Directed and Undirected Graphical Models

Davide Bacciu

Dipartimento di Informatica
Università di Pisa
bacciu@di.unipi.it

Machine Learning: Neural Networks and Advanced Models (AA2)
Directed Graphical Models (Bayesian Networks)

- Directed Acyclic Graph (DAG) \(G = (\mathcal{V}, \mathcal{E}) \)
- Nodes \(v \in \mathcal{V} \) represent random variables
 - Shaded \(\Rightarrow \) observed
 - Empty \(\Rightarrow \) un-observed
- Edges \(e \in \mathcal{E} \) describe the conditional independence relationships

Conditional Probability Tables (CPT) local to each node describe the probability distribution given its parents

\[
P(Y_1, \ldots, Y_N) = \prod_{i=1}^{N} P(Y_i | pa(Y_i))
\]
Plate Notation

A compact representation of replication in graphical models

- Boxes denote replication for a number of times denoted by the letter in the corner
- Shaded nodes are observed variables
- Empty nodes denote un-observed latent variables
- Black seeds (optional) identify model parameters
Graphical Models

A graph whose nodes (vertices) are random variables whose edges (links) represent probabilistic relationships between the variables.

Different classes of graphs

Directed Models
- Directed edges express causal relationships

Undirected Models
- Undirected edges express soft constraints

Dynamic Models
- Structure changes to reflect dynamic processes
A variable Y_v is independent of its non-descendants given its parents and only its parents: i.e. $Y_v \perp Y_{V \setminus ch(v)} \, | \, Y_{pa(v)}$

Party and Study are marginally independent

- $Party \perp Study$

However, local Markov property does not support

- $Party \perp Study \, | \, Headache$
- $Tabs \perp Party$

But Party and Tabs are independent given Headache

- $Tabs \perp Party \, | \, Headache$
Joint Probability Factorization

An application of **Chain rule** and **Local Markov Property**

1. Pick a **topological ordering** of nodes
2. Apply **chain rule** following the order
3. Use the **conditional independence assumptions**

\[
P(\text{PA}, S, H, T, C) =
\]

\[
P(\text{PA}) \cdot P(S|\text{PA}) \cdot P(H|S, \text{PA}) \cdot P(T|H, S, \text{PA}) \cdot P(C|T, H, S, \text{PA})
\]

\[
= P(\text{PA}) \cdot P(S) \cdot P(H|S, \text{PA}) \cdot P(T|H) \cdot P(C|H)
\]
Sampling from a Bayesian Network

A BN describes a generative process for observations

1. Pick a topological ordering of nodes
2. Generate data by sampling from the local conditional probabilities following this order

Generate \(i\)-th sample for each variable \(PA, S, H, T, C\)

1. \(pa_i \sim P(PA)\)
2. \(s_i \sim P(S)\)
3. \(h_i \sim P(H|S = s_i, PA = pa_i)\)
4. \(t_i \sim P(T|H = h_i)\)
5. \(c_i \sim P(C|H = h_i)\)
Basic Structures of a Bayesian Network

There exist 3 basic substructures that determine the conditional independence relationships in a Bayesian network:

- **Tail to tail** (Common Cause)
 ![Tail to tail diagram]

- **Head to tail** (Causal Effect)
 ![Head to tail diagram]

- **Head to head** (Common Effect)
 ![Head to head diagram]
Tail to Tail Connections

- Corresponds to
 \[P(Y_1, Y_3 | Y_2) = P(Y_1 | Y_2)P(Y_3 | Y_2) \]
- If \(Y_2 \) is unobserved then \(Y_1 \) and \(Y_3 \) are marginally dependent
 \[Y_1 \not\perp Y_3 \]
- If \(Y_2 \) is observed then \(Y_1 \) and \(Y_3 \) are conditionally independent
 \[Y_1 \perp Y_3 | Y_2 \]

When \(Y_2 \) is observed, it is said to **block the path** from \(Y_1 \) to \(Y_3 \).
The diagram illustrates directed connections between variables Y_1, Y_2, and Y_3.

- **Directed Representation**
 - Y_1 to Y_2 to Y_3

- **Undirected Representation**
 - Y_1 to Y_2 to Y_3

- **Directed Vs Undirected**
 - In directed graphs, the path from Y_1 to Y_3 is blocked by Y_2.
 - In undirected graphs, the path is open.

