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Overview

A Learning in Structured Domains (trees, graphs)

A Recurrent/Recursive Neural Networks

A Reservoir Computing

A Contractivity Markovianity

A Reservoir computing for StructuréereeESN
GraphESN

A Applications




Learning in Structured Domains

A In many realworld application domainsghe information of interest can be

naturally represented by the means f

representations.

A The problems of interest can be modeled as regression or classificaiion
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Learning in Structured Domains

Learning in domains of trees and graphs opens up a wide range of research
directions:

In areas
A QSAR/QSPR
A ComputationalToxicology, Cheminformatics
A Social and Web information Processing
A Document processing
A Parallel Computation

A X

Problems

Learning in Structured Domains entails a number of open research problems,
mainly related to the increasing complexity of the data domains to treat

A
A Generalization of supported

A
A ability



Neural Networks for Structured Domains

Models

A Neural Networks fostructureddomains: Recurrent Neural Networks (RNNS),
Recursive Neural Networks (RecNNs), Neural Networks for Graphs (NN4Gs),

Graph Neural Networks (GNNSs)
g extension of RC to structured domain processing

Tree Echo State NetworksréeESNs GraphEcho State Network&sfaphESNs

A Kernel Methods for structures



General Framework for Processing Structured Domains

Transductions on Structured Domains

T :;Z/{;# —>|y;# U=R"
A Y =R"Y

L
label input space label output space

Structureto-structure Transductions
y(g) is isomorphic t
TR = TR,
skel(y(g)) = skel(g)
g y(g)
Structureto-element Transductions

(%j = QO y(g) is a vector
g y(g)



General Framework for Processing Structured Domains

Computing Structural Transductions

Structureto-structure Transductions

T = 7:)ut O 7:371,(:

g x(g)
T (RNU)# _ (RNR)# Tous - (RNR)# N (RNY)#
7 RN x RFNR 5 RVR Gour : RYR — RMY

7o (RV)# x RVE — (RV7)#



General Framework for Processing Structured Domains

Computing Structural Transductions

Structureto-element Transductions

T:%utoxoﬁnc

Tome Tou
M — M — 0 =% @ y(»
g X e

o ()

To (RNU)# N (RNR)# X - (RNR)# — RVr Tout - (RNR)# — (RNY)#

7 RV 5 RF Ve RNR Jout : RVF — R

7 (RN)# x RNR — (RVR)#



Characterizations of Structural Transductions

the function computed in correspondence of a veniexepends only o and its
descendants

the function computed in correspondence of a veniexoes not depend on the
particular vertexv

the function is learnt from observed data



Recurrent Neural Networks

A Neural networks for learning sequence transductions

A Local encoding functiori and output functiofQ implemented by layers of
units

Elman Network (Simple Recurrent Network)

A Pro: theoretically very
powerful; Universal
approximation through
training

u(n)

A Con: drawbacks related to

c(n) -~
training




Reservoir Computing

A for | state of the art for efficient learning in
sequential domains

Almplements

AConceptuai ndynamical/recurrentonlinearpart,
feedforward outputool,

A
A trainingis restricted to the lineaeadout

A exploits characterization resulting from (untrained) contractive
dynamics

Alncludesseveral classes: (ESNSs), Liquid State Machines,
Backpropagation Decorrelation, Evolino, ...



Echo State Networks- Architecture

Input Layer Reservoir Readout
Ny Ng Ny

Input Space:RVV Reservoir State Spac®’\V Output Space RV

AReservoiruntrained large, sparsely and randomly connected -imwear layer
7RV x RVP — RYR

x(n) = tanh(Wj,(u(n)) + Wx(n — 1))

encoding of the input  &jinear units

sequence Aleaky-integrators

Aspiking neurons

AReadouttrained linear layer
Gout - RNR — RNY

Train only the connections to the readout
y(n) = Woux(n) y



Echo StateNetworks - Properties

Echo State Property

A A valid ESN satisfies the (ESP)
A The state of the network depends on the only
A The influence of initial conditions gradually fades out

V s(u) = [u(l),...,u(n)] € (RY)"
vx,x € RVR .

I17(s(u),x) = 7(s(w),x)[| =0

Initialization Conditions
Sufficient condition ~ [W]2 <1
Necessary condition p(W) < 1 (asymptotical stability aroung)
Training
Solve the least squares linear regression problem |[W,.: X — Yiargetls

A Moore-Penrose pseudinversion W = Yiarget X
A Ridge regression W,,; = Yiurge: X7 (XXT 4 A, I)7!

