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aeduction Last Lecture Refresher

Directed Graphical Models (Bayesian Networks)

parents of ¥3

@ Directed Acyclic Graph (DAG)
g= (Vv 5)
0 v € V represent

o Shaded = observed
o Empty = un-observed

o e ¢ £ describe the

(CPT) local to each node
describe the probability distribution

N
P(Ys,....Yn) = [[ P(ilpa(Yy))

i=1
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Plate Notation

A compact representation of replication in graphical models

@ Boxes denote for a
number of times denoted by the

@ Shaded nodes are
variables

@ Empty nodes denote un-observed
variables

@ Black seeds (optional) identify

OJ0 (TB='




Introduction

Lecture Plan

Graphical Models

A graph whose (vertices) are whose
(links) represent between the
variables

Dynamic Models

58 ¢

Different classes of graphs
Structure changes

to reflet dynamic

Directed edges Undirected edges processes
express causal express soft

relationships constraints



Directed Representation
Graphical Models

Directed Models - Local Markov Property

A variable Y, is independent of its non-descendants given its
parents and only its parents: i.e. Yy L Y\ ch)| Ypa(v) J

Party and Study are marginally independent
@ Party | Study

However, local Markov property does not
support

@ Party | Study|Headache
@ Tabs 1| Party

But Party and Tabs are independent given
Headache '

@ Tabs | Party|Headache



Directed Representation
Graphical Models

Joint Probability Factorization
An application of Chain rule and Local Markov Property

@ Pick a topological ordering of . 5
nodes

@ Apply chain rule following the
order 3

© Use the conditional A s
independence assumptions

P(PA,S,H, T,C) =
P(PA) - P(S|FA) - P(H|S, PA) - P(T|H, S, PA) - P(C|T,H, S, PA)
= P(PA)- P(S)- P(H|S,PA) - P(T|H) - P(C|H)



Directed Representation
Graphical Models

Sampling from a Bayesian Network

A BN describes a generative process
for observations

@ Pick a of
nodes

@ Generate data by

following this order

Generate i-th sample for each variable PA,S,H, T, C
@ pa; ~ P(PA)
Q s~ P(S)
Q hi~ P(H|S = s, PA = pa))
Q i~ P(TIH=h;)
Q ¢~ P(CIH = h;)



Directed Representation
Graphical Models

Basic Structures of a Bayesian Network

There exist that determine the conditional
independence relationships in a Bayesian network

° (Common Cause)

° (Causal Effect)
° (Common Effect)



Directed Representation
Graphical Models

Tail to Tail Connections

e @ Corresponds to

P(Y1, Y3|Y2) = P(Y1]Y2)P(Y3|Y2)

o If then Y; and Y3
are

e Yi L Y3

o If then Y; and Ys are

Yi L Y3lYa
Y1 Y3
When Y5 in observed is said to from Yi to Y3 J




Directed Representation
Graphical Models

Head to Tail Connections

@ Corresponds to

P(Y1, Y3|Y2) = P(Y1)P(Y2| Y1)P(Y3|Y2)

= P(Y1|Y2)P(Y3|Y2)

o If then Y; and Y3 are

Observed Y, J o If

YiLYs

from Y; to Ya then Y; and Y; are

Yi L Ys|Yz



Directed Representation
Graphical Models

Head to Head Connections

e @ Corresponds to

P(Y1, Yz, Y3) = P(Y1)P(Y3)P(Y2| Y1, Y3)

@ If V> is observed then Yy and Yj are
conditionally dependent

e Yi L YslY2

@ If Y5 is unobserved then Yy and Yj are
marginally independent

Y, LYy

.

