti-
tution employing the proxy must pay more on some
network links than others, the replacement algorithm
can favor expensive documents (i.e. those travelling
through the expensive links) over cheap documents.
If it is known that certain network paths are heav-
ily congested, the caching algorithm can retain more
documents which must travel on congested paths. Fi-
nally, the proxy cache can reduce its contribution to
the network router load by caching more documents

Do 1

that travel many hops than those that travel few
hops. Web cache replacement algorithms can incor-
porate these considerations by associating an appro-
priate network cost with every document, and mini-
mizing the total cost incurred over a particular access
stream.

Today, most proxy systems use some form of Least-
Recently-Used replacement algorithm. Though some
proxy systems also consider the time-to-live fields of
the documents and replace expired documents first,
studies have found that time-to-live fields rarely cor-
respond exactly to the actual life time of the doc-
ument and it is better to keep expired-but-recently-
used documents in cache and validate them by query-
ing the server [LC97]. The advantage of LRU is its
simplicity; the disadvantage is that it does not take
into account file sizes and might not give the best hit
ratio.

Many Web caching algorithms have been proposed
to address the size and latency concerns. We are
aware of at least eleven algorithms, from the sim-
ple to the very elaborate, proposed and evaluated in
separate papers, some of which give conflicting con-
clusions. This naturally leads to a state of confusion
over which algorithm should be used. In addition,
none of the existing algorithms address the network
cost concerns.

In this paper, we introduce a new algorithm, called
GreedyDual-Size, which combines locality, size and
latency/cost concerns effectively to achieve the best
overall performance. GreedyDual-Size is a variation
on a simple and elegant algorithm called GreedyDual
(designed by Neal Young [You91b]), which handles
uniform-size variable-cost cache replacement. Using
trace-driven simulation, we show that GreedyDual-
Size with appropriate cost definitions out-performs
the various “champion” web caching algorithms in
existing studies on a number of performance issues,
including hit ratios, latency reduction, and network
cost reduction. Thus, GreedyDual-Size is a good choice
for today’s web proxy caches.

2 Existing Results

The size and cost concerns make web caching a much
more complicated problem than traditional caching.
Below we first summarize the existing theoretical re-
sults, then take a look at a variety of web caching
algorithms proposed so far.

2.1 Existing Theoretical Results

There are a number of results on the optimal offline
replacement algorithms and online competitive algo-

rithms on simplified versions of the Web caching prob-
lem.

The variable sizes in web caching make it much
more complicated to determine an optimal offline re-
placement algorithm. If one is given a sequence of
requests to uniform size blocks of memory, it is well
known that the simple rule of evicting the block whose
next request is farthest in the future will yield the op-
timal performance [Bel66]. In the variable-size case,
no such offline algorithm is known. In fact, it is
known that determining the optimal performance is
NP-hard [Ho97], although there is an algorithm which
can approximate the optimal to within a logarithmic
factor [?]. The approximation factor is logarithmic
in the maximum number of bytes that can fit in the
cache, which we will call k.

For the cost consideration, there have been several
algorithms developed for the uniform-size variable-
cost paging problem. GreedyDual, developed by Neal
Young [You91b], is actually a range of algorithms
which include a generalization of LRU and a general-
ization of FIFO. The name GreedyDual comes from
the technique used to prove that this entire range of
algorithms is optimal according to its competitive ra-
tio. The competitive ratio is essentially the maximum
ratio of the algorithms cost to the optimal offline algo-
rithm’s cost over all possible request sequences. (For
an introduction to competitive analysis, see [ST85]).

We have generalized the result in [You91b] to show
that our algorithm GreedyDual-Size, which handles
documents of differing sizes and differing cost (de-
scribed in Section 4), also has an optimal competi-
tive ratio. Interestingly, it is also known that LRU
has an optimal competitive ratio when the page size
can vary and the cost of fetching a document is the
same for all documents or proportional to the size of
a document [FKIP96].

2.2 Existing Document Replacement Al-

gorithms

We describe nine cache replacement algorithms pro-
posed in recent studies, which attempt to minimize
various cost metrics, such as miss ratio, byte miss ra-
tio, average latency, and total cost. Below we give
a brief description of all of them. In describing the
various algorithms, it is convenient to view each re-
quest for a document as being satisfied in the follow-
ing way: the algorithm brings the newly requested
document into the cache and then evicts documents
until the capacity of the cache is no longer exceeded.
Algorithms are then distinguished by how they choose
which documents to evict. This view allows for the
possibility that the requested document itself may be
evicted upon its arrival into the cache, which means

D O

it replaces no other document in the cache.

Least-Recently-Used (LRU) evicts the doc-
ument which was requested the least recently.

Least-Frequently-Used (LFU) evicts the doc-
ument which is accessed least frequently.

Size [WASAF96] evicts the largest document.

LRU-Threshold [ASAWF95] is the same as
LRU, except documents larger than a certain
threshold size are never cached;

Log(Size)+LRU [ASAWF95] evicts the doc-
ument who has the largest log(size) and is the
least recently used document among all docu-
ments with the same log(size).

Hyper-G [WASAF96] is a refinement of LFU
with last access time and size considerations;

Pitkow/Recker [WASAF96] removes the least-

recently-used document, except if all documents
are accessed today, in which case the largest one
is removed;

Lowest-Latency-First [WA97] tries to mini-
mize average latency by removing the document
with the lowest download latency first;

Hybrid, introduced in [WA97], is aimed at re-
ducing the total latency. A function is com-
puted for each document which is designed to
capture the utility of retaining a given docu-
ment in the cache. The document with the
smallest function value is then evicted. The
function for a document p located at server s
depends on the following parameters: ¢, the
time to connect with server s, bs the bandwidth
to server s, n, the number of times p has been
requested since it was brought into the cache,
and z,, the size (in bytes) of document p. The
function is defined as:

(cs + %) (n,)Wn

Zp

where Wy, and W,, are constants. Estimates for
¢, and by are based on the the times to fetch
documents from server s in the recent past.

