
Notes Accompanying Today’s Class in Algorithm Design

Roberto Grossi
Università di Pisa

Feb. 28, 2020

1 Bloom Filters, Cuckoo Hashing, and Succinct Rank Data
Structure

These notes are based on [3, 4]. Consider a set S of n keys chosen from a universe U .

(1) For a given (1-side) error probability 0 < f < 1, we learned that Bloom filters achieve
probability f using k ≈ (m/n) ln 2 hash functions that map U → [m]. They take O(k)
time, and use nearly (log(1/f)/ ln 2)n ≈ 1.44 log(1/f)n bits of space.

(2) We learned that Cuckoo hashing, using two hash functions h1, h2 : U → [m], achieves
worst-case constant-time lookup, by checking at most two positions indicated by these hash
functions.

(3) Today, we look at a succinct Rank data structure R, which takes as input a bitvector B
of m bits, where n of them are 1s. The constant-time supported operation is rankB(j)
which returns the number of 1s in the first j bits of B. Space is dlog

(m
n

)
e + o(m) bits for

the entire structures (no need to store B explicitly1), where dlog
(m
n

)
e is the information-

theoretic lower bound for storing a binary string of length m with n 1s (equivalently, a set
of n elements from a universe size m) [2, 1].

We show that using the data structures (2) and (3) we can improve the bounds of Bloom
filters in 1) when S is static (i.e. S does not change over time) and log(1/f) is a power of two.

Specifically, we see how to obtain a 1-side error probability f for lookup/membership using
nearly log(3/f)n bits: as log(3/f) ≈ 1.58 + log(1/f), we have an additive constant instead of
a multiplicative in the space bound for (1), which is much better (e.g. try with f = 10−6.
Moreover we use just three hash functions and lookup takes constant time.

Fingerprints. The first idea is to choose, randomly and uniformly, a hash function h ∈ H
from a universal hash family H (as the one seen in class), where h : U → [1/f].

We thus define S′ = {h(x) | x ∈ S}, where |S′| ≤ |S| = n. When we want to test, given
any y ∈ U , whether y ∈ S, we lookup h(y) ∈ S′. What is the lookup error? If y 6∈ S but
h(y) ∈ S′, we have that there exists x ∈ S such that h(y) = h(x). And we saw that the latter
collision probability is one over the range of the hash function, namley, Prh∈H{h(y) = h(x)} =
1/(1/f) = f . Same as the Bloom filter in (1), good.

Given x ∈ S, note that h(x) uses log(1/f) bits and is called its signature. The elements of
S′ require log(1/f)n bits in total: we only store S′, not S to save space as each key in S could
be very large (same motivation as Bloom filters.

In the following, we want to store S′ in little additional space and access in constant-time.

1We observe that log
(
m
n

)
≤ m, thus R is always preferred instead of storing B explicitly.

1

Cuckoo hashing. Cuckoo hashing uses two randomly and independently chosen hash func-
tions h1, h2 ∈ H, where h1, h2 : [1/f] → [m] and m = 3|S′| ≤ 3n.2 Lookup to check whether
y′ ∈ S′ takes constant time as it probes locations h1(y

′) and h2(y
′) in a table T of m entries.

Are we happy? Given any y ∈ U , we check whether y ∈ S by computing its fingerprint
y′ = h(y) and checking whether y′ ∈ S′ in constant time, with 1-side error probability f .

But what about the space? Since T uses m ≤ 3n entries, each capable of storing log(1/f)
bits, we use a total of 3 log(1/f)n bits, more than twice those required by the Bloom filters
in (1)!

We observe that we waste space for at least 2n empty entries of T . To put a remedy on that
we proceed as follows.

• We mark with a 1 which positions in T contains a nonempty entry, and 0 othwerise. This
yields a bitvector B of m bits, where |S′| ≤ n of them are 1s. In the following, let us
assume |S′| = n wlog. Recall that m = 3n.

• We pack the n nonempty entries of T into an array P of n entries. Note that P stores a
permuation of the elements in S′, and thus takes log(1/f)n bits.

We observe that the nonempty entries in T in left-to-right order are in 1-to-1 correspondence
with the 1s in B and the elements in P , both in left-to-right order. Thus the ith nonempty
entry in T corresponds to the ith 1 in B and the ith element in P .

