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eetocs Introduction

Today’s Lecture

@ A refresher on kernel methods
@ Kernel methods for

e Sequences, trees, graphs
@ Design guidelines for kernels

° kernels
° kernels
° kernels

@ Experimental analysis
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Kernels Refresher

Intuition and Motivations

@ Kernels can be interpreted as k(x1, x2)
of their two arguments (data points x; and x»)

@ Use the kernel function within a known classifier/regressor
to

e Extend linear learning models to

@ Support Vector Machines
@ Kernel PCA,...

e Extend learning models to
@ Sequences, trees, ...
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Kernel Functions

@ Akernel is defined by a
k(x1,x2) = D(x1) T (x2)

e ®(x):D — Fis afixed from
D to F
@ Given a dataset {x1, ..., xy} define the
K(xi,x1) ... K(x1,xn)
K= .
K(xn, x1) . K(Xn, Xn)

@ A function k(x1, x2) is a kernel if its

vv eRV,vTKv >0

The nonlinear feature mapping ®(x) does not need to be knownJ
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Kernel Trick and Feature Space

@ Take an known algorithm defined in terms of
between data points and substitute them with the
kernel k(xq, x2)
@ Can be performed using any kernel function and results in
a
o E.g. kernel PCA, kernel k-means, ...
@ It amount to solving the learning problem in the
®(x), without
requiring to know the form of ¢
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How to Construct a Kernel?

@ Define a function k(x1, x2) measuring some form of

e Proveitis
e Use the to express vector products using the
kernel function only
@ If the , try defining a
o(x1)" 0(x)
e Eg. string, tree and graph kernels
° existing kernels

e Weighted sum, product and tensor product of kernels
e Concatenation, exponentiated kernel, ...



Kernel Methods

Kernels Refresher

Examples of Kernels for Vectorial Data

Polinomial of degree up to d

k(xq,x2) = (x{ x2 + ¢)?

Exponential kernel ( feature space)
k(x1,x2) = exp (3' (X1TX2))

Gaussian kernel

X1 — X2||2)

k(x1,x2) = exp (— 552
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Kernels for Non-Vectorial Data

The definition of kernel (similarity) functions for
allows to straightforwardly to
new classes of data using the kernel trick

@ Data: sequences, tree, graphs, distributions, structured
spaces

@ Learning Tasks: classification, clustering, visualization,...

@ Applications: molecule function prediction, vision, DNA
sequences classification

Focus on

@ Often use of the feature space

@ Counting (and weighting)

@ Some approaches (learning kernel from data)
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Kernel Types

Different for structured data based on
and properties
@ Convolutional kernels

° into parts whose similarity
can be measured

° the similarities measured on parts to compute
the structure match

@ Syntactic kernels

e Convolutional kernels counting the
in the objects
e Weight matching node labels, edges, paths,...

@ Adaptive kernels

e Learnthe from
data
e Data population induces the similarity metric
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Generative Kernels

@ A combination of and models

e Use a generative model to define a kernel
e Use the kernel in a discriminative approach (e.g. SVM
classification)
@ Syntactic kernels
e Use a probabilistic model to
in convolutional kernels
e E.g. marginalized graph kernel, ...
@ Adaptive kernels

e Fit a probabilistic model to the (structured) data
e Use the properties of the fitted distribution to

e E.g. Fisher kernel, Jaccard generative kernel, ...
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String Matching Kernels

A to measure similarity K(x1, X2)
between strings x; and x»
@ Count the within x4 and x»
@ A matching substring is given weight 1
e Non-matching substrings weight 0
e Overall kernel is given by the sum on all substrings

° approach
e Feature space encoding ¢s(x) = number of occurrences of
string s in x
o Compute kernel as K(x1,Xz) = ®s(x1)7 ds(x2)
° approach

e Count substrings of x4 (i.e. S(x1)) occurring in Xz
K(xy,%2) = Z Z I(s1,82)
S1ES(X1) S2€8(X2)

e Computationally (O(|x1] - |x2|)) as it does not
need to explore all strings in vocabulary
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Generative String Kernels

