
P = 1/2n, a value that decreases exponentially with n (i.e. with the
“running time”) as required in any good randomized algorithm. We
do not pretend that our proposal on how to conduct a trial is per-
fect, but after all we do better than Bridlegoose who gave a correct
sentence every other case.

5.5 An interesting example: file sharing on the Internet

Randomized algorithms have been developed by computer scientists
for solving their own problems that, although less dramatic than sen-
tencing a defendant to death, are nevertheless worth being studied.
As an example we pick the problem of file sharing in the Internet
as one of the most interesting, simplifying its mathematical analysis
as much as possible. The overall structure is the one of a group of
users with equal resources and rights (peers) connected to a network
where they download files of interest directly from each other. Today
this type of communication is mostly devoted to getting musical files
in MP3 format, and hashing is a standard technique to allocate and
retrieve these files.

The most popular peer-to-peer file sharing systems are decentral-
ized, that is they are fully distributed among the users. There is no
central server hosting a complete set of addressing tables to route a
message between users, rather each user stores routing information
locally in limited amount.17 Furthermore all users execute the same
protocols for locating and downloading files. To do it efficiently the
files must be stored at the user sites as evenly as possible, coping with
the non trivial problems of relocating the files of a user who gets out
of the system, or assigning files to a new user. In fact standard hash
functions are very efficient for storing and retrieving items in a static
environment, however, if the storage buckets change dynamically,
nearly all items must be relocated at each change. The problem is
then finding a scheme where most of the items remain in their buckets
after the insertion or the removal of one bucket from the system. To
this end a randomized allocation algorithm called consistent hashing
works nicely, but the results are possibly incorrect with a very low
probability. The algorithm was originally designed for distributing
files in a dynamic family of Web servers, and is currently used in a

17According to the way is conducted, file sharing may raise legal problems that
are not our role to investigate. The decentralized structure was originally chosen
to circumvent these problems.

24

wealth of distributed applications to cope with system changes and
failures.

Roughly speaking the problem is allocating evenly M items (files)
into N buckets (peer users) connected in a network such that a
change in the set of buckets requires only M/N items to be relo-
cated on average (note that M/N is the expected number of items
of one bucket). Furthermore this must be associated with an effi-
cient method for file retrieval. Consistent hashing meets the first
requirement in a much finer way.

Chosen an integer C to represent the maximum number of buck-
ets allowed to participate into the game, the whole system can be
represented on a circle that hosts the interval [0,C-1], wrapped clock-
wise. The buckets and the items are randomly mapped to the integers
in [0,C-1], then buckets and items are represented as points on the
circle. An elementary example is given in figure 5.5 with only N = 10
buckets and M = 10 items out of a maximum of 256 each. Each item
is allocated into the closest bucket encountered clockwise around the
circle.A new bucket entering the system is mapped randomly on the
circle and receives proper items from the successor. A leaving bucket
sends all its items to the successor.

Since the mapping of buckets and items to the circle is random,
the expected number of items per bucket is M/N . Therefore roughly
M/2N items are inserted into a new bucket, and M/N items are re-
leased by a leaving bucket. Since these item relocations take place be-
tween two buckets only, while a participation of more buckets would
ensure a more balanced distribution, consistent hashing makes use of
a more complex strategy where buckets are replicated randomly in
several copies along the circle. With this and other details that we
skip here the whole algorithm attains some important results that
we summarize below, taking in mind what follows.

As the number of buckets is continuously changing, N is the
value relative to each view of the system, i.e. to the set of buckets
existing at each moment. We assume N ≥ C/k for some constant
k, i.e. each view must contain at least a certain fraction of all the
possible buckets. For a given item i, the spread σ(i) is the number
of different buckets to which i is mapped over all the views, and the
spread σ of the distribution is the maximum spread among the items.
For a given bucket b, the load λ(b) is the number of different items
assigned to b over all the views, and the load λ of the distribution is
the maximum load among the buckets. Note that spread and load

25

0255

2

20

7

30

37

50

62

72

81

230

181

163

140

132 125

110

90

222

207

200

190

Figure 5: The circle of consistent hashing for C = 28 = 256. Buckets
and items are represented with white circles and black dots, respec-
tively. Solid arrows indicate the destination of items. The grey circle
163 indicates a new bucket receiving items from its successor 181
(dashed arrow).

are strong indicators of the quality of the distribution, and should
be kept as low as possible. For consistent hashing we have:

• the protocol is fast, i.e. the expected time to map an item to
a bucket is of order O(1) (constant), and to add or delete a
bucket is of order O(log C);

• the distribution is balanced, i.e. the probability that any given
item i goes to any given bucket b is 1/N ;

• σ and λ are of order O(k log C) with probability ≥ 1− 1/C.

The values of σ and λ depend on the size of the views through
the value of k (large views imply small k); and depend modestly on
the maximum number of buckets as they grow with log C. In fact
C is regarded as a free parameter. The probability 1/C that σ or λ

exceeds the expected order of magnitude decreases exponentially if
the term log C increases. For example increasing C from 2n to 2n+k

26

the probability of error is divided by 2k while log2 C grows only to
n + k.

