Notes Accompanying Today’s Class in Algorithm Design

Roberto Grossi
Universita di Pisa

Feb. 28, 2020

1 Bloom Filters, Cuckoo Hashing, and Succinct Rank Data
Structure

These notes are based on [3, 4]. Consider a set S of n keys chosen from a universe U.

(1) For a given (1-side) error probability 0 < f < 1, we learned that Bloom filters achieve
probability f using £ ~ (m/n)In2 hash functions that map U — [m]. They take O(k)
time, and use nearly (log(1/f)/In2)n ~ 1.441og(1/f)n bits of space.

(2) We learned that Cuckoo hashing, using two hash functions hi,he : U — [m], achieves
worst-case constant-time lookup, by checking at most two positions indicated by these hash
functions.

(3) Today, we look at a succinct Rank data structure R, which takes as input a bitvector B
of m bits, where n of them are 1s. The constant-time supported operation is rankg(j)
which returns the number of 1s in the first j bits of B. Space is [log ()] + o(m) bits for
the entire structures (no need to store B explicitly'), where [log ("")] is the information-
theoretic lower bound for storing a binary string of length m with n 1s (equivalently, a set
of n elements from a universe size m) [2, 1].

We show that using the data structures (2) and (3) we can improve the bounds of Bloom
filters in 1) when S is static (i.e. S does not change over time) and log(1/f) is a power of two.

Specifically, we see how to obtain a 1-side error probability f for lookup/membership using
nearly log(3/f)n bits: as log(3/f) ~ 1.58 + log(1/f), we have an additive constant instead of
a multiplicative in the space bound for (1), which is much better (e.g. try with f = 1076.
Moreover we use just three hash functions and lookup takes constant time.

Fingerprints. The first idea is to choose, randomly and uniformly, a hash function h € H
from a universal hash family H (as the one seen in class), where h: U — [1/f].

We thus define S’ = {h(z) | x € S}, where |S'| < |S| = n. When we want to test, given
any y € U, whether y € S, we lookup h(y) € S’. What is the lookup error? If y ¢ S but
h(y) € S’, we have that there exists € S such that h(y) = h(z). And we saw that the latter
collision probability is one over the range of the hash function, namley, Prpcy{h(y) = h(z)} =
1/(1/f) = f. Same as the Bloom filter in (1), good.

Given z € S, note that h(x) uses log(1/f) bits and is called its signature. The elements of
S’ require log(1/f) n bits in total: we only store S’, not S to save space as each key in S could
be very large (same motivation as Bloom filters.

In the following, we want to store S’ in little additional space and access in constant-time.

1We observe that log (’s) < m, thus R is always preferred instead of storing B explicitly.

Cuckoo hashing. Cuckoo hashing uses two randomly and independently chosen hash func-
tions hi, he € H, where hy, he : [1/f] — [m] and m = 3|S’| < 3n.?2 Lookup to check whether
y' € S’ takes constant time as it probes locations hj(y") and ha(y’) in a table T of m entries.

Are we happy? Given any y € U, we check whether y € S by computing its fingerprint
y' = h(y) and checking whether 3 € S’ in constant time, with 1-side error probability f.

But what about the space? Since T' uses m < 3n entries, each capable of storing log(1/f)
bits, we use a total of 3log(1/f)n bits, more than twice those required by the Bloom filters
in (1)!

We observe that we waste space for at least 2n empty entries of T. To put a remedy on that
we proceed as follows.

e We mark with a 1 which positions in T" contains a nonempty entry, and 0 othwerise. This
yields a bitvector B of m bits, where |S’| < n of them are 1s. In the following, let us
assume |S’| = n wlog. Recall that m = 3n.

e We pack the n nonempty entries of T" into an array P of n entries. Note that P stores a
permuation of the elements in S’, and thus takes log(1/f) n bits.

We observe that the nonempty entries in 7" in left-to-right order are in 1-to-1 correspondence
with the 1s in B and the elements in P, both in left-to-right order. Thus the ith nonempty
entry in 7' corresponds to the ¢th 1 in B and the ¢th element in P.

