
Kernel Methods
Kernels for Structured Data

Conclusions

Kernels for Structured Data

Davide Bacciu

Dipartimento di Informatica
Università di Pisa
bacciu@di.unipi.it

Machine Learning: Neural Networks and Advanced Models
(AA2)

Kernel Methods
Kernels for Structured Data

Conclusions

Introduction
Kernels Refresher

Today’s Lecture

A refresher on kernel methods
Kernel methods for structured data

Sequences, trees, graphs
Design guidelines for kernels

Convolutional kernels
Adaptive kernels
Generative kernels

Experimental analysis

Kernel Methods
Kernels for Structured Data

Conclusions

Introduction
Kernels Refresher

Intuition and Motivations

Kernels can be interpreted as similarity functions k(x1, x2)
of their two arguments (data points x1 and x2)
Use the kernel function within a known classifier/regressor
to

Extend linear learning models to non-linear approaches
Support Vector Machines
Kernel PCA,...

Extend learning models to new classes of data
Sequences, trees, ...

Kernel Methods
Kernels for Structured Data

Conclusions

Introduction
Kernels Refresher

Kernel Functions

A kernel is defined by a scalar product

k(x1, x2) = Φ(x1)T Φ(x2)

Φ(x) : D → F is a fixed nonlinear mapping from data space
D to feature space F

Given a dataset {x1, . . . , xN} define the Gram matrix

K =

K (x1, x1) . . . K (x1, xN)
.

K (xN , x1) . . . K (xN , xN)


A function k(x1, x2) is a kernel if its Gram matrix is positive
semidefinite

∀v ∈ RN , vT Kv ≥ 0

The nonlinear feature mapping Φ(x) does not need to be known

Kernel Methods
Kernels for Structured Data

Conclusions

Introduction
Kernels Refresher

Kernel Trick and Feature Space

Take an known algorithm defined in terms of scalar
products between data points and substitute them with the
kernel k(x1, x2)

Can be performed using any kernel function and results in
a kernelization of the algorithm

E.g. kernel PCA, kernel k-means, ...

It amount to solving the learning problem in the feature
space FΦ induced by the non-linear map Φ(x), without
requiring to know the form of Φ

Kernel Methods
Kernels for Structured Data

Conclusions

Introduction
Kernels Refresher

How to Construct a Kernel?

Define a function k(x1, x2) measuring some form of
similarity between data points

Prove it is positive semi-definite
Use the kernel-trick to express vector products using the
kernel function only

If the feature space F is known, try defining a fast way to
compute the inner product Φ(x1)T Φ(x2)

Eg. string, tree and graph kernels
Combine existing kernels

Weighted sum, product and tensor product of kernels
Concatenation, exponentiated kernel, ...

Kernel Methods
Kernels for Structured Data

Conclusions

Introduction
Kernels Refresher

Examples of Kernels for Vectorial Data

Polinomial of degree up to d

k(x1, x2) = (xT
1 x2 + c)d

Exponential kernel (infinite-dimensional feature space)

k(x1, x2) = exp
(

s · (xT
1 x2)

)
Gaussian kernel

k(x1, x2) = exp
(
−‖x1 − x2‖2

2σ2

)

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Kernels for Non-Vectorial Data

The definition of kernel (similarity) functions for non-vectorial
data allows to straightforwardly extend well-known algorithms to
new classes of data using the kernel trick

Data: sequences, tree, graphs, distributions, structured
spaces
Learning Tasks: classification, clustering, visualization,...
Applications: molecule function prediction, vision, DNA
sequences classification

Focus on kernels for structured data
Often use explicit formulation of the feature space
Counting (and weighting) matching substructures
Some adaptive approaches (learning kernel from data)

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Kernel Types

Different types of kernels for structured data based on
adaptivity and compositionality properties

Convolutional kernels
Decompose structured objects into parts whose similarity
can be measured
Aggregate the similarities measured on parts to compute
the structure match

Syntactic kernels
Convolutional kernels counting the number of common
substructures in the objects
Weight matching node labels, edges, paths,...

Adaptive kernels
Learn the weight of a structure-substructure match from
data
Data population induces the similarity metric

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Generative Kernels

A combination of discriminative and generative models
Use a generative model to define a kernel
Use the kernel in a discriminative approach (e.g. SVM
classification)

Syntactic kernels
Use a probabilistic model to generate substructures to be
visited in convolutional kernels
E.g. marginalized graph kernel, ...

Adaptive kernels
Fit a probabilistic model to the (structured) data
Use the properties of the fitted distribution to measure
object similarity
E.g. Fisher kernel, Jaccard generative kernel, ...