Let us now see how consistent hashing can be used for file retrieval
in a peer-to-peer system. We assume that a bucket is identified by
the Internet address (or IP address) of the corresponding user and an
item is identified by the name of the corresponding file.18 A standard
choice is the adoption of the hash function SHA-1 to map users and
files to the circle, so up to C = 2160 points are usable. For simplicity
we take C = 28in the examples, together with a random mapping R

to the interval [0,255]. So a user with IP address A(u) is mapped
to R(A(u)) = 132; and the MP3 file of “Isla Bonita is mapped to
R(IslaBonita) = 110 (from now on users and files will be denoted by
their positions). Again files are assigned to the closest user clockwise,
so in figure 5.5 file 110 would be stored at user 132. If a user joins or
leaves the system, files are relocated as explained before. Let us see
now how lookup is done. For a user u looking for file f the general
strategy is the following:

1. u sends the request to p that is the closest predecessor of f ;

2. p passes the request to its successor s which contains f ;

3. s sends f to u whose IP address is contained in the request.

Referring to figure 5.5, user u = 200 looking for file f = 110 must
send the request to p = 90 (predecessor of 110), and 90 passes the
request to s = 132 which contains the file. 132 then sends f to 200.
The problem is how each user knows the positions of the other users
on the circle to find predecessors and successors. In the example,
how 200 finds 90, and how 90 finds 132.

Since the protocol is intended for a distributed system the users
cannot interrogate a central server to know the positions of their
peers and then this information must be stored in the users them-
selves. For N ≤ 2m a good tradeoff between storage space and search
speed is obtained by assigning to each user a set of m positions (fin-
gers) of other users, together with their IP addresses where to send a

18In particular we refer to a major file retrieval service called Chord, described
here in its main lines. For a complete description of Chord see the bibliographical
notes. Note that, unlike in consistent hashing, users are now mapped only once on
the circle. Recall that an IP address is a number associated with each computer
directly connected to the network, see the following chapters.

27

0255

7

30

37

72

81

181

132

90

207

200

0 81

1 81

2 81

3 81

4 90

5 132

6 181

7 200

72

i z(i)

0 207

1 207

2 207

3 7

4 7

5 7

6 30

7 72

200

i z(i)

110

110 ?

110 ?

110 ?

Figure 6: Fingers z(i) for users 200 and 72. User 200 retrieves Isla
Bonita (file 110 stored at user 132) using these fingers.

message.19 For i = 0 to m-1, the finger z(i) of user u is the position
of the user closest to w(i) = u + 2i clockwise, where the addition
is taken modulo C. The fingers for users 72 and 200 are shown in
figure 5.6. E.g. for user 72 we have:

w(0) = (72 + 20) mod 256 = 73, hence z(0) = 73
(note that z(0) is always the successor of u);

w(4) = (72 + 24) mod 256 = 86, hence z(4) = 90;

w(6) = (72 + 26) mod 256 = 138, hence z(6) = 181; etc.

For user 200 we have:

w(1) = (200 + 21) mod 256 = 202, hence z(1) = 207;

w(6) = (200 + 26) mod 256 = 8, hence z(6) = 30;

w(7) = (200 + 27) mod 256 = 72, hence z(7) = 72; etc.

To look for a file f , user u sends a request to the user x that,
according to its fingers, is the closest predecessor of f , and asks x

19Recall that N changes continuously so we can only fix an upper bound for it.

28

to look for f . As u has knowledge of only m ∼ log2 N of its peers,
more than likely x is not the real closest predecessor of f . The
request then goes on from x in the circle with the same strategy, and
proceeds through other users until f is found and sent back to u. The
previous example may be followed on figure 5.6. To retrieve file 110,
user 200 searches for the predecessor of 110 among its fingers finding
72 to which the request is sent (recall that IP addresses are stored
with the fingers). 72 in turn looks for the predecessor of 110 among
its fingers and sends the request to 90. Since the successor of 90 is
132 ¿ 110 (i.e. 90 is the real closest predecessor of 110) the request
is sent to 132 that has the file and sends it back to 200. Assuming
that the only user 200 likes nostalgia favorites of the 1940s and looks
for an MP3 version of “Mona Lisa” with hash R(MonaLisa) = 128,
lookup would follow the same steps up to user 132 (successor of 128)
that sends back a negative answer.

The reader may realize how this algorithm recalls the one of bi-
nary search explained in Chapter 4. Due to the balanced distribution
of consistent hashing, the stretch of the circle on which f resides is at
least halved at each iteration with high probability. So the request
makes at most m hops in the network and the expected time for one
lookup is O(log N).20 Finally it is worth noting that a limited num-
ber of user changes do not affect the system too much, so that finger
tables may be kept for long before being updated. In addition the
system is difficult to disconnect with random changes because each
user has O(log N) connections to other users.

5.6 Randomness and the humans (instead of computers)

We have started this chapter talking of gambling and divination as
the most natural human activities having to do with randomness.
Now that we know much more on random phenomena we may think
some more over our perception of them.

First, in the history of man divination has been more important
than one may suspect. The ancient populations of Eurasia, and later
of North America, held divinatory rites to direct hunting expeditions
along paths were game could be found. Such rites had a dramatic

20The search for a predecessor in a finger table can be done in additional
O(log m) = O(log log N) time with binary search, that leaves the overall lookup
time unchanged. Of course our presentation of the protocol has been oversimpli-
fied. In particular insertions and deletions of users require O(log2

N) time.

29

