
2002 Special Issue

Recursive self-organizing maps

Thomas Voegtlin*

Institut des Sciences Cognitives, CNRS UMR 5015, 67 boulevard Pinel, 69675 Bron Cedex, France

Abstract

This paper explores the combination of self-organizing map (SOM) and feedback, in order to represent sequences of inputs. In general,

neural networks with time-delayed feedback represent time implicitly, by combining current inputs and past activities. It has been difficult to

apply this approach to SOM, because feedback generates instability during learning. We demonstrate a solution to this problem, based on a

nonlinearity. The result is a generalization of SOM that learns to represent sequences recursively. We demonstrate that the resulting

representations are adapted to the temporal statistics of the input series. q 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Recursive self-organizing maps; Kohonen map; Recursiveness; Recurrent networks; Time

1. Introduction

There have been a number of approaches to representing

time in neural networks, often related to language and

speech recognition. The crucial distinction which separates

these approaches is the nature of the representation. In an

explicit representation, time is considered as a dimension of

space. This is the case when delays are used to collect

different measures of an input over a time window (Lang,

Waibel, & Hinton, 1990). In an implicit representation, time

is represented indirectly, by the effect it has on processing

(Elman, 1990). This is the case with recurrent networks, or

with so-called ‘leaky integrators’ units. In general, explicit

representations of time are limited and oversensitive to

temporal deformations of the signal, while implicit

representations are powerful and more robust to defor-

mations. A limitation of leaky integrators neurons is that

long-term information tends to decay exponentially. Recur-

rent representations, however, do not necessarily have this

limitation1 and they are conceptually more appealing.

Various approaches have been proposed for representing

time with the self-organizing map (SOM). This includes

explicit representations (Kangas, 1994; Vesanto, 1997),

methods based on lateral connectivity, on recurrent

connections (Euliano & Principe, 1996; Hoekstra &

Drossaers, 1993; Kopecz, 1995), on leaky integrators

(Chappell & Taylor, 1993; Privitera & Morasso, 1994), or

on combinations of those principles (James & Miikkulainen,

1995; Koskela, Varsta, Heikkonen, & Kaski, 1998;

Mozayyani, Alanou, Dreyfus, & Vaucher, 1995). A

common theme in these proposals is that they attempt to

generalize self-organization to time. However, it is not clear

in what sense the properties of SOM should be generalized

to time. In the evaluation of time-enhanced SOMs, classical

notions like quantization error or distortion have not been

used so far, because they do not directly apply.

In this paper, we present recursive SOM, a modified

SOM where feedback is used to represent time. The

representation is implicit and self-referent, in the sense

that the map learns to classify its own activities. In this

aspect, our approach differs from most models proposed so

far. However, it is based on the very natural idea of adding

recurrent connections to SOM, while preserving its original

self-organization principle. In addition, the proposed

approach is compatible with related algorithms, and there-

fore it has some generality; as an illustration, we present a

similar extension of the Neural Gas algorithm (Martinetz &

Schulten, 1991). In order to assess performance, we propose

a generalization of quantization error to time series. We

demonstrate that classical vector quantization properties of

SOM are successfully generalized to time.

2. Self-reference and self-organization

A well-known example of an implicit representation of

time in a recurrent network is the simple recurrent network

(SRN) by Elman (1990). The SRN is a modified perceptron

with one hidden layer that uses a time-delayed copy of its

hidden layer activities as additional input. The back-

propagation learning algorithm is applied to both the input

0893-6080/02/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved.

PII: S0 89 3 -6 08 0 (0 2) 00 0 72 -2

Neural Networks 15 (2002) 979–991

www.elsevier.com/locate/neunet

* Tel.: þ33-4379-11265; fax: þ33-4379-11210.

E-mail address: voegtlin@isc.cnrs.fr (T. Voegtlin).
1 Unless gradient methods are used, see Bengio, Simard, and Frasconi

(1994) for details.

http://www.elsevier.com/locate/neunet

vector and this time-delayed copy. Since the SRN learns

from its own past activities, the representation in its hidden

layer is self-referent.

In a self-referent representation, feed-forward and feed-

back connections are homogeneous; there is no difference

between them in the equations that describe neural

activities, nor in the learning rules. It is in this sense that

we propose to use self-reference with the SOM, by adding

recurrent connections to the original architecture. Although

other temporal extensions of SOM have been based on

recurrent connections (Euliano & Principe, 1996; Hoekstra

& Drossaers, 1993; Kopecz, 1995; Koskela et al., 1998), in

these extensions feed-forward and feedback connections are

not homogeneous. In contrast, our model uses a time-

delayed copy of its activities, and has homogeneous

connections (Fig. 1). Both the input and the time-delayed

copy of activities are considered as one single input vector

to the classical SOM algorithm. Hence, each unit of the map

will learn to represent a couple (input, context). Represen-

tations of long sequences are learned iteratively, based on

previously learned representations of shorter sequences.

In the original SOM (Kohonen, 1989), each unit i of a

map ð1 # i # NÞ compares its weight vector wi to an input

vector xðtÞ; where t denotes the time index. In general the

Euclidean norm is used in the comparison. For a given input

vector, the best matching unit is the unit that minimizes the

quantization error Ei ¼ kxðtÞ2 wik: The learning rule

updates the weights of neurons that belong to a neighbor-

hood of the best-matching unit, in the direction of the input

vector:

Dwi ¼ ghikðxðtÞ2 wiÞ ð1Þ

where k is the index of the best-matching unit, g a learning

rate and hik is a so-called neighborhood function, that

decreases with the distance between units i and k on the

map.

We use the same notations in the description of our

algorithm. In addition, let yðtÞ denote the vector of activities

in the map at time t. Each unit i of the map ð1 # i # NÞ has

two weight vectors, wx
i and w

y
i ; that are compared to the

input vector xðtÞ; and to the activities at the previous time

step, yðt 2 1Þ; respectively. In order to select a best-

matching unit, it is necessary to combine the quantization

errors corresponding to xðtÞ and yðt 2 1Þ: Since we want

feed-forward and feedback connections to be homogeneous,

we sum the squared quantization errors:

Ei ¼ akxðtÞ2 wx
i k

2
þ bkyðt 2 1Þ2 w

y
i k

2
ð2Þ

with a . 0 and b . 0: The role of parameters a and b will

be explained later. The best-matching unit is defined as the

unit that minimizes Ei: If k ¼ arg min{Ei}1#i#N ; then the

learning rules used for updating feed-forward and recurrent

weights are:

Dwx
i ¼ ghik xðtÞ2 wx

i

� �
ð3Þ

Dw
y
i ¼ ghik yðt 2 1Þ2 w

y
i

� �
ð4Þ

where g is a learning rate, and hik is a neighborhood

function. Note that this is simply the original SOM learning

rule applied to both vectors xðtÞ and yðt 2 1Þ:

So far the definition of our model has been straight-

forward, resulting from the idea of using feedback in a

SOM. However, in order to complete this definition, we

need to relate the neural activities yðtÞ; to the input and

synaptic weights. Let yi denote the ith component of vector

y: The activity yi of unit i will depend on the squared

quantization error Ei: However, using yi ¼ Ei directly

would result in unstable representations. It is necessary to

use a transfer function, yi ¼ FðEiÞ: The reason why, as well

as the choice of an appropriate transfer function will be

explained in the following sections.