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

String Matching Kernels

A convolutional approach to measure similarity K (x1,x2)
between strings x1 and x2

Count the common substrings within x1 and x2
A matching substring is given weight 1
Non-matching substrings weight 0
Overall kernel is given by the sum on all substrings

Explicit approach
Feature space encoding Φs(x) = number of occurrences of
string s in x
Compute kernel as K (x1,x2) = Φs(x1)T Φs(x2)

Implicit approach
Count substrings of x1 (i.e. S(x1)) occurring in x2

K (x1,x2) =
∑

s1∈S(x1)

∑
s2∈S(x2)

I(s1, s2)

Computationally more efficient (O(|x1| · |x2|)) as it does not
need to explore all strings in vocabulary

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Generative String Kernels

Use a generative model for sequences to obtain an
adaptive measure of string similarity
First, need a probability distribution P(x) over sequences x

Fit an Hidden Markov Model to the training data
Compute the kernel using the information in P(x)

Two sequences are similar if both have high probability

K (x1,x2) = P(x1)T P(x2)

Two sequences are similar if are generated by same hidden
states

K (x1,x2) =
∑

z

P(x1|z)P(x2|z)P(z)

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

The Fisher Kernel

A general approach to obtain a kernel from any generative
model P(x|θ) parameterized by θ

With sequential data we consider an HMM with parameters
θ = {A,B, π}

The feature space encoding of x is the Fisher score

Φ(x) = ∆θ log P(x|θ)

Represent the contribution of each model parameter to
input sample generation

The practical Fisher kernel is simply

K (x1,x2) = Φ(x1)T Φ(x2)

Computational complexity is O(|θ|)

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Fisher String Kernel in Practice

The Fisher score for sequences is obtained by
differentiating the HMM log-likelihood w.r.t. the parameters
θ = {A,B, π}
The process is similar to that performed to obtain the EM
learning equations

Requires to perform a forward-backward recursion
O(|X| · |θ|)

If you do the math, the Fisher score is basically the ratio
between the posterior and each model parameters

The Fisher kernel is generative and adaptive but it is not
convolutional

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Convolutional Tree Kernels

Find syntactic matches on the tree substructures
Count number of common paths between trees, e.g. using
a string kernel
Count number of matching subtrees between trees

Several convolutional tree kernels that consider different
subsets of subtrees

Different expressiveness, i.e. capability to capture structural
matches
Different computational complexity

Subset tree (SST) kernel (O(|x|2))
Count the number of matching proper subtrees between
two input trees

Subtree (ST) kernel (O(|x| log |x|))
Restrict to matching only complete subtrees (only
descendants of subtree root until leaves)

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Subset Tree (SST) kernel

Explicit formulation

Implicit formulation (recursive)
If |Ch(x1)| 6= |Ch(x2)|, K (x1,x2) = 0
Else if x1 and x2 are leaves and x1 = x2, K (x1, x2) = 1
Else

K (x1,x2) =

|Ch(x1)|∏
u=1

(1 + K (x1
u,x

2
u))

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Subtree (ST) kernel

Explicit formulation

Implicit formulation (recursive)
If |Ch(x1)| 6= |Ch(x2)|, K (x1,x2) = 0
Else if x1 and x2 are leaves and x1 = x2, K (x1, x2) = 1
Else

K (x1,x2) =

|Ch(x1)|∏
u=1

(K (x1
u,x

2
u))

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Generative Tree Kernels

Hidden Tree Markov Models (HTMM)

Define a probability distribution over trees P(x|θ) regulated by
hidden state variables Qu (Top-down Vs Bottom-up generation)

Exploit the information in HTMM to define adaptive
generative kernels for trees
Fisher kernel approach (O(|θ|))

Derive the Fisher score vector for the HTMM parameters θ
Can be computed from the upwards-downwards algorithm

Hidden states multiset kernel (O(C2))
Find a compact feature space encoding the information
captured by the HTMM hidden states
Use Jaccard similarity to compute the kernel from the
encoding

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Bottom-up (BU) Tree Context

Hidden state Qu summarizes information concerning structural
properties of subtree τu rooted in u

τu
Qu

BU hidden state space provides a summarized view of the
subtrees occurring in the data, where each hidden state
identifies a cluster of similar structures

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Top-down (TD) Tree Context

Hidden state Qu captures information about path πu leading to
the node from the root

πu

Qu

TD hidden state space provides a summarized view where
each hidden state clusters similar root-to-node paths

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Hidden States Multisets

A tree xn is transformed into a vector Φ(xn) of hidden states
counts from TD and BU models