ESN Hypeparametrization

Reservoir dimension, input scaling, spectral radius, readout regularization, ...



Recursive Neural Networks (RecNNs) for Structured Data

A Generalization of RNNs for processirig
A Bottom-up recursive encoding

© P
g

x(nil)

k
= f(Wiu(n) + ) Wix(chi(n)))
i=1

V(1) = fout(Woux(n))



Recursive Neural Networks (RecNNs) for Structured Data

A Powerful class of learning models; for tree domains
processing (through training)
RecNNsnvolves similar to those encountered for RNNs

A Local minima
A Slow convergence
A Vanishing of the gradients

represents a natural candidate for investigatizig
approaches tc
of the Reservoir Computing approach to structured domains



Tree Echo State Networks (TreeESNS)

the of the to tree structured data
way of modeling RecNNs
Architectural and experimental performance for trained RecNN models

To T I

A Generalized r bottom-up recursive encoding process (untrained)
A I output computation (trained)

A
=M
7:)11,75
— @

xxt)



Tree Echo State Networks

Reservoir
A Large, sparsely connected, layer of nonlinear recursive units
A Implements the T
A state transition system on trees
Reservoir Application to an Input Node Bottom-up Recursive Processing of Trees
X(n) +
t (. |
Reservoir _ . A The reservoir
Is applied
" ﬁ leo/le]eN
() A Run only once: from
T the leaves to the root
u(n) x(ch () x(ch, (M) T
A Each reservoir unit is fed by: and

. N kN N
already computed for 7RV x RY VR 5 RYE

A Connection between two reservoir units carries L -
for the children o(c¢) OAI5E 0(¢) T wE)



Tree Echo State Networks

State Mapping Function

A Maps the tree structured state into a fixesize state
A Influence on the characterization of the model dynamics

——————— >@ Root State Mapping  x(x(t)) = x(root(t))

—
~ o
-———__ -~

g %@ Mean State Mapping x(x(t)) = (1/|N(t))) Y x(n)

neN(t)

X(1)

Readout
y(t) = Woux(t)

A The linear readout implements the local output function
A Training as in ESN case (e.glio# by pseuddnversion or ridge regression)



Tree Echo State Networks

A tree suffix ot of heighth is denoted byY «

¢ Do & RAQ T

TV iy W) BRY (40°M))) h < & <0 @) B hed @)

Markovianity

A state model on tree domains is characterized by a state space organization of a Markovian natur
whenever the states it assumes in correspondence of different input trees sharing a common
suffix, are close to each other proportionally to the height of the suffix.



Tree Echo State Networks

Contractivity

The nodewise encoding functionis a contraction with respect to the state spate
monNg,0 O p

{0 A HefBhe he I heg N 5
Iz(0he B he ) Zz Ohe B he | b'@ﬁqﬂ" o |

Contractivity+ Bounded state space: Markovian characterizatiofreEESNynamics



Tree Echo State Networks

Markovianity
Contractivity of Reservoir Dynamics

A from ESN for sequences
A Ensures of the encoding process
A of TreeESN state space

Markovian Characterization of TreeESN Dynamics
vt,t' € (RYY)#" gsharing a common suffix of height
Vx,x' € RVE
17 (t,x) — 7(t/,x")|| < C" diam

A Implies a tree version of the Echo State Property

A Thereservoir of TreeESN is ablecte
in a Markovian tree suffigbased way

A Suitable foraskswith target functions

Contractive Initialization
o=k|W|, <1
Assuming Euclidean distance as metric in the reservoir space



Tree Echo State Networks

Computational Complexity

RC 1 only the linear readout parameters are trained

Encoding Process
For each trea

-
- -
—
—
—

O(N(t) R Np)

& Vi v N\
number of nodes max degree degree of number of reservoir units
connectivity
A with the number of nodes and the reservoir dimension
A The cost for and
A with state of art methods for trees:

A RecNNs: extra cost (time + memory) for gradient computations
A Kernel methods: higher cost of encoding (e.g. Quadratic in PT kernels)

Output Computation

A Depends on the method used (e.g. Direct using SVD or iterative)
A The cost of training the linear TreeESN readout is generally inferior to the cost
of training MLPs or SVMs (used in RecNNs and Kernels)