Lowest Relative Value (LRV), introduced in
[LRV97], includes the cost and size of a doc-
ument in the calculation of a value that esti-
mates the utility of keeping a document in the
cache. The algorithm evicts the document with
the lowest value. The calculation of the value

is based on extensive empirical analysis of trace
data. For a given i, let P; denote the proba-
bility that a document is requested 7 + 1 times
given that it is requested ¢ times. P; is esti-
mated in an online manner by taking the ratio
D;11/D;, where D; is the total number of docu-
ments seen so far which have been requested at
least i times in the trace. P;(s) is the same as
P; except the value is determined by restricting
the count only to pages of size s. Furthermore,
let 1 — D(¢) be the probability that a page is re-
quested again as a function of the time (in sec-
onds) since its last request ¢; D(t) is estimated
as

D(t) = .035log(t + 1) + .45 (1 - e;) .

Then for a particular document d of size s and
cost ¢, if the last request to d is the i¢’th request
to it, and the last request was made ¢ seconds
ago, d’s value in LRV is calculated as:

) [Pi(s)(1 = D(t)) xc/s
Vi t,s) = { P;(1 - D(t)) xc/s
Among all documents, LRV evict the one with

the lowest value. Thus, LRV takes into account
locality, cost and size of a document.

ifi=1
otherwise

Existing studies narrowed down the choice for proxy
replacement algorithms to LRU, SIZE, Hybrid and
LRV. Results in [WASAF96, ASAWF95] show that
SIZE performs better than LFU, LRU-threshold,
Log(size)+LRU, Hyper-G and Pitkow/Recker. Re-
sults in [WASAF96] also show that SIZE outperforms

LRU in most situations. However, a different study [LRV97]

shows that LRU outperforms SIZE in terms of byte
hit rate. Comparing LFU and LRU, our experiments
show that though LFU can outperform LRU slightly
when the cache size is very small, in most cases LFU
performs worse than LRU. In terms of minimizing
latency, [WA97] show that Hybrid performs better
than Lowest-Latency-First. Finally, [LRV97] shows
that LRV outperforms both LRU and SIZE in terms
of hit ratio and byte hit ratio. One disadvantage of
both Hybrid and LRV is their heavy parameteriza-
tion, which leaves one uncertain about their perfor-
mance across access streams.

However, the studies offer no conclusion on which
algorithm a proxy should use. Essentially, the prob-
lem is finding an algorithm that can combine the ob-
served access pattern with the cost and size consid-
erations.

2.2.1 Implementation Concerns

The above “champion” algorithms vary in time and
space complexity. In the cases when there are a large

Do O

number of documents in the cache, this can have a
dramatic effect on the time required to determine
which document to evict.

e LRU can be implement easily with O(1) over-
head per cached file and O(1) time per access;

e Size can be implemented by maintaining a pri-
ority queue on the documents in memory based
on their size. Since the size of a document does
not change, handling a hit requires O(1) time
and handling an eviction requires O(log k) time,
where k is the number of cached documents.

e Hybrid is also implemented using a priority queue,

thus requiring O(log k) time to find a replace-
ment. Furthermore, it requires an array keep-
ing track of the average latency and bandwidth
for every Web server. It is used in estimating
the downloading latency of a web page. This
requires extra storage. In addition, since the
estimate is updated every time a connection
to the server is made, a faithful implementa-
tion requires updating many pages’ latency es-
timation. We found this prohibitively time-
consuming, and we omit the step in the imple-
mentation.

e LRV requires O(1) storage per cached file plus
some bookkeeping information. If the Cost in
LRV is proportional to Size, the authors of the
algorithm suggests an efficient method that can
find the replacement in O(1) time, though the
constants can be large. If Cost is arbitrary, then
O(k) time is needed to find a replacement. We
also found that the cost of calculating D(t) are
very high, since it uses log and exp.

Another concern about both Hybrid and LRV is
that they employ constants which might have to be
tuned to the patterns in the request stream. For Hy-
brid, we use the values which were used in [WA97]
in our simulations. We did not experiment with tun-
ing those constants to improve the performance of
Hybrid.

Though LRV can incorporate arbitrary network
costs associated with documents, the O(k) compu-
tational complexity of finding a replacement can be
prohibitively expensive. The problem is that D(¢)
has to be recalculated for every document every time
some document has to be replaced. The overhead
makes LRV impractical for proxy caches that wish to
take network costs into consideration.

3 Web Proxy Traces

As the conclusions from a trace-driven study inevitably
depend on the traces, we tried to gather as many
traces as possible. We were successful in obtaining
the following traces of HT'TP requests going through
Web proxies:

e Digital Equipment Cooperation Web Proxy server
traces [DEC96](Aug-Sep 1996), servicing about
17,000 workstations, for a period of 25 days,
containing a total of about 24,000,000 accesses;

e University of Virginia proxy server and client
traces [WASAF96] (Feb-Oct 1995), containing
four sets of traces, each servicing from 25 to 61
workstations, containing from 13,127 to 227,210
accesses;

e Boston University client traces [CBC95](Nov 1994
- May 1995), containing two sets of traces, one
servicing 5 workstations (17,008 accesses), the
other 32 workstations (118,105 accesses);

We are in the process of obtaining more traces from
other sources.