@ Usea to obtain an
adaptive measure of string similarity
@ First, need a probability distribution P(x) over sequences x
e Fitan to the training data
@ Compute the kernel using the information in P(x)
e Two sequences are similar if

K(X1 s Xg) = P(X1 )TP(XQ)

e Two sequences are similar if are generated by

K(x1,%2) = Y P(x1]2)P(x2[2)P(2)
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The Fisher Kernel

@ A general approach to obtain a kernel from any generative
model P(x|6) parameterized by 6
e With sequential data we consider an HMM with parameters
0 ={A, B,x}

@ The feature space encoding of x is the
d(x) = Aglog P(x|0)

e Represent the contribution of each model parameter to
input sample generation

@ The is simply
K(x1,%2) = ®(x1)7d(xz)

@ Computational complexity is O(|6)|)
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Fisher String Kernel in Practice

@ The Fisher score for sequences is obtained by
w.r.t. the parameters

0={A B}
@ The process is similar to that performed to obtain the
equations
e Requires to perform a recursion
o O(IX]-16])
@ If you do the math, the Fisher score is basically the

and

The Fisher kernel is and but it is J
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Convolutional Tree Kernels

@ Find syntactic matches on the

e Count between trees, e.g. using
a string kernel
e Count between trees

@ Several convolutional tree kernels that consider

o Different , i.e. capability to capture structural
matches
e Different computational

@ Subset tree (SST) kernel (O(|x|?))
@ Count the number of matching between
two input trees
@ Subtree (ST) kernel (O(|x|log |x|))

e Restrict to matching (only
descendants of subtree root until leaves)
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Subset Tree (SST) kernel

Explicit formulation

o [ofof1]o]..Jof1]of. Jof2]o]a]e|. |2].] |

Tree Kernels

a a a a e
b7\, b/ Na b Nap/N\,l
/N | /N | c
c d e ¢ d e ¢
[
b ¢
Implicit formulation ( )

o If |Ch(x")| # |Ch(x?)|, K(x',x?) =0

e Elseif x' and x? are leaves and x' = x2, K(x', x?) = 1
@ Else

chect)
Kx'.x?) = ] (1+K(x},x%)

u=1
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Subtree (ST) kernel

Explicit formulation

o |ofo]1]o]..Jof[1]o]. [of1]o]1] [o]1]..]

a a b d €
b7\, /\ I I I
S N c b ¢
c d e I
I ' b ¢
b ¢
Implicit formulation ( )

o If |Ch(x")| # |Ch(x?)|, K(x',x?) =0
e Elseif x' and x? are leaves and x' = x2, K(x', x?) = 1
@ Else

|Ch(x")|

Kx',x®) = [[ (K(xi,x5)
u=1
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Generative Tree Kernels

Hidden Tree Markov Models (HTMM)

Define a probability distribution over trees P(x|0) regulated by
variables Q, (Top-down Vs Bottom-up generation)

@ Exploit the information in HTMM to define

for trees
° kernel approach (O(|6]))
e Derive the Fisher score vector for the HTMM parameters ¢
e Can be computed from the algorithm
@ Hidden kernel (O(C?))

e Find a compact feature space encoding the

o Use to compute the kernel from the
encoding
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Bottom-up (BU) Tree Context

Hidden state Q, summarizes information concerning structural
properties of rooted in u

, Where each hidden state

BU hidden state space provides a summarized view of the
identifies a cluster of similar structures }
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Top-down (TD) Tree Context

Hidden state Q, captures information about leading to
the node from the root

TD hidden state space provides a summarized view where
each hidden state clusters J
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Hidden States Multisets

A tree x,, is transformed into a vector ®(x,) of
from models
Tree TD BU

decodin,
>0 -0 0O 0
o) (1| T 1]
i 1, J 1,]
Compute the as
k(X x5) = 2ot MIN(®i(X1), 0i(Xe))