Tree Echo State Networks

Experiments

A Target functions with Markovian/antarkovian characterizatiorii{ )
A Relevant influence of the
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Markov?an task Anti-Markovian task
Root State Mapping Mean State Mapping
A Better than mean state mapping on Markovian A  Outperforms TreeESN with root state mapping
task(independently on the degree of on anttMarkovian Task (but not sufficient to
contractivity) solve it)
A Worse thamull modelon the antiMarkovian A Almost the same performance on the two tasks

task (prefixes and suffixes are merged together)



Tree Echo State Networks

Experiments

QSPR Analysis of Alkanes

A Predict the boiling point of alkanes
of the molecules (num of carbons + branching pattern):

A Target is related to

25
—4f— TreeESN-R
20 —G— TreeESN-M
E
15
§ €L
i
= e,,_f-é&
L - § L
5k _X% 1 o T
- I o=
g o S A S S S

Reservoir Dimension

—

- =
4~ Root State Mapping
ooz =, T _A',B C %,
|4 '
E T - —I - }
é_ — — 7%&\
8 @) O :
'(E}—noa o O —
. ) e
g O oNe
R a o
@ oNeNe)

0.1 o 0.1 2
First Principal Component

(a)

I I 1 I I I 1 I I 1 1 I I
10 15 20 25 30 35 40 45 50 55 60 65 70

—~—

Model £ Test Set MAE
TreeESN-R | best 8.00(£3.91)
TreeESN-R | 8°C 15.01({£9.24)
TreeESN-R | 5°C 13.18(£8.58)
TreeESN-M | best 2.78(x0.90)
TreeESN-M | 8°C 3.09(£0.93)
TreeESN-M | 5°C 3.05(£1.05)
RCC e 2.87(+0.91)
CRCC R°C 2 56(£0.80)
SST O 3. 93(:&0.92)
NN4G R0 34(=0.31)
NN4G 5°C 1 74(£0.23)
- -
T~o -~ -
© e (©)

(©)
3-methylpentane 3-methylhexane 3,4-dimethylhexane
Target =63.3 °C Target =92.0 °C Target=117.7°C

A B C

A

A

— oy,

Second Principal Component

Performance is sensible to
the

Though analysis aim:

reasonable results respect
to state-of-the-art

~ o Mean State Mapping

~
Increasing targef\llues =—
T 2°C ~ 69°C 174°C
0.04 \ | ’
A o = . <
s 1
002 I#\ " »
e — L
o B DA 4
o e
3
0.02 - 3 -
&
0.04 -
0.15 =0.1 -D.;ﬁ 0.&
First Principal Component



Dealing with Cycles and Undirected Graphs

A Dealing with cyclic/undirected structures represents an issue due to the causal
assumption

-.: 1 .}‘

A traditionally

A Two approachesexplicitlytreat the cycles constraining state dynamiGsgphESN

vy

for processing cyclic and undirected graphs

A

A Mutual dependencies among the states

* * * *

( (vs) + Wx
(“‘T:n 1(12] + VV
(Wipu(vs) + VV
( (va)
( (v1)

e

W, u(vs

]
ot

L
S

Wu(vy) + Wx
Wiu(v) + Wx

e
&

L

&
I | T V|
e

pq

GNN), or contextual nerecursive approach (NN4Gs)

In case of undirected graphs, the state
computed for each vertex depends on
the state computed for itmeighbors

N(v) ={ue V(g)|3(u,v) € E(g)}

(nil))
(v3))
(v4))
(v1))
(v2))



Neural Networks for Graphs (NN4Gs)

A Recently proposed model for processing general classes of graphs

A Encoding transduction implemented by & state transition function

A The encoding process is nogcursive and can be computed without stabiiggues

A Overcome the causalssumption: directly deal with cyclic/acyclic,
directed/undirected graphs

, approach
f(Wipu(v)) if 1=1
ri(v) = -1
f(Wipu(v)+ > >y xj(v)) otherwise
J=lv'eN(v) . ..