We present the results of fourteen traces. They
include all of Virginia Tech and Boston University
traces, and eight subsets of the DEC traces. The
subsets are Web accesses made by users 0-512, and
users 1024-2048, in each week, for the three and half
weeks period from Aug. 29 to Sep. 22, 1996. The
use of the subsets is partly due to our current simu-
lator’s limitation (it cannot simulate more than two
million requests at a time), and partly due to our ob-
servation that a caching proxy server built out of a
high-end workstation can only service about 512 users
at a time.

We perform some necessary pre-processing over
the traces. For the DEC traces, we simulated only
those requests whose replies are cacheable as specified
in HTTP 1.1 [HT97] (i.e. GET or HEAD requests
with status 200, 203, 206, 300, or 301, and not a
“cgi_bin” request). In addition, we do not include
those requests that are queries (i.e. “?” appears in
the URL), though such requests are a small fraction
of total cacheable requests (around 3% to 5%). For
Virginia Tech traces, we simulated only the “GET”
requests with reply status 200 and a known reply size.
Thus, our numbers differ from what are reported in
[WASAF96]. The Virginia Tech traces unfortunately
do not come with latency information. For Boston
University traces, we simulated only those requests
that are not serviced out of browser caches.

Do A

10

=]

=]

Percentage of Reference
(]

10

o

Percentage of References
(]

0 =
E 0
] mmm . o o o a»
0 . : . : . : . : . | . oo - e» oa
2000 4000 6000 8000 10000 0 j T j l j T j T j T
. . 2000 4000 6000 8000 10000
time since last access . .
time since last access
Figure 1: Percentage of references to documents

whose last accesses are ¢t mintues ago, for ¢ from 5 to
over 1000. In other words, the graph plots the prob-
ability of re-access as a function of the time since last
access to the same document. Note that both the
x-axis and the y-axis are in log scale.

3.1 Locality in Web Accesses

In the search for an effective replacement algorithm,
we analyzed the traces to understand the access pat-
terns of Web requests seen by the proxies. The strik-
ing property we found is that all traces exhibit excel-
lent long-term locality.

Figure 1 shows the percentage of references to a
document whose last reference is ¢t minutes ago, for
t from 5 to 1000, in the DEC traces for the period
from Sep. 12 to Sep. 18. In other words, the figure
shows the probablity of a document being accessed
again as a function of the time since the last access to
this document. The graphs for other traces are simi-
lar to the one shown here. Clearly, the probablity of
reference drops significantly as the time since last ref-
erence increases (note that in the figure, the y-axis is
in log scale.) A different study [LRV97] reaches sim-
ilar conclusions on a different set of traces. Indeed,
it is this observation that promoted the design of the
function D(t) in LRV.

There are two reasons for the good locality in
Web accesses seen by the proxy. One is that each
user’s accesses tend to exhibit locality — figure 2
shows the probablity that a document is accessed by
a user t minutes after the last access by the same

Figure 2: Percentage of references (i.e., probability of
re-access) as a function of the time since last access
to the same document by the same user. The time is
in minutes. Both the x-axis and the y-axis are in log
scale.

® Accesses from All Users
+ Accesses by the same user

Percentage of Reference
o

Ty
-

++

I I I I
4000 6000 8000 10000

time since last access

Figure 3: Points from Figure 1 (the dots) and points
from Figure 2 (the crosses) plotted on the same graph.

Do &

user, for DEC traces in the period from Sep. 12 to
Sep. 18 (again, the figures for other traces are simi-
lar). Clearly, each user tends to reaccess recently-read
documents, and reaccess documents that are read on
a daily basis (note the spikes around 24 hours, 48
hours, etc. in the figure). Though one might expect
that browsers caches absorb the locality among the
same user’s accesses seen by the proxy, the results
seems to indicate that this is not necessarily the case,
and users are using proxy caches as an extension to
the browser cache. [LRV97] observes the same phe-
nomemon.

The other reason is that users’ interests overlap in
time — comparing figures 2 and 1, we can see that
for the same ¢, the percentage in figure 1 is higher
than that in figure 2. This indicates that part of the
locality observed by the proxy comes from the fact
that the proxy sees a merged stream of accesses from
many independent users, who share a certain amount
of common interests. Thus, we believe the locality
observed is not particular to the traces described here,
but rather a common characteristic of accesses seen
by proxies with a large enough user community.

In the absence of cost and size concerns, LRU is
the optimal online algorithm for reference streams ex-
hibiting good locality [CD73] (strictly speaking, those
conforming to the LRU-stack model). However, in
the Web context, replacing a more recently used but
large file can yield a higher hit ratio than replacing a
less recently used but small file. Similarly, replacing
a more recently used but inexpensive file may yield
a lower total cost than replacing a less recenlty used
but expensive file. Thus, we need an algorithm that
combines locality, size and cost considerations in a
simple, no parameter, online way that maximize the
overall performance.

4 GreedyDual-Size Algorithm

The original GreedyDual algorithm is proposed by
Young [You91b]. It is concerned with the case when
pages in a cache have the same size, but incur differ-
ent costs to fetch from a secondary storage. The al-
gorithm associates a value, H, with each cached page
p. Initially, when a page is brought into cache, H is
set to be the cost of bringing the page into the cache
(the cost is always non-negative). When a replace-
ment needs to be made, the page with the lowest H
value, mings, is replaced, and then all pages reduce
their H values by ming. If a page is accessed, its
H value is restored to the cost of bringing it into the
cache. Thus, the H values of recently accessed pages
retain a larger portion of the original cost than those

Algorithm GREEDYDUAL:

Initialize L <« 0.