Note that parameters a and b can be removed from the

definition of Ei; it is equivalent to use E0
i ¼ kxðtÞ2 wx

i k
2
þ

kyðt 2 1Þ2 wy
i k

2
and yi ¼

ffiffiffiffiffi
b=a

p
FðaE0

iÞ: Therefore feedback

and feed-forward connections are homogeneous in our

algorithm. We have included a and b in Ei because it

facilitates the analysis of a transfer function. However, a

and b may be considered as part of the transfer function.

3. Considerations on stability

The idea of using feedback with a SOM is not new.

Previous SOMs with feedback have been proposed by

Briscoe and Caelli (1997) and Scholtes (1991). However, an

important problem with feedback in SOM has been

instability during learning (Scholtes, 1991). Typically,

when the order of the representation changes on the map,

the feedback vector changes violently, which prevents

stable representations from being learned. The results

presented by Briscoe and Caelli (1997) suggest that stability

is not achieved in their model. In the present section, we

present an approximate stability analysis of recursive SOM.

Fig. 1. Recursive SOM architecture. The original SOM algorithm is used

recursively, on both the input vector xðtÞ and the representation derived at

the previous time step, yðt 2 1Þ: Dotted lines represent trainable

connections. The continuous arrow represents fixed one-to-one connec-

tions. The network learns by associating current input to previous activity

states. Hence, each neuron responds to a sequence of inputs.

T. Voegtlin / Neural Networks 15 (2002) 979–991980

Although approximate, this analysis will help understand

the choice of a transfer function.

Consider a small perturbation dyðtÞ of the feedback

vector yðtÞ at time t. We assume that all other variables (the

input sequence, the values of synaptic weights) are

unchanged. Perturbation dyðtÞ will have two effects. First,

the next values of the feedback vector, yðt þ nÞ; for n $ 0;

will be directly modified by recurrent propagation of

modified activities. Let dyðt þ nÞ denote this perturbation.

Secondly, a modification of the distribution of y may induce

long-term adaptation of the synaptic weights through

learning. For the moment, however, we only consider

short-term dynamics. If the learning rate is small enough,

adaptation of the weights can be neglected at first.

Short-term stability will depend on the evolution of

dyðt þ nÞ: If kdyðt þ nÞk! 0 when n !1; then the

perturbation will vanish. Moreover, if
P

n$0 kdyðt þ nÞk ,
þ1; then the distribution of y will remain unchanged, and

no long-term adaptation of the synaptic weights will occur.

In addition, it is necessary to ensure that the effect of a

perturbation is small if this perturbation is small. This can be

expressed using the Landau notation O, in the following

condition:

X

n$0

kdyðt þ nÞk ¼ OðkdyðtÞkÞ ð5Þ

Now let us consider the effects of weights adaptation on

stability. To be quite rigorous, stability of the weights

should be considered only when the learning rate decreases

to zero. However, we consider stability in a broad sense

here, that is, we assume that the learning rate is constant and

small, and we consider convergence of the expected values

of the synaptic weights; the variance of the weights during

learning can be made arbitrarily small by the choice of a

learning rate. To keep things simple, we also assume that

weights converge in this broad sense when the classical

SOM algorithm is used and the distribution of the input

vector is constant.2

Let Wy ¼ ðw
y
i Þ1#i#N denote the weights matrix of the

recurrent connections. Consider a small modification dWy

of Wy during learning. As mentioned above, we consider

that the elements of Wy are the expected values of the

weights during learning, and that dWy is a modification of

these expected values. The modification dWy will induce a

direct modification of yðtÞ; because w
y
i will be different in

Eq. (2). In addition, yðtÞ may also be indirectly modified by

propagation of previously modified activities, as seen

above. Hence, dyðtÞ will be the result of a direct component

and an indirect component. The direct component can be

derived from Eq. (2), and will be the same order of

magnitude as dWy; assuming that F is continuous. The

indirect component is a sum of terms, resulting from the

perturbations at t 2 1; t 2 2; etc. However, if condition (5)

is satisfied, then this sum will be the same order of

magnitude as the direct component. Therefore, the overall

dyðtÞ will be the same order of magnitude as dWy :

kdyðtÞk ¼ OðkdWykÞ ð6Þ

Learning is a so-called ‘moving target’ problem, where the

target is a set of synaptic weights that is stable during

learning. The target is moving because the distribution of y

changes when the weights of the recurrent connections are

updated. However, if Eq. (6) is satisfied, then we may

compare the speed of the weights to the speed of the moving

target. Stability during learning will depend on this

comparison; if the target moves faster than the weights,

then the representation will be unstable. Alternately, if

weights move faster than the target, then a stable

representation of long sequences will progressively be

learned. Hence, the question is whether it is possible to find

a transfer function so that the expected weights move faster

than the target.