A The context window is incrementally
extended when the number of hidden unit
is increased

Stste vahe AN _ A The output function is implemented by a

idden Layers) e =Xdzg) . .

e s Ve z layer of linear units

Fow o tomain S A For structureto-element transduction a
== Foworconesua . | state-mappingfunction is used

il (amdng stkes) " " Ya

letwork connection =¥ 4o . ' -

nkllptltkl.;l}'x'rl s \-"'flrr,r;.l
— iraph edge

Hidden Unit 2 Ouiput Unit

\ Input Graph
/7

Hidden Unit 1



Kernel Methods for Graphs

A Extension of kernel methods for dealing with structured data directly
A Idea is to define a kernel function on the product space of the structured input domain

k:-U# xU* 5 R

A Corresponds to the definition of a similarity measure on couples of instances in the

structured input space
A The encoding transduction is implicitly computed by the kernel function, the output

transduction is computed by a SVM

9EI YL S&aY al NBAYIFfATSR YSNYStX hLIWGAYLf



Graph Echo State Networks

A GraphESN extends the applicability of RGto
A Dealing with general graphs brings but possible explosion of
with respect to the size of input

A Generalized r contractive encoding process (untrained)
A I output computation (trained)
A

Output
Transduction
I./— -_\_ E d / I:.u" .I\'.\
_ ncoding
4N (&) Tor @

Transduction
y(g)

b j
/ I\-.‘_ ,r" \
::__{;' I':; :' Ten C O O \ Outpu‘[
' Transduction
g X ( g) State Mapping O .

Function
@) Loy




Graph Echo State Networks

Reservoir
A Implements the local encoding function on graph patterns

x(v) = tanh(W;,u(v) + Z Wx(N;(v')))

v eV(g)
Standard ESN GraphESN
O T T / F = \
$ = a__ 10 1:0 a’
a ®! ( (1 !
T Q @ v ) AT !
10 T o=t

State transition system on graphs

x(v) A from ESNs and TreeESNs
o /o) o OO0 O%fjfsr""‘r A of the encoding proces@Banach Th.)
A to cyclic/undirected graphs
A nature of reservoir space organization
— A lterative encoding process
u@) X, (V) x,,(N(v» x,,(N(v» xi(v) = tanh(Wiu(v) + > Wx_1(N;(v)))
Vertex Label States of Neighbors v EV(g)

(at the previous encoding pass)

Initialization @ = k |[W]l2 < 1



Graph Echo State Networks

Markovianity

A of the state transition function reservoir dynamics with

A : the is to the set of dneighbors of a vertex, i.e.( ( ) 0

Vg, g € (RNVV)#*

Vo e V(g),v' € V(g') suchthat N@(y) = N@ (1))

e.g.d=2 ‘ ‘ v v
|e(0) e U || 0 QQwa

A Ability to among in a without
learning of the recursive connections (untrained reservoir)

A Architectural

A Taskswithin Markoviancharacterization can be approached vefiiciently by
GraphESNSs

A of the model, unsuitableness for tasks with no Markovian assumptions



Graph Echo State Networks

Computational Complexity

extreme of RCapproach

Encoding Process
For each graph,

for each pass of the encoding process
O(|V(g)| k R Ng)

-—
- -
—-— -
-
-

<& &~ v S\
number of nodes max degree degree of number of reservoir units
connectivity
A with the number of nodes and the reservoir dimension
A The cost for and
A with state of art methods for graph domains:

A GNN: (asin GraphESN + learning) x number of epochs
A Kernel methods: quadratic (e.g. EM Kernel), cubic (e.g. OA Kernel)

Output Computation

A Depends on the method used
A Inferior to the cost of training MLPs or SVMs (used in RecNNs and Kernels)



Graph Neural Networks (GNNS)

A Stability of the recursive encoding process is guaranteed by resorting to
state (like iInGraphESN
A The In the gradient descent learning algorithm includes a
(to penalize norcontractive state transition functions)
A State relaxatiorg gradient computation phases are alternated
A with respect toGraphESNs



Predictive Toxicology Challenge (PTC) Dataset

Carcinogenicity information for 417 molecules

Data concerns 4 classes of rodents: Male Rats (MR), Female Rats (FR), Male Mice (MM), Fem,
Mice (FM)

Classificaton Task (carcinogenic molecule +1;aawainogenic moleculel)

Molecules are represented as undirected graphs

H= ="