Process each request document in turn:
The current request is for document p:
(1) if p is already in memory,

(2) H(p) < L+ c(p)/s(p).

(3) if p is not in memory,

(4) while there is not enough room
in memory for p,

(5) Let L < mingepn H(q).

(6) Evict ¢ such that H(q)=L.

(7 Bring p into memory and set
H(p) < L+ c(p)/s(p)

end

Figure 4: GreedyDual Algorithm.

of pages that have not been accessed for a long time.
By reducing the H values as time goes on and restor-
ing them upon access, the algorithm integrates the
locality and cost concerns in a seamless fashion.

To incorporate the difference sizes of the docu-
ment, we extends the GreedyDual algorithm by set-
ting H to cost/size upon accesses to a document,
where cost is the cost of bringing the document, and
size is the size of the document in bytes. We called
the extended version the GreedyDual-Size algorithm.
The definition of cost depends on the goal of the re-
placement algorithm: cost is set to 1 if the goal is to
maximize hit ratio, it is set to the downloading la-
tency if the goal is to minimize average latency, and
it is set to the network cost if the goal is to minimize
the total cost.

At the first glance, GreedyDual-Size would require
k subtractions when a replacement is made, where k
is the number of documents in cache. However, a dif-
ferent way of recording H removes these subtractions.
The idea is to keep an “inflation” value L, and let all
future setting of H be offset by L. Figure 4 shows an
efficient implementation of the algorithm.

Using this technique, GreedyDual-Size can be im-
plemented by maintaining a priority queue on the
documents, based on their H value. Handling a hit
requires O(logk) time and handling an eviction re-
quires O(log k) time, since in both cases the queue
needs update. More efficient implementations can be
designed that makes the common case of handling a
hit requiring only O(1) time.

Online-Optimality of GreedyDual-Size

It can be proven that GreedyDual-Size is online-optimal.

For any sequence of accesses to documents with ar-

D e £

bitrary sizes and arbitrary costs, the cost of cache
misses under GreedyDual-Size is at most k times that
under the offline optimal replacement algorithm, where
k is the ratio of the cache size to the size of the small-
est page. The ratio is the lowest achievable by any
online replacement algorithm. Below is a proof of the
online-optimality of GreedyDual-Size.

Neal Young proved in [You91b] that the version of
Greedy Dual for pages of uniform size is k-competitive.
We prove here that the version which handles pages
of multiple size is also k-competitive. (In both cases,
k is defined to be the ratio of the size of the cache
to the size of the smallest page). The proof below is
based on a proof that another algorithm called BAL-
ANCE which also solves the multi-cost uniform-size
paging problem is k-competitive.

All of the above bounds are tight, since we can
always assume that all pages are as small as pos-
sible and have the same cost and invoke the lower
bound of k£ on the competitive ratio for the uniform-
size uniform-cost paging problem found in [ST85].

It should also be noted that the same bound can
be proven for the version of the algorithm which uses
¢(p) instead of ¢(p)/s(p) in the description of the al-
gorithm in Figure 4. Young has independently proven
a generalization of the result below [You97]. The gen-
eralization covers the whole range of algorithms de-
scribed in his original paper [You91b] instead of the
particular version covered here.

Theorem 1 Greedy Dual is k-competitive, where k
is the ratio of the size of the cache to the size of the
smallest page.

Proof. We will charge each algorithm for the pages
they evict instead of the pages they bring in. The
difference between the two cost measures is at most
an additive constant.

Each request for a page happens in a series of
steps. First the optimal algorithm serves the request.
Then each of the steps of Greedy Dual is executed in
a separate step. Each step of each request happens
at a different point in time.

It is straightforward to show by induction on time
that for every page ¢ in the cache

L Slr)reuﬂgH(p) <H(g <L+ Q)

Let Lgina be the last value of L. Let s,,;, denote
the size of the smallest page. Let scqche be the total
size of the cache. Note that k = scache/Smin. We will
first prove that the total weight of all pages which
OPT evicts is at least Spin - Lfing. Then we will
show that the total weight of all pages evicted by
Greedy Dual is at most Scache - Lfinai-

Every time L increases, there is some page which
Greedy Dual has in the cache which the optimal does
not have in the cache. This is because L only in-
creases when we must evict a page in order to make
room for a newly requested page. Since the opti-
mal algorithm has already satisfied the request, it
has the requested page in the cache. Since the newly
requested page does not fit in Greedy Dual’s cache,
Greedy Dual must have some page in the cache which
the optimal does not have in the cache.

Consider a period of time in which Greedy Dual
has p in its cache and the optimal does not. Such a
period begins with the optimal evicting p from the
cache and ends when either we evict p from the cache
or the optimal brings p back in to the cache. We will
attribute any increase in L which occurs during this
period to the cost the optimal incurred in evicting p at
the beginning of the period. The cost of evicting p is
¢(p). The only thing we have to prove in establishing
that the optimal cost is at least Sy,in - Lfina is that
L increases by at most ¢(p)/s(p) < ¢(p)/Smin during
the period.

Let Ly be the value of L when the period begins.
We know that at this time H(p) < L1 + c(p)/s(p).
Furthermore, H(p) does not change during this pe-
riod. This is because H(p) only increases when p is
requested. p can only be requested on the last re-
quest of the period (because the period is defined to
the period of time in which Greedy Dual has p in its
cache and the optimal does not). If the last request
of the period is to page p, then the optimal brings p
into its cache, and hence the period ends before H (p)
increases. If the period ends by p’s eviction, H (p)
remains the same until p is evicted. Since H(p) is an
upper bound for L, L can not increase to more than
L + ¢(p)/s(p) during the entire period.