Let T ¼ ðtiÞ1#i#N denote the ‘moving target’ of recurrent

connections, where each vector ti is the ‘target’ of vector

w
y
i : Each target vector ti is defined as the value toward

which w
y
i would converge for a stationary joint distribution

of ðxðtÞ; yðt 2 1ÞÞ: Hence, the target at a given time results

from the values of the synaptic weights and from the

statistics of the input.3 However, each change of the weights

will modify the distribution of ðxðtÞ; yðt 2 1ÞÞ and therefore

the target will move. In order to ensure that the expected

weights move faster than the target, we need the modi-

fication of the target to be smaller than the modification of

the weights:

kdTk , kdWyk ð7Þ

Due to local interactions in the map, each target vector ti is a

barycenter of the expected value of yðt 2 1Þ when unit i is

selected at time t, and of the expected values of yðt 2 1Þ

when neighbors of unit i are selected at time t. Although

neighborhood relationships make the analysis of target

perturbation difficult, it is reasonable to assume the

following upper bound:

kdTk #
ffiffiffi
N

p
E½kdyk� ð8Þ

where dT denotes the modification of the target matrix due

to the perturbation of the distribution of y; and E½·� denotes

the statistical expectancy. Inequality (8) yields the follow-

ing sufficient condition for Eq. (7):
ffiffiffi
N

p
E½kdyk� , kdWyk ð9Þ

We have derived two stability conditions. Condition (5)

ensures that neural dynamics will be stable, and condition

(9) ensures stability of the weights during learning. If both

are satisfied, then the expected values of the weights should
2 In fact, this has only been demonstrated for one-dimensional maps, see

Kohonen (1997) for details. Here, however, we assume that this is true in

the general case.

3 For stationarity of the joint distribution of ðxðtÞ; yðt 2 1ÞÞ; we assume

that the input series xðtÞ is ergodic.

T. Voegtlin / Neural Networks 15 (2002) 979–991 981

converge during learning. Now we may examine what

constraints these conditions impose on the transfer function.

The activity, yiðtÞ; of unit i is:

yiðtÞ ¼ FðEiÞ ¼ FðakxðtÞ2 wx
i k

2
þ bkyðt 2 1Þ2 wy

i k
2
Þ ð10Þ

where F denotes the transfer function. First, we examine the

evolution over time of a small perturbation dyðt þ nÞ of

yðt þ nÞ: For each i [{1;…;N}; we have:

ðyi þ dyiÞðt þ nÞ ¼ Fðakxðt þ nÞ2 wx
i k

2

þ bkðy 1 dyÞðt þ n 2 1Þ2 w
y
i k

2
Þ ð11Þ

A first-order Taylor approximation in dy yields:

dyiðt þ nÞ ¼ 2bF0ðEiÞðdyðt þ n 2 1ÞÞT yðt þ n 2 1Þ2 wy
i

� �

ð12Þ

where F0 denotes the derivative of F, and superscript T

denotes the transpose. Using the Cauchy–Schwarz inequal-

ity yields:

kdyðt þ nÞk2

kdyðt þ n 2 1Þk2
#

X

1#i#N

2bF0ðEiÞkyðt þ n 2 1Þ2 w
y
i k

� �2

ð13Þ

Similarly, a small change dwy
i of wy

i will result in a

modification dyiðtÞ of the activity of unit i. A similar

calculation yields:

kdyðtÞk2 #
X

1#i#N

2bF0ðEiÞkyðt 2 1Þ2 wy
i k

� �2kdwy
i k

2
ð14Þ

We may assume that the modification of the weights has the

same amplitude for each column. That is, for each i,

kdw
y
i k ¼ kdWyk=

ffiffiffi
N

p
: This yields:

N
kdyðtÞk2

kdWyk2
#

X

1#i#N

2bF0ðEiÞkyðt 2 1Þ2 w
y
i k

� �2
ð15Þ

Both inequalities (13) and (15) have the same right term.

Hence, to achieve stability, it is sufficient to find a transfer

function so that the expected value of this right term is

strictly lower than one. In this case, condition (9) will be

directly satisfied, and condition (5) will be satisfied as well,

because any small perturbation dy of y will decay

exponentially.

Note that a transfer function must take different values

for the best-matching unit and for other units, or a trivial

solution to the above inequalities would be F ¼ 0: The

fact that the derivative F0ðEiÞ has to be bounded suggests

that the transfer function needs to be continuous. For

example, consider that the transfer function is a binary

winner-take-all, so that the activity ykðtÞ of the winner

unit k at time t is equal to one, and all the other units

have activities yiðtÞ equal to zero ði – kÞ: For a given

input sequence, a small change of the weights might

result in the selection of a different unit, and in this case

the feedback vector will change violently, resulting in

unstable representations.

4. Choice of a transfer function

We make the empirical choice of the following transfer

function, for all i [{1;…;N} :

yi ¼ expð2akxðt þ nÞ2 wx
i k

2
2 bkyðt þ n 2 1Þ2 w

y
i k

2
Þ

ð16Þ

This function is continuous and takes on values between

zero and one. Well-matching units will have activities close

to one, while mismatching units will have activities close to

zero. Intuitively, the activity of well-matching units should

be stable when inputs, weights, or previous activities are

perturbated, because it is a Gaussian function close to the

origin. For mismatching units, activity is close to zero, and

therefore it should be stable too.

We will demonstrate that stability conditions (5) and (9)

can be satisfied with this transfer function. The right term of

inequalities (13) and (15) is equal to:
X

1#i#N

ð2bkyðt 2 1Þ2 wy
i kexpð2akxðtÞ2 wx

i k
2

2 bkyðt 2 1Þ2 w
y
i k

2
ÞÞ2 ð17Þ

The function: z ! 2bz expð2bz2Þ is bounded, and its

maximum value is equal to
ffiffiffiffiffiffi
2b=e

p
: In addition,

expð2akxðtÞ2 wx
i k

2
Þ , 1: Although these might be very

rough bounds, they are sufficient to demonstrate that for

b , e=ð2NÞ stability is ensured. Therefore, stability con-

ditions can be satisfied with the transfer function defined in

Eq. (16). This choice completes the definition of our

algorithm. Classical neighborhood functions may be used.

In this paper, the neighborhood function is a Gaussian of the

distance dði; kÞ between units i and k on the map, of width

s : hik ¼ expð2dði; kÞ2=s2Þ:

In order to test our algorithm, we trained a two-

dimensional recursive SOM of size 20 £ 20 units on a

corpus of written English, the novel “Brave New World” by

Aldous Huxley. Letters were encoded on 5 bits, and

presented to the network one at a time. Punctuation symbols

were removed from the text and neural activities were reset

to zero between words. We used a constant learning rate

g ¼ 0:1; and the neighborhood function had a constant size

s ¼ 0:5: Parameter values were a ¼ 3 and b ¼ 0:7: During

training, neurons became sensitive to sequences of letters.

For each neuron, the receptive field is defined as the

common end of all the sequences that trigger its selection.

For instance, if a unit responds to ‘nted’, ‘ited’ and to ‘red’,

then its receptive field is ‘ed’. Receptive fields after 1000

presentations of the corpus are presented in Fig. 2. The

presence of long receptive fields (e.g. ‘their’) demonstrates

that learned weights are stable; stability is necessary for

developing representations of long sequences. Topological

T. Voegtlin / Neural Networks 15 (2002) 979–991982

ordering can be observed in the placement of the receptive

fields. In addition, the map has captured some statistical

regularities of written English, as frequent groups of letters

or short words are present in the receptive fields.