Tree

decoding

bigramunigram

TD BU

i

j′

i′

Φ(x)

i′ i′, j′ j i, j

j

Compute the Jaccard kernel as

k(x1,x2) =

∑D
i=1 min(Φi(x1),Φi(x2))∑D
i=1 max(Φi(x1),Φi(x2))

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Tree Classification Example

XML document classification benchmarks from the INEX 2005
and 2006 competitions

Table: Test accuracy (%) on models selected by 3-fold CV, using
C-SVM classifier in LibSVM

Dataset Fisher Jac-BU Jac-TD Jac-TB
INEX 2005 96.82 (0.1) 94.22 (0.81) 93.39 (2.19) 95.39 (0.14)
INEX 2006 39.47 (0.8) 44.53 (0.09) 44.38 (0.06) 44.78 (0.02)

Table: Test accuracy (%) by syntactic kernels

Dataset ST SST Poly-SST
INEX 2005 88.73 88.79 88.33
INEX 2006 32.02 40.41 40.12

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Activation Masks (AM)

Topographic maps (e.g. GMT-SD) naturally encode
information on tree similarity

Structures and substructures are projected on points of the
map
Similar structures tend to end-up close on the map

1

2 3

4 5

6 7 8 9 10 11

12 13

14 15

16 17 18 19 20 21 22 23 24 25

26 27

28 29 30

1

2

3 4

5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21 22

23

24

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25

26 27

28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43

44 45 46

Can we devise a kernel for GTM-SD that exploits this intuition?

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

AM Kernel on GTM-SD

Given two trees x1 and x2 obtain the projection of their nodes
the map, e.g. cu and cu′

Compute the AM Kernel (adaptive, generative, convolutional)

k(x1,x2) =
∑
u∈U1

∑
u′∈U2

Tε(cu, cu′)

using the weight function

Tε(cu, cu′) =

{
ε− d(cu, cu′), if d(cu, cu′) ≤ ε
0, otherwise

Size µGTM-SD test error AM-GTM test error
ε = 0.05 ε = 0.1 ε = 0.2

20× 20 7.52 3.3673 3.3465 3.4296
15× 15 9.12 3.881 3.4712 3.4505
10× 10 7.21 3.5130 3.4089 3.6535

9× 9 13.13 3.4504 3.3049 3.3673

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Comparing Graphs - The Isomorphism Problem

Graph Isomorphism
Find a mapping between vertices of graphs G and H such the
graphs are identical

Unknown polynomial-time algorithm
No reduction to NP complete problems

Subgraph Isomorphism

Find if a subset of vertices and edges of G can be made
isomorphic to a subset of H

Known to be NP complete

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

A Quick View on Graph Kernels

Design kernels that compare substructures of graphs that
are computable in polynomial time

Walks, paths, trees, cyclic patterns,...
Expressive, efficient, positive definite, general

A convolutional approach
1 Generate a number of graph visits to obtain target

substructures
2 Use a syntactic kernel to match substructures in a

convolutional way
Marginalized kernels

A family of generative kernels using a probabilistic
approach to generate graph visits
Not an adaptive approach!

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Random Walks Kernel

Compare walks in two input graphs
Walks are node sequences allowing node repetitions
Computational tricks

Build product graph consisting of pairs of identically labeled
nodes and edges in 2 graphs
Use the powers of the product graph adjacency matrix to
check paths of length k
Define a kernel counting pairs of matching walks

Complexity is O(N6)-O(N3)

Tottering - Walks may visit same edges and nodes multiple
times yielding to artificially high similarity scores

Kernel Methods
Kernels for Structured Data

Conclusions

Sequence Kernels
Tree Kernels
Graph Kernels

Random Trees Kernel

Compare tree-like substructures of graphs
May distinguish between substructures that walk kernel
deems identical
Key idea

For all pair of nodes in the two graphs construct subtrees of
bounded depth h
Use a tree kernel to compute match with a convolutional
approach

Computational complexity influenced by tree kernel
Still affected by tottering

Kernel Methods
Kernels for Structured Data

Conclusions

Take Home Messages

Kernel methods provide a powerful and straightforward
way to

Extend the classes of data to which learning models can be
applied: structured data
Allow linear approaches to deal with non-linear problems
(next lecture)

Kernels for structured data
Feature space often explicit
Implicit formulation might be computationally more
convenient

Generative kernels
A general approach to define kernels where matching
weights are inferred from data
Exploit the expressiveness of generative models with the
discriminative power of kernels
May result in very efficient kernels

	Kernel Methods
	Introduction
	Kernels Refresher

	Kernels for Structured Data
	Sequence Kernels
	Tree Kernels
	Graph Kernels

	Conclusions