Now we must establish that the total cost of all
pages evicted by Greedy Dual is at most scache L finai-
Consider an eviction that Greedy Dual performs. Let
p be the page that is evicted and let L; and L, be the
values for L when it is brought in and evicted from
the cache, respectively. The value of H(p) when p is
brought in to the cache is L; 4+ ¢(p)/s(p). p can only
be evicted if L equals H(p). Since H(p) can only
increase during the time that p is in the cache, we
know that Lo — Ly > ¢(p)/s(p).

Draw an interval on the real line from L; to Lo
that is closed on the left end and open on the right
end. Assign the interval a weight of s(p). If we draw
an interval for every such eviction, the cost of Greedy
Dual is upper bounded by the sum over all intervals
of their length times their weight. By definition, all
intervals lie in the range from 0 to Lfina.

The final observation is that the total weight of
all the intervals which contain any single point on

D wu ™

the real line is at most Scqcne. Consider a point L' on
the line where an interval begins or ends. The total
weight of the intervals that cover this point is the sum
of the sizes of the pages which are in the cache when
L reaches L'. Since the size of the cache is at most
Scache, the sum of the weights of the intervals which
cover L' is at most Seqche-

O

5 Performance Comparison

Using trace driven simulation, we compare the perfor-
mance of GreedyDual-Size with LRU, Size, Hybrid,
and LRV. Size, Hybrid, LRV are all “champion” algo-
rithms from previously published studies [WASAF96,
LRV97, WA97]. In addition, for LRV, we first go
through the whole trace to obtain the necessary pa-
rameters, thus giving it the advantage of perfect sta-
tistical information. In contrast, GreedyDual-Size
takes into account cost, size and locality in a more
natural manner and does not require tuning to a par-
ticular set of traces.

5.1 Performance Metrics

We consider five aspects of web caching benefits: hit
ratio, byte hit ratio, latency reduction, hop reduction,
and weighted-hop reduction. By hit ratio, we mean
the number of requests that hit in the proxy cache
as a percentage of total requests. By byte hit ratio,
we mean the number of bytes that hit in the proxy
cache as a percentages of the total number of bytes
accessed. By latency reduction, we mean the percent-
age of the sum of downloading latency for the pages
that hit in cache over the sum of all downloading
latencies. Hop reduction and weighted-hop reduction
are used to measure the effectiveness of the algorithm
at reducing network costs, as explained below.

To investigate the regulatory role that can be played

by proxy caches, we model the network cost asso-
ciated with each document as “hops”. The “hops”
value can be the number of network hops travelled
by a document, to model the case when the proxy
tries to reduce the overall load on Internet routers,
or it can be the monetary cost associated with fetch-
ing the document, to model the case when the proxy
has to pay for documents travelling through different
network carriers.

We evaluate the algorithms in a situation where
there is a skew in the distribution of “hops” values
among the documents. The skewed distribution mod-
els the case when a particular part of the network is
congested, or the proxy has to pay different amount
of money for documents travelling through different

networks (for example, if the proxy is at an Inter-
net Service Provider). In our particular simulation,
we assign each Web server a hop value equal to 1 or
32, so that 1/8 of the servers have hop value 32 and
7/8 of the servers have hop value 1. This simulates
the scenario, for example, that 1/8 of the web servers
contacted are located in Asia, or can only be reached
through an expensive or congested link.

Associated with the “hop” value are two metrics:
hop reduction and weighted-hop reduction. Hop re-
duction is the ratio between the total number of the
hops of cache hits and the total number of the hops
of all accesses; weighted-hop reduction is the corre-
sponding ratio for the total number of hops times
“packet savings” on cache hits. A cache hit’s packet
saving is 2 + file_size/536, as an estimate of the ac-
tual number of network packets required if the request
is a cache miss (1 packet for the request, 1 packet for
the reply, and size/536 for extra data packets, as-
suming a 536-byte TCP segment size).

For each trace, we first calculate the benefit ob-
tained if the cache size is infinite. The values for all
traces are shown in Table 1. In the table, BU-272 and
BU-B19 are two sets of traces from Boston Univer-
sity [CBC95], VI-BL, VT-C, VT-G, VT-U are four
sets of traces from Virginia Tech [WASAF96], DEC-
U1:8/29-9/4 through DEC-U1:9/19-9/22 are the re-
quests made by users 0-512 (user group 1) for each
week in the three and half week period, and DEC-
U2:8/29-9/4 through DEC-U2:9/19-9/22 are the traces
for users 1024-2048 (user group 2). We experimented
with other subsets of DEC traces and the results are
quite similar to those obtained from these subsets.

Below, we divide our results into three subsec-
tions. In Section 5.2, we measure the hit rate and
byte hit rate of different algorithms. In Section 5.3
we compare the latency reduction. In Section 5.4
we compare the hop reduction and weighted hop re-
duction. The corresponding value under the infinite
cache are listed in Table 1. Since these simulations
assume limited cache storage, their ratios cannot be
higher than the infinite cache ratios.

The cache sizes investigated in the simulation were
chosen by taking a fixed percentage of the total sizes
of all distinct documents requested in the sequence.
The percentages are 0.05%, 0.5%, 5%, 10% and 20%.
For example, for trace DEC-U1:8/29-9/4, which in-
cludes the requests made by users 0-512 for the week
of 8/29 to 9/4 and has a total data set size of 9.21GB,

the cache sizes experimented are 4.6MB, 46.1MB, 461MB,

921MB and 1.84GB.