The above experiment demonstrates that it is possible to

learn stable representations in recursive SOM. Stability is

achieved by the choice of the transfer function defined in

Eq. (16). However, the value of b we used was well beyond

condition b , e=ð2NÞ: This suggests that we can find better

bounds than the above. First, we used the upper bound

2bz expð2bz2Þ #
ffiffiffiffiffiffi
2b=e

p
for all units. However, this func-

tion will reach its maximum for a number of units much less

than N; it will be close to zero for mismatching units and for

well-matching units. Only for ‘not-so-well’ matching units

will it take on higher values. Secondly, using expð2akxðt þ
nÞ2 wx

i k
2
Þ , 1; does not take into account the influence of

a: A much better approximation is to consider that the

expected value of kx 2 wx
i k

2
is a constant, c, independent

from the recurrent weights Wy and from the unit index i; we

may do this approximation because adaptation of the feed-

forward weights uses the classical SOM algorithm, and is

relatively independent from the recurrent weights. By

making these assumptions, we obtain a stability condition

of the type:

b , K expð2acÞ ð18Þ

where K is a constant. Here the critical value of b

exponentially increases with a:

In order to test stability, we ran a series of experiments in

which we observed the stability of a recursive SOM for

different values of a and b: The map was of size 10 £ 10

units, ðN ¼ 100Þ; and the input vector was one-dimensional.

The input series was the binary sequence generated by a

simple two-state automaton. The two states were labeled ‘0’

and ‘1’. The probability of transition from ‘0’ to ‘1’ was 0.3,

and the transition from ‘1’ to ‘0’ had probability 0.4. Values

of a and b were tested over the interval ½0:05; 2:00�; using a

step equal to 0.05. This yields 400 different conditions. For

each condition, eight experiments were performed, starting

with initial random weights. Maps were trained for 120 000

iterations, with constant learning rate and neighborhood

size, s ¼ 0:5 and g ¼ 0:3; respectively. In order to assess

stability, we measured the average length of the receptive

field of the selected unit. Averaged results are presented in

Fig. 3.

Fig. 3 shows that the plane ða;bÞ is partitioned into two

domains. In one domain, the average length of the selected

receptive field is below 2, which indicates instability during

learning. In the second domain the average length of the

selected receptive fields is between 5 and 7, suggesting

stability. For 0 , a , 1; the transition area between

stability and instability domains is relatively narrow,

demonstrating that convergence occurs for values of b

below a critical threshold. For values in this transition area,

by examining the receptive fields during learning we

observe stability for limited periods of time, followed by

great reorganizations of the receptive fields. The value of

the critical threshold increases with a; for 0 , a , 1; its

progression compares well to the theoretical exponential

progression of condition (18).

For a . 1; the transition area, where the average length

of the selected receptive field is between 2 and 5, becomes

broader. This broadening of the transition area is due to poor

performance when a and b are too high. However, by

examining individual trials, we do not observe instability in

this area. In fact, this poor performance is caused by the

shape of the transfer function; increasing a and b increases

the slope of the transfer function from E0
i ¼ kxðtÞ2 wx

i k
2
þ

Fig. 2. Receptive fields of a two-dimensional recursive SOM trained on English text. A receptive field is defined as the intersection of all the sequences that

trigger selection of the corresponding unit. Receptive fields are displayed in natural reading order. Topographic organization is observed, principally based on

most recent letters.

T. Voegtlin / Neural Networks 15 (2002) 979–991 983

kyðt 2 1Þ2 w
y
i k

2
to yi ¼

ffiffiffiffiffi
b=a

p
FðaE0

iÞ: If this slope becomes

too high, then the mutual information between E0
i and yi is

reduced, which makes it more difficult to classify different

pattern of activity. Hence, learning becomes increasingly

difficult if a and b are too high.

5. Quantization of discrete sequences

Fig. 2 suggests that statistical regularities of written

English are learned by the recursive SOM. In order to

further investigate this point, we need a well defined

measure of how well temporal regularities of the input series

are captured. We do this by generalizing vector quantization

and quantization error to time series.

Vector quantization consists in forming an inexpensive

representation of a stochastic input vector. Formally, a

quantizer is a function from the input space to a finite

alphabet, or code-book, L1;…;LN : A prototype vector, wi; is

associated to each letter Li of the alphabet; this prototype is

used as a reconstruction of the input. A classical measure of

the quality of a vector quantizer is the mean square

quantization error, defined as E½kxðtÞ2 wkðtÞk
2
�; where xðtÞ

is the input vector at time t, kðtÞ the index of the prototype

approximating xðtÞ, and E½·� denotes the statistical

expectancy.

Since recursive SOM learns a local representation of

temporal context, it performs a quantization of temporal

context. Hence, it should be possible to generalize

quantization error to temporal context, in a way that reflects

how well temporal sequences can be reconstructed from

their representation. In fact, it will be necessary to consider

different generalizations of quantization error, depending on

whether the input vector takes on discrete or continuous

values. In this section, we discuss the discrete case. A

generalization to the continuous case will be presented in

Section 6.

The input series consists of discrete, non independent,

identically distributed (i.i.d.) vectors. For simplicity, we

consider with no loss of generality that the input xðtÞ is one-

dimensional and takes on binary values, and that the

sequence of past events is infinite, so that the temporal

context is an infinite sequence. Formally, the temporal

context at time t is the sequence cðtÞ ¼ ðxðtÞ; xðt 2 1Þ; xðt 2

2Þ;…Þ: Hence, cðtÞ [{0; 1}N :

The temporal context is represented using an alphabet of

N letters, L1;L2;L3;…;LN ; which plays the classical role of

a code-book. At each time t, a unique letter, LkðtÞ; represents

cðtÞ: A reconstruction of cðtÞ is performed, using the code-

book as a set of references. Since the number of possible

contexts is infinite, the reconstruction will be restricted to a

finite number of past events. Hence, the quality of a

Fig. 3. Domain of stability of a recursive SOM trained on a binary sequence, for different values of parameters a and b: The mean length of the winner receptive

field is displayed. For each condition, data are averaged over eight experiments. Low values indicate instability of the weights, and high values indicate

stability. In the upper right region, stability is observed, although performance is relatively poor.