To To o Do

-1 2*  nontoxic
Tetrachloroethylene V \ -
v edges \
) \
vertices \
|
1 0 0O O O O 0O e o0 o
Structureto-element [ N g _ ]
transductions atom type l

global properties



PTC Dataset SDF Format

Witclservel11290013443D 0 0.00000 0.00000cramer
2526 0 0 0 0 0 0O 0 w2000

0.7143 0.6231-0.1367 C

1.6445 1.6447-0.1115C Atom element

o o
o o
oNe
oNe
oNe
oNe
oNe
oNe
oNe
o o

00
00

3.2657 0.0876 2.1403 H
-1.0455 -0.9737 2.0776 H

WN P
A WN
DN
o OO
o OO
loNelNo)
o OO

Edges information

1525100 @

m ENHS 216 118 | Global information for the atom label

> <RecNN.name>
TRO26

> <PTC.CLASS.FR> Target Information

+1 i Molecule Name

> <PTC.CLASS.MM>
+1

> <PTC.CLASS.FM>
+1



Graph Echo State Networks

Experiments

Predictive Toxicology Challenge (PTC) Dataset
A Model selection on GraphESN hysmrameters (by cross fold validation)

80%

75% -

Accuracy on Test Set
o
=

60% -

70% -

—&— MG-Kernel
QA-Kermnel
“— EM-Kemel

—e— GraphESN (Average)
—+— GraphESN (Best)

N ~ ) ~ /
FR MM
MR FR MM FM
Average TS 57% 65% G7% 58%
(£ 4%) | (£3% ) | (£5% ) | (4% )
Best TS 63% 70% 73% 65%
(£4% ) | (£2% ) | (£5% ) | (£5%)




Graph Echo State Networks

Experiments

Mutagenesis Dataset

A Mutagenicity of nitroaromatic compounds
A Classificaton Task
A Different descriptions of the molecules are available (AB, C, PS)

Model AB AB+C | AB+C+PS
RDBC 83% 82%
TILDE 77% 82%
1nn(dm) 81% 88%
GNN 86%
GraphESN Average | 72%M4%) | 82%(@7%) 82%(N\7%)
Supersource S.M. Best 81%(B%) | 89%N7%) 88%(\B%)
GraphESN Average | 76%@M0%) | 80%(6%) 80%(\6%)
Mean S.M. Best 86%(7%) | 88%(N\B%) 87%(\6%)

A Stateof-the-art results
within the range of
GraphESN performance

A Relevance of the
contractive assumption



Adaptivity of State Mappings for GraphESN

Motivations

A State transition systems for graphto-element transductions
%TLC 7:)’U,t
— — @

g x(g) y(8)

A the relavant from structured state spaces

A the of each on the output

A Deal with with and (no vertices alignments)

Root/Supersource
N N 1
x: (R R)# — R7A @ State Mapping

A
A

Relevant effect (x(g2))
Critical role in (in X s
relation to the target properties) Mean

State Mapping




Adaptivity of State Mappings for GraphESN

GraphESNvnn

x(g)

Standard
GraphESN

PTC Dataset

Model selection on reservoir parameters, K, readout reg.

A
z —> X(x(g)) —> y(g)
A
!

Readout implemented using distance
weighted Kneares neighbor

Weights the contribution of each vertex
according to a fixed scheme
Flexible/supervised extraction of
information from the reservoir state
space

Stronger influence of vertices whose
states are in regions corresponding to
more uniform target information

(v) = T My () ’tu(”) S S
Y T wl A Rl
K (v)
(V) = =% (%i:l - Nio
Z?:l w; (Y(U)_ytg(ﬂi ))
() — Sucvimor¥0)

Eve Vig) ar(v)

Best reservoir setting after model selection on the readout

Model MM M MR FR Model MM M MR R
GraphESN 62.87(£1.2) | 60.40(£1.7) | 59.43(£1.9) | 64.44(£0.9) GraphESN 68.45(12.4) | 64.77(13.5) | 65.99(£2.6) | 68.95(12.2)
GraphESN-wnn | 63.04(£2.7) | 63.32(£2.6) | 58.02(£2.1) | 67.37(£2.5) GraphESN-wnn | 69.65(+2.7) | 67.91(+4.8) | 67.43(+4.5) | 69.25(+3.1)

MG-Kernel 69.05(X1.5) | 64.76(£1.2) | 62.50(£1.2) | 70.09(£0.6)
OA-Kernel 67.87(+1.7) | 65.33(+£0.9) | 63.39(£2.1) | 70.37(+1.1)
K €{1,5,15,30,50} EM-Kernel 66.97(£1.1) | 64.47(£1.2) | 60.84(£1.7) | 68.95(0.7)




Adaptivity of State Mappings for GraphESN

GraphESMNNG

A (through readout learning) the of the states of
In the state mapping computation

A Neural Gas (NG) clustering algorithm is used ite
A For each graph g; the state information and then
for the output computation

A For K = 1 GraphESN is obtained