S22 max(®(xy), ®;(X2)

~—
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Tree Classification Example

XML
and 2006 competitions

from the INEX 2005

Table: Test accuracy (%) on models selected by 3-fold CV, using
in

Dataset

Fisher

Jac-BU

Jac-TD

Jac-TB

INEX 2005
INEX 2006

96.82 (0.1)
39.47 (0.8)

94.22 (0.81)
4453 (0.09)

93.39 (2.19)
44.38 (0.06)

95.39 (0.14)
44.78 (0.02)

Table: Test accuracy (%) by syntactic kernels

Dataset ST SST  Poly-SST
INEX 2005 | 88.73 88.79  88.33
INEX 2006 | 32.02 40.41 40.12
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Activation Masks (AM)

@ Topographic maps (e.g. GMT-SD) naturally
information on
e Structures and are projected on points of the
map
@ Similar structures tend to end-up

o Eﬁ.ﬁ,ga S E‘E\‘E\‘Erm boesoEe
m’i .ﬁhn & alb
“7rs. wBbdb

Can we devise a that exploits this intuition? ]
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AM Kernel on GTM-SD

@ Given two trees x' and x? obtain the
,e.g. ¢, and ¢y

@ Compute the (adaptive, generative, convolutional)
kX', x%) = > > T(cucw)
uel u' ey
using the
e—d(cy,Cn), ifd(cy,cy)<e
T.(cy,cu) = .
(Cu: Cv) {0, otherwise
Size uwGTM-SD test error AM-GTM test error
e=005|¢e¢=01]e=02
20 x 20 7.52 3.3673 | 3.3465 | 3.4296
15 x 15 9.12 3.881 3.4712 | 3.4505
10 x 10 7.21 3.5130 | 3.4089 | 3.6535
9x%x9 13.13 3.4504 | 3.3049 | 3.3673
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Graph Kernels

Comparing Graphs - The Isomorphism Problem

Graph Isomorphism

Find a mapping between vertices of graphs G and H such the
graphs are identical

@ Unknown polynomial-time algorithm
@ No reduction to NP complete problems

| A\

Subgraph Isomorphism

Find if a subset of vertices and edges of G can be made
isomorphic to a subset of H

@ Known to be

\




Kernels for Structured Data
Graph Kernels

A Quick View on Graph Kernels

@ Design kernels that compare substructures of graphs that
are

e Walks, paths, trees, cyclic patterns,...
o Expressive, efficient, positive definite, general

@ A convolutional approach

@ Generate a number of to obtain target
substructures
Q Usea to match substructures in a

@ Marginalized kernels

o A family of generative kernels using a probabilistic
approach to
o Not an adaptive approach!
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Random Walks Kernel

@ Compare walks in two input graphs

@ Walks are node sequences allowing node repetitions
@ Computational tricks

o Build consisting of pairs of identically labeled
nodes and edges in 2 graphs

e Use the powers of the product graph adjacency matrix to
check paths of length k

e Define a kernel counting

@ Complexity is O(N®)-O(N?®)
° - Walks may visit same edges and nodes multiple
times yielding to artificially high similarity scores
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Random Trees Kernel

@ Compare of graphs

@ May distinguish between substructures that walk kernel
deems identical

@ Key idea
e For all pair of nodes in the two graphs construct subtrees of

o Usea to compute match with a convolutional
approach

@ Computational complexity influenced by tree kernel
@ Still affected by



Conclusions

Take Home Messages

@ Kernel methods provide a powerful and straightforward
way to
e Extend the to which learning models can be
applied: structured data
o Allow linear approaches to deal with non-linear problems

( )
@ Kernels for
e Feature space often explicit
e Implicit formulation might be computationally more
convenient
@ Generative kernels
e A general approach to define kernels where

o Exploit the of generative models with the
power of kernels
e May resultin
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