T. Voegtlin / Neural Networks 15 (2002) 979–991984

representation will be defined as the expected number of

past events that can be correctly reconstructed.

Formally, we define a context quantizer as a function

from the set of all possible contexts, {0; 1}N ; to the code-

book {L1;L2;L3…; LN}: The set of temporal contexts

represented by Li is called the receptive field of letter Li;

and it is denoted by Ri: The number of past events that can

be unambiguously reconstructed from Li will be denoted by

ni; and is called the depth of the receptive field Ri: ni is the

length of the intersection of all contexts belonging to Ri:

The set of all contexts, {0; 1}N ; can be viewed as an

infinite binary tree. The receptive field Ri of letter Li is a set

of binary sequences, that correspond to infinite paths

starting from the root of this tree. A unique node Hi of the

tree can be assigned to Li; which is the deepest node of the

tree that belongs to all the contexts in Ri: The depth of Ri is

equal to the depth of node Hi in the tree. Since any context

must belong to a receptive field, pruning the tree at nodes

H1;…;HN results in a finite tree, whose leafs are

H1;H2;…;HN : If all nodes H1;H2;…;HN are distinct, then

each receptive field Ri is equal to the set of paths passing

through node Hi: In that case, the context quantizer is

completely described by the finite binary tree {H1H2· · ·HN}:

If pi is the probability that context belongs to Ri; then the

mean number of past events that can be reconstructed is:

�n ¼
X

1#i#N

pini ð19Þ

�n is called the depth of the quantizer. Depth is a quality

measure of a quantizer, which reflects its memory of past

events. In order to maximize depth, it is necessary to exploit

the probabilistic structure of the sequence. Note that

maximizing depth is the opposite of building a Huffman

code of the input (Huffman, 1952). In Section 4, we have

used depth as an indicator of stability.

Temporal extensions of SOM that build a local

representations of sequences are context quantizers. There-

fore it is possible to compare their performance by

measuring depth. We present such a comparison here.

Note that temporal extensions of SOM do not necessarily

use local representations. An example of distributed

representation, for which depth cannot be used, is

SARDNET (James & Miikkulainen, 1995).

One of the first attempts to integrate temporal infor-

mation in SOM has been the Temporal Kohonen Map

(TKM) by Chappell and Taylor (1993). In TKM, the activity

of a unit is defined as a function of earlier input vectors.

Each unit i has a potential ViðtÞ at time t. The potential is

updated according to

ViðtÞ ¼ dViðt 2 1Þ2 ð1=2ÞkxðtÞ2 wik
2

ð20Þ

where wi is the weight vector associated to unit i, and 0 ,

d , 1 is a decay. The best-matching unit maximizes Vi; and

the same learning rule as in the original SOM is used. It has

been shown that TKM has strong limitations (Koskela et al.,

1998), because weights converge toward linear combin-

ations of the input patterns, resulting in limited represen-

tations. However, Varsta, Heikkonen, and Millan (1997)

context proposed a powerful modification of TKM, called

recurrent SOM, that overcomes this limitation. In recurrent

SOM, a ‘leaked difference vector’ is associated to each unit

i. It is defined as

yiðtÞ ¼ ð1 2 aÞyiðt 2 1Þ þ aðxðtÞ2 wiÞ ð21Þ

with 0 , a , 1: The best matching unit k is the unit that

minimizes the norm of this leaked difference vector. This

vector is used in place of xðtÞ in the learning rule

Dwi ¼ ghikðyiðtÞ2 wiÞ ð22Þ

In our comparison, we tested TKM, recurrent SOM, and

recursive SOM. In addition, we included recursive neural

gas, a model derived from the neural gas algorithm by

Martinetz and Schulten (1991) network. Basically, recursive

neural gas extends neural gas in the same way as recursive

SOM extends SOM. More precisely, the recursive neural

gas learning rules are

Dwx
i ¼ g expð2lriÞ xðtÞ2 wx

i

� �
ð23Þ

Dw
y
i ¼ g expð2lriÞ yðt 2 1Þ2 w

y
i

� �
ð24Þ

where ri denotes the rank of unit i, that is, the number of

units j so that Ej , Ei: Parameter l may be decreased during

learning. The equations describing neural activities in

recursive neural gas are the same as for recursive SOM.

We introduce this algorithm because it achieves better

performance than recursive SOM, since topological con-

straints are avoided. It also demonstrates that our approach

has some generality, since other algorithms than the

standard SOM can be extended recursively.

In order to compare these networks, we used the binary

sequence from the two-states automaton described in the

previous section. This non-i.i.d. series has simple temporal

statistics, which allowed us to find an optimal quantizer

analytically. We used this optimal quantizer as a reference.

The maps used for the comparison were two-dimensional

grids of size 10 £ 10 units. For each map, parameters were

tuned in order to optimize performance. The leak constant

of the recurrent SOM was a ¼ 0:6: For the recursive SOM,

we used a ¼ 5; b ¼ 0:5; and the size of the neighborhood

was exponentially decreased during learning, by increasing

s from 0.3 to 10. For recursive neural gas, we used a ¼ 2;

b ¼ 0:2; and l was exponentially decreased during learn-

ing, between 0.1 and 0.3. Maps were trained for 3 £ 106

iterations, using a constant learning rate equal to 0.1.

Receptive fields and depth were computed using the

previous definitions. Results are presented in Fig. 4.

Receptive fields are represented as the branches of binary

trees. The analytically computed optimal quantizer is

represented by the binary tree of Fig. 4D. Binary trees

corresponding to the learned representations are shown in

Fig. 4A–C.

The depth of a representation by TKM is 1.4 (not

T. Voegtlin / Neural Networks 15 (2002) 979–991 985

represented in the figure). The representation by recurrent

SOM has a depth of 5.8. Fig. 4A shows that the units of

recurrent SOM are able to represent long sequences of bits.

However, if we compare the shape of trees in Fig. 4A and D,

we see that the receptive fields of recurrent SOM are not

adapted to the temporal statistics of the input.

In contrast, recursive SOM and recursive neural gas

capture the probabilistic structure of the binary sequence;

branches are deeper for contexts that have higher prob-

abilities of occurrence, resulting in binary trees (Fig. 4B and

C) that resemble the optimal tree (Fig. 4D). Representations

by recursive SOM and recursive neural gas have higher

depth (6.5 and 7.0, respectively). Note that depth is a log-

scaled index of how well units are exploited; for a binary

tree, increasing depth by one unit requires 2 times more

units. Therefore the differences observed here are high. The

difference between trees in Fig. 4B and C is due to topology

constraints which limit the performance of recursive SOM.