Due to space limitation, we organize the traces
into four groups: Boston University traces, Virginia
Tech traces, DEC-U1 traces, and DEC-U2 traces, and

Do O

Trace Clients Total Total Hit | Byte | Reduced | Reduced Reduced
Requests | GBytes | Rate | HR | Latency Hops WeightedHops
BU-272 5 17007 0.39 0.25 | 0.15 0.13 0.16 0.09
BU-B19 32 118104 1.59 0.47 | 0.27 0.20 0.48 0.25
VT-BL 59 53844 0.674 0.43 | 0.33 - 0.35 0.16
VT-C 26 11250 0.159 0.45 | 0.38 - 0.33 0.15
VT-G 26 47802 0.630 0.50 | 0.30 - 0.49 0.31
VT-U 74 164160 2.30 0.46 | 0.33 - 0.40 0.25
DEC-U1:8/29-9/4 512 633881 9.21 0.42 | 0.35 0.24 0.34 0.25
DEC-U1:9/5-9/11 512 691211 9.32 0.40 | 0.31 0.23 0.32 0.23
DEC-U1:9/12-9/18 512 658166 9.23 0.39 | 0.31 0.19 0.39 0.32
DEC-U1:9/19-9/22 512 280087 3.86 0.38 | 0.31 0.16 0.25 0.21
DEC-U2:8/29-9/4 1024 455858 5.57 0.33 | 0.22 0.20 0.27 0.19
DEC-U2:9/5-9/11 1024 428719 5.13 0.30 | 0.21 0.18 0.25 0.16
DEC-U2:9/12-9/18 | 1024 408503 4.94 0.29 | 0.19 0.15 0.24 0.17
DEC-U2:9/19-9/22 | 1024 170397 2.00 0.26 | 0.19 0.15 0.17 0.11

Table 1: Benefits under a cache of infinite size for each trace, measured as hit ratio, byte hit ratio, latency

reduction, hop reduction, and weighted-hop reduction.

present the averaged results per trace group. The
results for individual traces are similar.

5.2 Hit Rate and Byte Hit Rate

First, figure 5 show the average hit ratio of the four
groups of traces under LRU and GD-Size(1), a varia-
tion of the GreedyDual-Size algorithm where the cost
for each document is 1 (since a cache hit for any doc-
ument is simple one cache hit). The results clearly
show that taking document sizes into account im-
proves hit ratio.

Figures 6 and 7 show the average hit ratio and
byte hit ratio of the four groups of traces under LRU,
Size, LRV, GD-Size(1), and GD-Size(packets). We
do not examine Hybrid here because it is designed to
minimize latency. GD-Size(1) and GD-Size(packets)
are two variations of the GreedyDual-Size algorithm.
The former sets the cost for each document to be
1, while the latter sets the cost for each document
to 2 + size/536 (i.e. estimated number of network
packets sent and received if a miss to the document
happens). Thus, GD-Size(1) seeks to minimize miss
ratio, and GD-Size(packets) tries to minimize the net-
work traffic resulting from the misses.

The results show that clearly, GD-Size(1) achieves
the best hit ratio among all algorithms across traces
and cache sizes. It approaches the maximal achiev-
able hit ratio very fast, being able to achieve over
95% of the maximal hit ratio when the cache size is
only 5% of the total data set size. It performs partic-
ularly well for small caches, suggesting that it would

be a good replacement algorithm for main memory
caching of web pages.

However, Figure 7 reveals that GD-Size(1) achieves
its high hit ratio at the price of lower byte hit ratio.
This is because GD-Size(1) considers the saving for
each cache hit as 1, regardless of the size of docu-
ment. GD-Size(packets), on the other hand, achieves
the overall highest byte hit ratio and the second high-
est hit ratio (only moderately lower than GD-Size(1)).
GD-Size(packets) seeks to minimize (estimated) net-
work traffic, in which both hit ratio and byte hit ratio
play a role.

For the Virginia Tech traces, LRV outperforms
GD-Size(packets) in terms of hit ratio and byte hit
ratio. This is due to the fact that those traces have
significant skews in the probability of references to
different sized files, and LRV knows the distribution
before-hand and includes it in the calculation. How-
ever, for all other traces where the skew is less signif-
icant, LRV performs worse than GD-Size(packets) in
terms of both hit ratio and byte hit ratio, despite its
heavy parameterization and foreknowledge.

LRU performs better than SIZE in terms of hit ra-
tio when the cache size is small (less or equal than 5%
of the total date set size), but performs slight worse
when the cache size is large. The relative comparison
of LRU and Size differs from the results in [WASAF96],
but agrees with those in [LRV97].

In summary, for proxy designers that seek to max-
imize hit ratio, GD-Size(1) is the appropriate algo-
rithm. If both high hit ratio and high byte hit ratio
are desired, GD-Size(packets) is the appropriate al-

D O

— - GD-Size(1)

—e— LRU

Hit Ratio

. T
5 10 15 20 0 5 10 15 20
Relative Cache Size (%)

0.0 T e
0 5 10 15 20 0 5 10 15 20 0
Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%)

Boston University traces Virginia Tech traces DEC-UT traces DEC-U?2 traces

Figure 5: Comparison of LRU and GD-Size(1) on hit ratio. The figure shows the hit ratios for each trace group
under LRU and GD-Size(1).

—e— LRU

— -4A— - SIZE —+— LRV — - GD-Size(1) ---4-- GD-Size(packets)

Hit Ratio

{

A

A
A I I I T SN I IR IR

™
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%)

Boston University traces Virginia Tech traces DEC-UT traces DEC-U?2 traces

0.0 | L R R L

Figure 6: Hit ratio for each trace group, under LRU, Size, LRV, GD-Size(1) and GD-Size(packets).