Now, in order to check whether 3/ € S’ in constant time using cuckoo hashing, we need to
check whether T'[h1(y')] = ¢’ or T[ha(y’)] = y'. Since we do not want to use 7" anymore, we
equivalently perform the following test.

1. If B[h1(y')] = Blha(y")] = 0, then v/ ¢ S” (and thus y ¢ S, with no error).

2. Otherwise, let B[hi(y')] = 1, wlog. If B[hi(y')] is the ith bit 1 in B, we test whether
P[i] = y/. Same test when Blha(y')] = 1.

Note that the missing piece in the puzzle is how to test if B[hi(y')] = 1 is the ith bit 1 in
B. Letting j = hi(y’), this requires to check whether B[j] =1 (easy), and there are i 1s in the
first j bits of B. For the latter, we need to introduce and use the Rank succinct data structure

in (3).

Rank data structure. The input is a bitvector B of m bits, where n of them are 1s. We
want to replace B with a succinct Rank data structure R that answser constant-time rankp(-)
queries. Recall that rankp(j) returns the number of 1s in the first j bits of B. Note that
B[j] = 1 iff rankp(j) # rankp(j — 1), so it is enough to store R in place of B.

The best implementations of R use [log ("")| + o(m) bits. Thus we can replace T' in cuckoo
hashing with P and R. Hence, we can simulate Bloom filters with our claimed bounds, storing
three hash functions h, h1, ha, which take O(log(1/f)+logn) bits, plus P, which takes log(1/f)n
bits, plus R, which takes [log ()] +o(m) ~ nlog(m/n) +o(m) = nlog3+0(n) bits as m = 3n.
Overall this is log(3/f) n + o(n) bits as claimed.

In the class, we described a less space-efficient implementation of R for illustrative purposes.
It uses 3m + o(m) bits, but it gives an idea on how R works.

Let £ = (1/2)logm. We build, using the so-called Four-Russians trick, a two dimensional
table L of 2¢ x £ = O(y/mlogm) entries. Entry L[c, j”] returns the number of 1s contained in
the first j” bits of binary string o. We build L by brute force, generating all binary strings «
of length ¢, and scanning each of them for each j”. Since there are 2¢ = O(y/m) such strings a,

2In class we saw that m > 2cn for any constant ¢ > 2, but the choice m = 3n works fine as we saw.

we take O(y/mpolylog(m)) = o(m) time to build it. Moreover, since each entry of L uses
O(loglogm) bits, the space occupied by L is O(y/mpolylog(m)) = o(m) bits. Clearly, L can
be queried in constant time.

Now, consider B and partition it into chunks of £ bits each. Each chunk is a string «, so we
can use L to compute in constant time how many 1s are found in the first 5 bits of a. Because
of that, we can conceputally see B as an array B’ of m/¢ chunks. We store an array C, so that
Ct] explicitly contains an integer that tells how many 1s are found in the the first ¢t — 1 chunks
of B'. Array C uses m/{-logm = 2m bits. Hence, L, B, and C occupy a total of 3m + o(m)
bits to implement R.

In order to answer rankp(j), let us take the chunk of B within which j falls. It corresponds
to o = B'[j'], where j' = 1+ |j/¢]. Observe that the jth bit in B is the j”th bit in o where
j”" =1+ 7 mod ¢. Thus we return C[j’] + L[« j"] as the value of rankp(j), in constant time.

Lower bound. TO BE DONE

References

[1] M. Patrascu. Succincter. In IEEE, editor, Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science: October 25-23, 2008, Philadelphia, Pennsylvania,
USA, pages 305-313. IEEE Computer Society Press, 2008.

[2] R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms, 3(4):43, 2007.

[3] I. Razenshteyn. Cuckoo hashing for sketching sets. http://blog.ilyaraz.org/?go=all/
cuckoo-hashing-for-sketching-sets/, 2019. [Online; accessed 28-Feb-2020].

[4] R. Venturini. Simple lower bound for approximate set query. Personal communication, 2020.