In contrast, the depth of the representation by recursive

neural gas (7.0) almost equals the optimum (7.08).

In order to explain the adaptation of the receptive fields

in our models to the temporal statistics of the input, we

demonstrate a property that characterizes context quantizers

of maximal depth:

Theorem 1. A context quantizer described by a binary tree

H1H2· · ·HN is optimal if and only if for all ði; j; kÞ [
{1;…;N}; if Hi and Hj have the same parent, then pi þ pj $

pk:

Proof. See Appendix A.

Intuitively, Theorem 1 states that depth is maximized

when all code-book letters tend to have equal probalilities of

being selected. More precisely, a quantizer is optimal if it is

not possible to find another quantizer closer to equiprob-

ability. Note that this is consistent with classical vector

quantization results.

In fact, neurons will have equal probabilities of being

selected if the weight vectors ðwx
i ;w

y
i Þ1#i#N have a point

density proportional to the joint density of ðxðtÞ; yðt 2 1Þ:

Martinetz, Berkovich, and Schulten (1993) have demon-

strated that the point density of neural gas tends to be

proportional to the input density to the power D=ðD þ 2Þ;

where D is the dimension of the input vector. In the case of

recursive neural gas D ¼ dimðxÞ þ dimðyÞ; and dimðyÞ ¼ N

is high (N ¼ 100 in the previous experiment). Therefore we

can consider that receptive fields are equiprobable, which

explains the near-optimal performance of recursive neural

gas. Point density is more difficult to analyze for the original

SOM (Cottrell, 1997; Ritter & Schulten, 1998). However,

these considerations qualitatively explain why recursive

SOM learns receptive fields that are adapted to the temporal

statistics of the input.

6. Quantization of a continuous series

In the previous sections we considered discrete inputs,

and a discrete quantity, the length of correct reconstruction,

was averaged in the computation of depth. In this section,

we want to test recursive SOM on a continuous series.

Depth, however, cannot be defined for continuous inputs,

because the distance between an input vector and its

prototype is continuous. Hence, we need to adapt our

measure of performance.

For continuous inputs, we define the receptive field of a

neuron as the mean input sequence that triggers its selection.

Note that we need to restrict receptive fields to a time

window. However, this time window is defined for

monitoring only, and its size does not affect the function

of our model. We still consider that receptive fields are the

letters of a code-book used for representing context. The

Fig. 4. Binary trees corresponding to the representations generated by recurrent SOM (A), recursive SOM (B), recursive neural gas (C) and to an optimal

representation (D). All representations use 100 units. Left branches correspond to ‘0’ and right branches to ‘1’. Trees (A)–(C) have less leafs than the optimal

tree (D), because some units are never selected, or have the same receptive field as other units. Units of recursive SOM and recursive neural gas develop

receptive fields whose depth is adapted to the statistics of the data, resulting in trees (B) and (C) that approach the optimal tree (D).

T. Voegtlin / Neural Networks 15 (2002) 979–991986

quantization error of a neuron is defined as the standard

deviation associated to its receptive field, and it is a vector

of corresponding length. A general quantization error, used

as an overall performance measure of the map, is defined as

the expected quantization error of the selected unit.

As an input, we used the Mackey–Glass time-series

(Mackey & Glass, 1977), a well-known dynamic system

defined by the differential equation

dx

dt
¼ bxðtÞ þ

axðt2 dÞ

1 þ xðt2 dÞ10
ð25Þ

For d . 16:8; the series xðtÞ is chaotic and highly sensitive

to initial conditions. In this paper, we used the parameter

values a ¼ 0:2; b ¼ 20:1 and d ¼ 17: A sequence of values

of xðtÞ is plotted in Fig. 5, starting from random initial

conditions.

The Mackey–Glass series has immediate regularities;

that is, past or future values of the series are partially

predictable from its current value, with no information

about other events. Hence, in order to evaluate how

temporal regularities are learned by our model, it is

necessary to assess the importance of these immediate

regularities. This can be done by comparison to a model that

has no sensitivity to time. For this reason, we compared

recursive SOM to the original SOM, which is memoryless.

We also added recurrent SOM to the comparison. All maps

were of size 10 £ 10 and were trained for 150 000

iterations. For recursive SOM two sets of parameters were

tested, ða ¼ 2;b ¼ 0:06Þ; and ða ¼ 2;b ¼ 0:02Þ: The

recurrent SOM used a leak constant a ¼ 0:1: The input

was the Mackey–Glass series sampled every three time

units, that is, xðtÞ for t ¼ t=3:

The receptive fields of SOM and recursive SOM ðb ¼

0:06Þ after training are displayed in Fig. 6. Black lines

represent the preferred input sequence of each unit. Gray

intervals correspond to confidence intervals of size plus and

minus one standard deviation. This standard deviation is the

quantization error.

For the SOM, quantization error is minimal for units 0

and 99, which correspond to extreme values of the input.

This is not surprising, since it is easy to predict that the

series will decrease once it has reached its maximal value,

and will in turn increase once it has reached its minimum. In

contrast, the receptive fields corresponding to intermediate

values of the input have a much higher standard deviation.

This is because the SOM has no sensitivity to time. In

contrast, the receptive fields of recursive SOM are more

structured; their diversity reflects the temporal profiles

observed in the time series. Topological organization can be

observed on the map. For most units of the recursive SOM,

the standard deviation of past events is low; this

demonstrates that temporal information is retained, and

that the responses of units are highly specific.

Quantization errors are plotted in Fig. 7 for SOM,

recurrent SOM and recursive SOM. The time window was

of size 30. Since the SOM cannot represent temporal

information, it provides a reference to which performance of

other models can be compared. The SOM develops a very

accurate representation of the present event, with a

quantization error close to zero. The error curve then

oscillates, which reflects temporal regularities of the series.

The recurrent SOM demonstrates the same overall level of

error as SOM. However, oscillations are phase-shifted.

Experimentally, we observe that the leak constant of the

recurrent SOM controls the value of this phase shift. This

shift indicates that temporal information is represented in

recurrent SOM. However, the representation of certain parts

of the signal (e.g. at t 2 3) is performed at the expenses of

other parts of the signal. Hence, the overall performance of

recurrent SOM is not significantly better than for SOM. In

contrast, the recursive SOM demonstrates a significantly

reduced quantization error over time. The sole exception is

the current input, for which the SOM makes a much smaller

error. This is because the resources of recursive SOM are

used for representing past events, while SOM can use all its

neurons for representing the current input with high

accuracy. For recursive SOM, oscillations of the error

curves have a reduced amplitude, which reflects its

adaptation to the temporal regularities of the input.