Do 1N

—e— LRU

— 4—- SIZE —+— LRV

It
w

Q
S}

Byte Hit Ratio

e
=

o
o

0 5 10 15
Relative Cache Size (%)

20 0 5 10 15

Boston University Traces Virginia Tech traces

Relative Cache Size (%)

— - GD-Size(1) ---&-- GD-Size(packets)

20 0 5 10 15 20
Relative Cache Size (%)

DEC-U?2 traces

20 0 5 10 15
Relative Cache Size (%)

DEC-U1 traces

Figure 7: byte hit ratio for each trace group, under LRU, Size, LRV, GD-Size(1) and GD-Size(packets).

gorithm.

5.3 Reduced Latency

Another major concern for proxies is to reduce the
latency of HTTP requests through caching, as nu-
merous studies have shown that the waiting time has
become the number one concern of Web users. One
study [WA97] introduced a proxy replacement algo-
rithm called Hybrid, which takes into account the dif-
ferent latencies incurred to load different web pages,
and attempts to minimize the average latency. The
study [WA97] further showed that in general the al-
gorithm has a lower average latency than LRU, LFU
and SIZE.

We also designed two versions of GreedyDual-Size
that take latency into account. One, called
GD-Size(latency), sets the cost of a document to the
latency it took to download. The other, called GD-
Size(avg_latency), sets the cost to the estimated down-
load latency of a document, using the same method
of estimating latency as in Hybrid [WA97].

Figure 8 shows the latency reductions for LRU,
Hybrid, GD-Size(1), GD-Size(latency) and
GD-Size(avg latency). The figure unfortunately does
not include Virginia Tech traces because those traces
do not come with latency information for each HTTP
request. Clearly, GD-Size(1) performs the best, yield-
ing the highest latency reduction. GD-Size(latency)
and GD-Size(packets) finish the second, with LRU
following close behind. GD-Size(avg_latency) per-
forms badly for small cache sizes, but performs very
well for relatively large cache sizes. Finally, Hybrid

performs the worst.

Examination of the results shows that the reason
for Hybrid’s poor performance is its low hit ratio.
In the Boston University traces, Hybrid’s hit ratio is
much lower than LRU’s for cache sizes < 5% of the
total data set sizes, and only slightly higher for larger
cache sizes. For all DEC traces, Hybrid’s hit ratio is
much lower than LRU’s, under all cache sizes. The
reason for Hybrid’s low hit ratio is because it does not
consider how recently a document has been accessed
in choosing replacements.

Since [WA97] reports that Hybrid performs well,
our results here seem to suggest that Hybrid’s per-
formance is perhaps trace-dependent. In our simula-
tion of Hybrid we used the same constants in [WA97],
without tuning them to our traces. Unfortunately we
were not able to obtain the traces used in [WA97].

It is a surprise to us that GD-Size(1), which does
not take latency into account, performs better than
GD-Size(latency) and GD-Size(avg_latency). Detailed
examination of the traces shows that the latency of
loading the same document varies significantly. In
fact, for each of the DEC traces, variance among la-
tencies of the same document ranges from 5% to over
500%, with an average around 71%. Thus, a docu-
ment that was considered cheap (taking less time to
download) may turn out expensive at the next miss,
while a document that was considered expensive may
actually take less time to download. The best bet for
the replacement algorithm, it seems, is to maximize
hit ratio.

In summary, GD-Size(1) is the best algorithm to
reduce average latency. The high variance among

Do 11

—e— LRU
— -A— - Hybrid
0.2

2]

(5]

2]

3]

N -

—]

=] 4

8 4

:0.1__

=]

%)

& 14
11
11
14

0.0 =

0 5 10 15 20

Relative Cache Size (%)

Boston University traces

— - GD-Size(1)

---&-- GD-Size(packets) — -0— - GD-Size(Latency/Byte)

0 5 10 15 20 0 5 10 15 20
Relative Cache Size (%) Relative Cache Size (%)

DEC-U1 traces DEC-U?2 traces

Figure 8: Latency reduction for LRU, Hybrid, GD-Size(1), GD-Size(packets), GD-Size(latency), and GD-
Size(avg_latency). The curves for GD-Size(packets) and GD-Size(latency) overlap each other at most of the

points.

loading latencies for the same document reduces the
effectiveness of latency-conscious algorithms.

5.4 Network Costs

To incorporate network cost considerations,
GD-Size(hops) sets the cost of each document to the
hop value associated with the Web server of the docu-
ment, and GD-Size(weightedhops) sets the cost to be
hops times 2 + file_size/536. Figures 9 and 10 show
the hop reduction and weighted-hop reduction for
LRU, GD-Size(1), GD-Size(hops), and
GD-Size(weightedhops).

The results show that algorithms that consider
network costs do perform better than algorithms that
are oblivious to them. The results here are different
from the latency results because the network cost as-
sociated with a document does not change during our
simulation. The results also show that the specifically
designed algorithms achieve their effect. For hop re-
duction, GD-Size(hops) performs the best, and for
weighted-hop reduction, GD-Size(weightedhops) per-
forms the best. This shows that GreedyDual-Size not
only can combine cost concerns nicely with size and
locality, but is also very flexible and can accommo-
date a variety of performance goals.

Thus, we recommend GD-Size(hops) as the re-
placement algorithm for the regulatory role of proxy
caches. If the network cost is proportional to the

number of bytes or packets, then GD-Size(weightedhops)

is the appropriate algorithm.