If any Y> descendants is observed it unlocks the path J




Directed Representation
Graphical Models

Derived Conditional Independence Relationships

A Bayesian Network represents the local relationships encoded
by the 3 basic structures plus the

Consider
Local Markov Relationships Derived Relationship
Yi L Ya|Y2 Yi L Yq|Ye

Ya LYy, Y2lY3



Directed Representation
Graphical Models

d-Separation

Definition (d-separation)

Letr=Y; <— ...<— Yo bean between Y;
and Yo, then ris if there exist at least one
node Y, € Z for which path r is blocked.

In other words, holds if at least one of the
following holds
@ r contains an structure Y; — Y — Y; (or
Yic— Yo+— Y)and Yo € Z
@ r contains a structure Y; «<— Y, — Y; and
YceZ

@ r contains an structure Y; — Y; <— Yj and



Directed Representation
Graphical Models Undirected tion
Directed Vs

Markov Blanket and d-Separation

Definition (Nodes d-separation)

Two nodes Y; and Y; in a BN G are said to be
(denoted by Dsepg(Y;, Y;|Z) if and only if all undirected
paths between Y; and Y are d-separated by Z

Definition (Markov Blanket)

The Markov blanket Mb(Y) is the minimal set of nodes which
d-separates a node Y from all other nodes (i.e. it makes Y
conditionally independent of all other nodes in the BN)

Mb(Y) = {pa(Y), ch(Y), pa(ch(Y))}




Graphical Models Undirected Representation

Are Directed Models Enough?

@ Bayesian Networks are used to model
(e.g. causal)
@ What if we want to model

e Bidirectional effects, e.g. spatial dependencies
o Need approaches

Directed models cannot represent some (bidirectional)
dependencies in the distributions
What if we want to represent
Yi L Y3|Ya, Y4?
What if we also want

e Yo L Yq|Yq, Y3?
2 L Ya|Yq, Y3"
0'@ Cannot be done in BN! Need
&)

undirected model J




Graphical Models Undirected Representation

Markov Random Fields

@ Undirected graph G = (V,€) (a.k.a. )
° v € V represent Xy
e Shaded = observed
e Empty = un-observed
° e € & describe between
variables (constraints)

Often arranged in a structure that is coherent with the
data/constraint we want to model




Graphical Models Undirected Representation

Image Processing

@ Often used in image processing to impose
(e.g.smoothness)
@ Image de-noising example
o Lattice Markov Network ( model)

e Y; — observed value of the
@ X; — unknown (unobserved) value

@ Can use more structures
e Complexity of inference and learning can become relevant



Graphical Models Undirected Representation

Conditional Independence

What is the of in directed
models?

" AlBC
Again it is based on node separation, although it is way simpler!
@ Node subsets A,B C V are
given C C V \ {A, B} if all paths between nodes in Aand B
pass through at least one of the nodes in C
@ The of a node includes all and only its



Graphical Models Undirected Representation

Joint Probability Factorization

What is the of
in directed models?

@ We seek a defined over a set of nodes
associated with some

@ Markov blanket tells that
given the remainder of the nodes

P(Xv, Xil X\ qv,iy) = P(Xv| X (v,iy) P(Xi| X (v, i)

@ Factorization should be chosen in such a way that nodes
Xy and X; are not in the same factor

What is a that J




Directed Representation
Graphical Models Undirected Representation
Directed Vs Undirected

Cliques

Definition (Clique)
A subset of nodes C in graph G such that G contains an edge
between all pair of nodes in C

Definition (Maximal Clique)

A clique C that cannot include any further node from the graph
without ceasing to be a clique




Graphical Models Undirected Representation

Maximal Clique Factorization

Define X = Xj,..., Xy as the RVs associated to the N nodes in
the undirected graph G

P(X) = 2 [T 4(Xo)
C

@ Xc — RV associated with nodes in the C
° Y(Xe) — over the maximal cliques C
e Z— ensuring normalization

Z=> T]vXc)
X ¢

Partition function is the of undirected
modes: e.g. for N discrete RV with K distinct values J