The influence of b can be observed in the difference

between the curves for b ¼ 0:06 and 0.02. For recent

events, error is smaller with b ¼ 0:02 and higher with 0.06.

For events older than eight time steps it is the contrary.

Hence, parameter b controls the trade-off between accuracy

Fig. 5. The Mackey–Glass chaotic time series was used as input to the network.

T. Voegtlin / Neural Networks 15 (2002) 979–991 987

Fig. 6. Comparison of the temporal receptive fields of the units of SOM (A) and recursive SOM (B). Maps were trained on the Mackey–Glass time series. The

preferred input sequence of each unit is in black, with the most recent input on the left. The gray intervals reflect the standard deviation, or quantization error.

Receptive fields are displayed for 30 past events. In the recursive SOM, five units are never selected. This is due to the difficulty to find a low-dimensional

mapping for temporal sequences, which are represented by high dimensional vectors.

T. Voegtlin / Neural Networks 15 (2002) 979–991988

and depth of the representation. Accuracy was not relevant

for discrete inputs, because reconstruction was either correct

or incorrect. For continuous inputs, however, representing

vectors with higher accuracy has a cost, it must be

performed at the expenses of depth.

7. Conclusions

We have demonstrated that local representations of

temporal sequences can efficiently be learned by a modified

SOM that uses time-delayed feedback. The design of

recursive SOM is homogeneous and straight-forward.

Stability, which has been the main issue for this type of

network, is achieved by choosing an appropriate transfer

function.

Recursive SOM successfully generalizes several key

features of SOM to time. Self-organization occurs based on

the temporal statistics of the input, and topological

organization of the map is based on temporal order. Vector

quantization properties are generalized to sequences, as

reflected by the adaptation of the receptive fields to the

temporal structure of the input. In the discrete case, this

adaptation is reflected by the depth of the receptive fields;

branches of the corresponding trees are higher where the

temporal dependencies are stronger. As a result, represen-

tations are nearly optimal, in the sense that the network’s

memory of past events is maximized. Although we did not

investigate optimality in the continuous case, adaptation of

the receptive fields probably leads to the same type of

results for continuous inputs.

The choice of a transfer function is a crucial question,

that would deserve further investigation. The choice we

have made was empirical, motivated by the need to enforce

stability. However, in addition to its effect on stability, the

transfer function has an influence on performance, as

demonstrated in Section 4, when a and b were too high.

We observed that a poor information transfer results in poor

performance. Hence, a less empirical approach to the choice

of a transfer function would be to maximize information

transfer while imposing stability. This could be achieved by

adapting the transfer function to the joint density of

ðxðtÞ; yðt 2 1ÞÞ; the same type of adaptation has been

successful in other applications of the Infomax principle

(Bell & Sejnowski, 1995; Nadal & Parga, 1994).

Acknowledgments

The author would like to thank Peter Dominey, Lewis

Bott and two anonymous reviewers for their helpful

comments.

Appendix A. Proof of Theorem 1

We use the terms ‘children, descendants’ to designate

nodes that are higher than the current node of a tree, and

‘parents, ancestors’ to designate nodes that are lower.

Hence, the root of a tree is the ancestor of all nodes.

A context quantizer where two nodes are equal, say

H1 ¼ H2, is not optimal, since a better quantizer

{H 0
1H 0

2H3H4· · ·HN} can be built by replacing H1; H2 with

their children H0
1 and H 0

2: Therefore, if a quantizer

{H1H2· · ·HN} maximizes �n; then all its nodes are distinct.

Suppose now that {H1H2· · ·HN} maximizes �n: Consider

two leafs H2 and H3 that have the same parent, and another

leaf H1 at another position in the tree. If we prune the tree at

H2 and H3; as shown in Fig. A.1, and use the remaining

Fig. 7. Temporal quantization error of different models trained on the Mackey–Glass series. This error is defined as the mean difference between the input

sequence and the receptive field of the selected unit. Quantization error reflects the uncertainty about past events. Thirty past inputs are considered here.

T. Voegtlin / Neural Networks 15 (2002) 979–991 989

letter to extend the tree at node H1, we build a new quantizer

{H0
1H 0

2H 0
3H4· · ·HN}; where H 0

1 is the parent of H2; H3; and

H 0
2 and H 0

3 are the children of H1: The depth �n of

{H1H2· · ·HN} is:

�n ¼ p1n1 þ p2n2 þ p3n3 þ
XN

i¼4

pini ðA1Þ

where ni is the depth of node Hi; and here n2 ¼ n3: With the

same notations, the depth of {H 0
1H 0

2H 0
3H4· · ·HN} is:

�n0 ¼ p0
1n0

1 þ p0
2n0

2 þ p0
3n0

3 þ
XN

i¼4

pini ðA2Þ

Since H 0
1 is the parent of H2 and H3; p0

1 ¼ p2 þ p3 and n0
1 ¼

n2 2 1 ¼ n3 2 1: Similarly, p0
2 þ p0

3 ¼ p1 and n0
2 ¼ n0

3 ¼

n1 þ 1: Hence, the difference �n0 2 �n is equal to p1 2 p2 2

p3: In addition, �n0 # �n because H1H2· · ·HN maximizes �n:

This implies that p1 # p2 þ p3: Therefore the condition of

Theorem 1 is necessary.