Now, in order to check whether y′ ∈ S′ in constant time using cuckoo hashing, we need to
check whether T [h1(y

′)] = y′ or T [h2(y
′)] = y′. Since we do not want to use T anymore, we

equivalently perform the following test.

1. If B[h1(y
′)] = B[h2(y

′)] = 0, then y′ 6∈ S′ (and thus y 6∈ S, with no error).

2. Otherwise, let B[h1(y
′)] = 1, wlog. If B[h1(y

′)] is the ith bit 1 in B, we test whether
P [i] = y′. Same test when B[h2(y

′)] = 1.

Note that the missing piece in the puzzle is how to test if B[h1(y
′)] = 1 is the ith bit 1 in

B. Letting j = h1(y
′), this requires to check whether B[j] = 1 (easy), and there are i 1s in the

first j bits of B. For the latter, we need to introduce and use the Rank succinct data structure
in (3).

Rank data structure. The input is a bitvector B of m bits, where n of them are 1s. We
want to replace B with a succinct Rank data structure R that answser constant-time rankB(·)
queries. Recall that rankB(j) returns the number of 1s in the first j bits of B. Note that
B[j] = 1 iff rankB(j) 6= rankB(j − 1), so it is enough to store R in place of B.

The best implementations of R use dlog
(m
n

)
e+ o(m) bits. Thus we can replace T in cuckoo

hashing with P and R. Hence, we can simulate Bloom filters with our claimed bounds, storing
three hash functions h, h1, h2, which take O(log(1/f)+log n) bits, plus P , which takes log(1/f)n
bits, plus R, which takes dlog

(m
n

)
e+o(m) ≈ n log(m/n) +o(m) = n log 3 + 0(n) bits as m = 3n.

Overall this is log(3/f)n+ o(n) bits as claimed.
In the class, we described a less space-efficient implementation of R for illustrative purposes.

It uses 3m+ o(m) bits, but it gives an idea on how R works.
Let ` = (1/2) logm. We build, using the so-called Four-Russians trick, a two dimensional

table L of 2` × ` = O(
√
m logm) entries. Entry L[α, j′′] returns the number of 1s contained in

the first j′′ bits of binary string α. We build L by brute force, generating all binary strings α
of length `, and scanning each of them for each j′′. Since there are 2` = O(

√
m) such strings α,

2In class we saw that m > 2cn for any constant c > 2, but the choice m = 3n works fine as we saw.

2

we take O(
√
mpolylog(m)) = o(m) time to build it. Moreover, since each entry of L uses

O(log logm) bits, the space occupied by L is O(
√
m polylog(m)) = o(m) bits. Clearly, L can

be queried in constant time.
Now, consider B and partition it into chunks of ` bits each. Each chunk is a string α, so we

can use L to compute in constant time how many 1s are found in the first j′′ bits of α. Because
of that, we can conceputally see B as an array B′ of m/` chunks. We store an array C, so that
C[t] explicitly contains an integer that tells how many 1s are found in the the first t− 1 chunks
of B′. Array C uses m/` · logm = 2m bits. Hence, L, B, and C occupy a total of 3m + o(m)
bits to implement R.

In order to answer rankB(j), let us take the chunk of B within which j falls. It corresponds
to α = B′[j′], where j′ = 1 + bj/`c. Observe that the jth bit in B is the j′′th bit in α where
j′′ = 1 + j mod `. Thus we return C[j′] + L[α, j′′] as the value of rankB(j), in constant time.

Lower bound. TO BE DONE

References

[1] M. Patrascu. Succincter. In IEEE, editor, Proceedings of the 49th Annual IEEE Symposium
on Foundations of Computer Science: October 25–23, 2008, Philadelphia, Pennsylvania,
USA, pages 305–313. IEEE Computer Society Press, 2008.

[2] R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries with applications to
encoding k -ary trees, prefix sums and multisets. ACM Trans. Algorithms, 3(4):43, 2007.

[3] I. Razenshteyn. Cuckoo hashing for sketching sets. http://blog.ilyaraz.org/?go=all/

cuckoo-hashing-for-sketching-sets/, 2019. [Online; accessed 28-Feb-2020].

[4] R. Venturini. Simple lower bound for approximate set query. Personal communication, 2020.

3