5.5 Summary

Based on the above results, we have the following
recommendation. If the proxy wants high hit ratio
or low average latency, GD-Size(1) is the appropri-
ate algorithm. If the proxy desires high byte hit ra-
tio as well, then GD-Size(packets) achieves a good
balance among the different goals. If the documents
have associated network or monetary costs that do
not change over time, or change slowly over time,
then GD-Size(hops) or GD-Size(weightedhops) is the
appropriate algorithm. Finally, in the case of main
memory caching of web documents, GD-Size(1) should
be used because of its superior performance under
small cache sizes.

6 Conclusion

This paper introduces a simple web cache replace-
ment algorithm: GreedyDual-Size, and shows that it
outperforms existing replacement algorithms in many
performance aspects, including hit ratios, latency re-
duction, and network cost reduction. GreedyDual-
Size combines locality, cost and size considerations in
a unified way without using any weighting function or
parameter. It is simple to implement and accommo-
dates a variety of performance goals. Through trace-
driven simulations, we identify the cost definitions
for GreedyDual-Size that maximize different perfor-
mance gains.

Do 1O

—+— GD-Size(Avg_Latency/Byte)

Hop Reduction

Weighted Hop Reduction

—e— LRU — - GD-Size(1) ---A-- GD-Size(hops) —+— GD-Size(weightedhops)
0.4 P | |
A==
0.3
0.2
0.1
0.0 Hr—rr e e A e A e e
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%)
Boston University Traces Virginia Tech traces DEC-UTI traces DEC-U?2 traces
Figure 9: Hop reduction for LRU, GD-Size(1), GD-Size(hops), and GD-Size(weightedhops).
—e— LRU — - GD-Size(1) ---&-- GD-Size(hops) —+— GD-Size(weightedhops)
0.2
0.1
0.0 —Hr e AT] e

20 0 5 15 20
Relative Cache Size (%)

DEC-U?2 traces

20 0 5 10 15
Relative Cache Size (%)

DEC-U1 Traces

10 15 20 0 5 10 15
Relative Cache Size (%) Relative Cache Size (%)

Boston University Traces Virginia Tech Traces

Figure 10: Reduced weighted hops for LRU, GD-Size(1), GD-Size(hops), and GD-Size(weightedhops).

Davers 19

In addition, we demonstrate that proxy caches can
affect Web traffic by adjusting its replacement policy.
Again, GreedyDual-Size is the appropriate algorithm
for this purpose. How to adjust the network cost
definitions in GreedyDual to respond to congestion
remains future work.

Finally, we note that GreedyDual-Size can be ap-
plied to main memory caching of Web documents to
further improve performance.

Acknowledgement

The research is not possible without the support from
people who make their proxy traces available.

References

[ASAWF95] M. Abrams, C.R. Standbridge,
G.Abdulla, S. Williams and E.A. Fox. Caching
Proxies: Limitations and Potentials. WWW-4,
Boston Conference, December, 1995.

[Bel66] L.A. Belady. A study of replacement algo-
rithms for virtual storage computers. IBM Sys-
tems Journal, 5:78-101, 1966.

[CD73] G. Coffman, Jr., Edward and Peter J. Den-
ning, Operating Systems Theory, Prentice-Hall,
Inc. 1973.

[DEC96] Digital Equipment Cooperation, Digital’s
Web Proxy Traces
ftp://ftp.digital.com/pub/DEC/traces/proxy
/webtraces.html.

[FKIP96] A. Feldman, A. Karlin, S. Irani, S. Phillips.
Private Communication.

[Ho97] Hosseini, Saied, Private Communication.

[LCY7] Chengjie Liu, Pei Cao. Maintaining Strong
Cache Consistency in the World-Wide Web. In
Proceedings of the 1997 International Conferences
on Distributed Computing Systems, May, 1997.

[LRV97] P. Lorenzetti, L. Rizzo and L. Vi-
cisano. Replacement Policies for a Proxy Cache.
http://www .iet.unipi.it/ luigi/research.html.

[CBC95] Carlos R. Cunba, Azer Bestavros, Mark E.
Crovella Characteristics of WWW Client-based
Traces BU-CS-96-010, Boston University.

[LM96] Paul Leach and Jeff Mogul. The Hit Metering
Protocol. Manuscript.

[HT97] IETF The HTTP 1.1 Protocol - Draft.
http://www.ietf.org.

[ST85] D. Sleator and R. E. Tarjan. Amortized effi-
ciency of list update and paging rules. Commumni-
cations of the ACM, 28:202-208, 1985.

[W3C] The Notification Protocol.

http://www.w3c.org.

[WASAF96] S. Williams, M. Abrams, C.R. Stand-
bridge, G.Abdulla and E.A. Fox. Removal Poli-
cies in Network Caches for World-Wide Web Doc-
uments. In Proceedings of the ACM Sigcomm96,
August, 1996, Stanford University.

[WA97] R. Wooster and M. Abrams. Proxy
Caching the Estimates Page Load Delays. In
the 6th International World Wide Web Con-
ference, April 7-11, 1997, Santa Clara, CA.

http://www6.nttlabs.com/HyperNews/get/PAPER250.html.

[You91b] N. Young. The k-server dual and loose com-
petitiveness for paging. Algorithmica,June 1994,
vol. 11,(n0.6):525-41. Rewritten version of “On-
line caching as cache size varies”, in The 2nd An-
nual ACM-STAM Symposium on Discrete Algo-
rithms, 241-250, 1991.

[You97] N. Young. Online file caching. To appear in
the Proceedings for the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1998.

Dawvers 1 A4