Now assume that two distinct quantizers {H1H2· · ·HN}

and {H0
1H 0

2· · ·H 0
N} satisfy the condition of Theorem 1, and

that the depth �n of H1H2· · ·HN is maximal. The depth of

{H 0
1H 0

2· · ·H 0
N} is denoted by �n0: We can choose a node u in

the first quantizer that is not in the second one:

’Hu [{H1H2· · ·HN}; Hu � {H0
1H 0

2· · ·H 0
N} ðA3Þ

Similarly:

’Hu0 [{H 0
1H 0

2· · ·H 0
N}; Hu0 � {H1H2· · ·HN} ðA4Þ

In addition, Hu can be chosen so that no node of

{H 0
1H 0

2· · ·H 0
N} is a descendant of Hu: We may even put an

additional constraint on the choice of Hu; which is that the

brother Hv of Hu is in {H1H2· · ·HN}: This is because if Hv

does not belong to {H1H2· · ·HN}; then one can choose

another Hu among the children of Hv; and repeat this until

both Hu and Hv belong to {H1H2· · ·HN}: Similarly, one can

choose two brother nodes Hu0 and Hv0 in {H 0
1H 0

2· · ·H 0
N}; that

are not in {H1H2· · ·HN}; and so that there is no node of

{H1H2· · ·HN} above Hu0 and Hv0 :

Since both trees have the same root, there exists a unique

ancestor Hw0 of Hu and Hv that is in {H 0
1H 0

2· · ·H 0
N}:

Similarly, Hu0 and Hv0 have a unique ancestor Hw in

{H1H2· · ·HN}: By hypothesis, pu þ pv $ pw and pu0 þ pv0 $

pw0 : Since Hw0 is a parent of Hu and Hv; we have pw0 $

pu þ pv: Similarly, pw $ pu0 þ pv0 : Combining the previous

inequalities yields:

pu þ pv ¼ pw0 ¼ pw ¼ pu0 þ pv0 ðA5Þ

This means that w0 is the parent of u and v, and w is the

parent of u0 and v0 (code-book letters must have probabilities

greater than zero since {H1H2· · ·HN} is optimal). Replacing

H 0
u; H 0

v; H 0
w by Hu; Hv; Hw in {H 0

1H 0
2· · ·H 0

N} does not change

the depth. We may repeat the above operation a finite

number of times, after which both quantizers will be equal,

showing that �n ¼ �n0:

References

Bell, A., & Sejnowski, T. (1995). An information maximisation approach to

blind separation and blind deconvolution. Neural Computation, 7(6),

1129–1159.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term

dependencies with gradient descent is difficult. IEEE Transactions on

Neural Networks, 5(2), 157–166.

Briscoe, G., & Caelli, T. (1997). Learning temporal sequences in recurrent

self-organising neural nets. In A. Sattar (Ed.), Advanced topics in

artificial intelligence (pp. 427–435). Proceedings of the 10th Australian

Joint Conference on Artificial Intelligence, AI’97, Berlin: Springer.

Chappell, G. J., & Taylor, J. G. (1993). The temporal Kohonen map. Neural

Networks, 6, 441–445.

Cottrell, M. (1997). Theoretical aspects of the SOM algorithm. Proceedings

of the Workshop on Self-Organizing Maps’97 (pp. 246–267). Helsinki

University of Technology, Espoo, Finland.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–

211.

Euliano, N., & Principe, J. (1996). Spatio-temporal self-organizing feature

maps. Proceedings of the International Conference on Neural Net-

works, 1900–1905.

Hoekstra, A., & Drossaers, M. (1993). An extended Kohonen feature map

for sentence recognition. Proceedings of the International Conference

on Artificial Neural Networks, 404–407.

Huffman, D. A. (1952). A method for the construction of minimum

redundancy codes. Proceedings of the Institute of Radio Engineers,

40(9), 1098–1101.

James, D. L., & Miikkulainen, R. (1995). SARDNET: A self-organizing

feature map for sequences. Advances in Neural Information Processing

Systems, 7, 577–584.

Kangas, J. (1994). On the analysis of pattern sequences by self-organizing

maps. PhD Thesis, Helsinki University of Technology.

Fig. A.1. Transformation of a binary tree: (A) initial tree; (B) transformed tree. Two neighboring leafs, H2 and H3 are cut, and the tree is extended at leaf H1:

T. Voegtlin / Neural Networks 15 (2002) 979–991990

Kohonen, T. (1989). Self-organization and associative memory (3rd ed).

Berlin: Springer.

Kohonen, T. (1997). Self-organizing maps (2nd ed). Berlin: Springer.

Kopecz, K. (1995). Unsupervised learning of sequences on maps with

lateral connectivity. Proceedings of the International Conference on

Artificial Neural Networks, 431–436.

Koskela, T., Varsta, M., Heikkonen, J., & Kaski, K. (1998). Time series

prediction using recurrent SOM with local linear models. International

Journal of Knowledge-based Intelligent Engineering System, 2(1), 60–

68.

Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A time-delay neural

network architecture for isolated word recognition. Neural Networks, 3,

23–43.

Mackey, M. C., & Glass, L. (1977). Oscillations and chaos in physiological

control systems. Science, 197, 287–289.

Martinetz, T., Berkovich, S., & Schulten, K. (1993). Neural-gas network for

vector quantization and its application to time-series prediction. IEEE

Transactions on Neural Networks, 4(4), 558–569.

Martinetz, T., & Schulten, K. (1991). A neural-gas network learns

topologies. In T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas

(Eds.), (pp. 397–402). Proceedings of the International Conference on

Artificial Neural Networks, Amsterdam, Netherlands.

Mozayyani, N., Alanou, V., Dreyfus, J., & Vaucher, G. (1995). A spatio-

temporal data coding applied to Kohonen maps. Proceedings of the

International Conference on Artificial Neural Networks, 75–79.

Nadal, J., & Parga, N. (1994). Non linear neurons in the low noise limit: A

factorial code maximizes information transfer. Network, 5, 565–581.

Privitera, C. M., & Morasso, P. (1994). The analysis of continuous temporal

sequences by a map of sequential leaky integrators. Proceedings of

International Conference on Neural Networks, 3127–3130.

Ritter, H., & Schulten, K. (1988). Convergence properties of Kohonen’s

topology conserving maps: Fluctuations, stability, and dimension

selection. Biological Cybernetics, 60, 59–71.

Scholtes, J. C. (1991). Kohonen feature maps in natural language

processing. Technical Report CL-1991-01, Institute for Language,

Logic and Information, University of Amsterdam.

Varsta, M., Heikkonen, J., & Millan, J. D. R. (1997). Context-learning with

the self-organizing map. Proceedings of the Workshop on Self-

Organizing Maps’97 (pp. 197–202) Espoo, Finland: Helsinki Uni-

versity of Technology.

Vesanto, J. (1997). Using the SOM and local models in time-series

prediction. Proceedings of the Workshop on Self-Organizing Maps’97

(pp. 209–214) Espoo, Finland: Helsinki University of Technology.

T. Voegtlin / Neural Networks 15 (2002) 979–991 991

	Recursive self-organizing maps
	Introduction
	Self-reference and self-organization
	Considerations on stability
	Choice of a transfer function
	Quantization of discrete sequences
	Quantization of a continuous series
	Conclusions
	Acknowledgments
	Proof of Theorem 1
	References