Graphical Models

Potential Functions

@ Potential functions (X¢)
@ Express which configurations of the local varlables are

preferred

@ If we restrict to , the

provides guarantees on the
distribution that can be represented by the clique
factorization

Definition (Boltzmann distribution)
A convenient and widely used strictly positive representation of
the potential functions is

Y(Xc) = exp{—E(Xc)}

where E(X¢) is called




Graphical Models
Directed Vs Undirected

Directed Vs Undirected Models

Long story short

KOs




Graphical Models
Directed Vs Undirected

From Directed To Undirected

Straightforward in some cases

©=®—® - O = —E®—® -0

Requires a little bit of thinking for
(%) (%)
-y
—
(%) (%)

a.k.a. marrying of the parents



Structure Learning in Bayesian Networks

Application and Conclusions

The BN Structure Learning Problem

° @ Observations are given for a set of
@ But the structure of the Bayesian
@ @ Network is not specified
@ How do we determine which arcs
exist in the network (
)?
@ Determining causal relationships
@ between variables entails
e Deciding on
Y, Yo | Y3 | Ya | Y5 | Y °
1 2 1 0 3 4

4 0 0 0 1 2
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Application and Conclusions

Structure Finding Approaches

@ Search and Score

° approach
e Search in the space of the
graphs
@ Constraint Based
e Use

@ Constrain the network
@ Hybrid
o Model selection of constrained
structures




Structure Learning in Bayesian Networks
Application and Conclusions

Constraint-based Models Outline

@ Tests of I(X;, Xj|Z) determine
edge presence ( )
e Estimate MI(X;, Xj|Z) and assume

conditional independence if M/ is below a threshold, e.g.
I(Xi, Xj[2) = MI(X;, X|Z) < aour
@ Testing order is the fundamental choice for avoiding
complexity
° : tests /(X;, X;|Z) are performed in order

of of the conditioning set Z (PC algorithm by
Spirtes, 1995)

e Nodes that enter Z are chosen in the of X;
and X;

@ Markovian dependencies determine edge orientation
(DAG)

@ Deterministic rules based on the 3
seen previously



Structure Learning in Bayesian Networks

Application and Conclusions

PC Algorithm Skeleton Identification

@ Initialize a fully connected graph G = (V, €)
© foreach edge (V;,Y)) €V

e if I(Y;, Y}) then prune (Y}, Y))
Q K<« 1

© for each test of order K = |Z|
o foreach edge (Y;,Y)) eV
@ Z + set of conditioning sets of K-th order for Y;, Y;
e if /(Y}, Yj|z) for any z € Z then prune (Y}, Y))
o K+ K+ 1

@ returng



PC Algorithm

Order 0 Tests

Application and Conclusions

Structure Learning in Bayesian Networks

Step 1 Initialize

Step 2 Check unconditional
independence I(Y}, Y))

Step 3 Repeat unconditional tests
for all edges



Application and Conclusions

PC Algorithm

Order 1 Tests

Structure Learning in Bayesian Networks

Vil Yol Ya] Ya| Y5 | Yo
1 2] 1]0]|3] 4
0] 0|0 1]2

ol o 1132 1

Step 4 Select an edge (V;, Y))

Step 5 Add the neighbors to the
conditioning set Z

Step 6 Check independence for
eachze Z

Step 7 lterate until convergence
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Take Home Messages

@ Directed graphical models
o Represent between
variables and provide a compact representation of
conditional probabilities
o Difficult to assess conditional independence relationships
(v-structures)
e Straightforward to and to

@ Undirected graphical models

o Represent between variables
(e.g. constraints)
e Factorization in terms of generic which,

however, are typically
e Easy to assess conditional independence, but
the encoded knowledge
e Serious associated with computation
of normalization factor
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Next Lecture

@ Inference in Graphical Models
@ Exact inference

e Inference on a chain
@ Inference in tree-structured models
e Sum-product algorithm

@ Elements of approximate inference

e Variational algorithms
e Sampling-based methods
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