Corresponds to

\[
P(Y_1, Y_3 | Y_2) = P(Y_1)P(Y_2 | Y_1)P(Y_3 | Y_2) = P(Y_1 | Y_2)P(Y_3 | Y_2)
\]

- **If Y_2 is unobserved then Y_1 and Y_3 are marginally dependent**
 - $Y_1 \not\perp Y_3$

- **If Y_2 is observed then Y_1 and Y_3 are conditionally independent**
 - $Y_1 \perp Y_3 | Y_2$
Head to Head Connections

Corresponds to

\[P(Y_1, Y_2, Y_3) = P(Y_1)P(Y_3)P(Y_2|Y_1, Y_3) \]

If \(Y_2 \) is observed then \(Y_1 \) and \(Y_3 \) are conditionally dependent

\[Y_1 \not\perp Y_3 | Y_2 \]

If \(Y_2 \) is unobserved then \(Y_1 \) and \(Y_3 \) are marginally independent

\[Y_1 \perp Y_3 \]

If any \(Y_2 \) descendants is observed it unlocks the path
A Bayesian Network represents the local relationships encoded by the 3 basic structures plus the derived relationships.

Consider:

\[Y_1 \perp Y_3 \mid Y_2 \]
\[Y_4 \perp Y_1, Y_2 \mid Y_3 \]
\[Y_1 \perp Y_4 \mid Y_2 \]
D-Separation

Definition (d-separation)

Let \(r = Y_1 \leftrightarrow \ldots \leftrightarrow Y_2 \) be an undirected path between \(Y_1 \) and \(Y_2 \), then \(r \) is d-separated by \(Z \) if there exist at least one node \(Y_c \in Z \) for which path \(r \) is blocked.

In other words, d-separation holds if at least one of the following holds:

- \(r \) contains a **head-to-tail** structure \(Y_i \rightarrow Y_c \rightarrow Y_j \) (or \(Y_i \leftarrow Y_c \leftarrow Y_j \)) and \(Y_c \in Z \)
- \(r \) contains a **tail-to-tail** structure \(Y_i \leftarrow Y_c \rightarrow Y_j \) and \(Y_c \in Z \)
- \(r \) contains a **head-to-head** structure \(Y_i \rightarrow Y_c \leftarrow Y_j \) and neither \(Y_c \) nor its descendants are in \(Z \)
Definition (Nodes d-separation)

Two nodes Y_i and Y_j in a BN G are said to be d-separated by $Z \subseteq \mathcal{V}$ (denoted by $Dsep_G(Y_i, Y_j|Z)$) if and only if all undirected paths between Y_i and Y_j are d-separated by Z.

Definition (Markov Blanket)

The Markov blanket $Mb(Y)$ is the minimal set of nodes which d-separates a node Y from all other nodes (i.e., it makes Y conditionally independent of all other nodes in the BN).

$$Mb(Y) = \{pa(Y), ch(Y), pa(ch(Y))\}$$
Are Directed Models Enough?

- Bayesian Networks are used to model asymmetric dependencies (e.g. causal)
- What if we want to model symmetric dependencies
 - Bidirectional effects, e.g. spatial dependencies
 - Need undirected approaches

Directed models cannot represent some (bidirectional) dependencies in the distributions

![Diagram of Y1, Y2, Y3, Y4 dependencies](image)

What if we want to represent

\[Y_1 \perp Y_3 \mid Y_2, Y_4 ? \]

What if we also want

\[Y_2 \perp Y_4 \mid Y_1, Y_3 ? \]

Cannot be done in BN! Need undirected model
Markov Random Fields

- Undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ (a.k.a. Markov Networks)
- **Nodes** $v \in \mathcal{V}$ represent random variables X_v
 - Shaded \Rightarrow observed
 - Empty \Rightarrow un-observed
- **Edges** $e \in \mathcal{E}$ describe bi-directional dependencies between variables (constraints)

Often arranged in a structure that is coherent with the data/constraint we want to model
Image Processing

- Often used in image processing to impose **spatial constraints** (e.g. smoothness)
- Image de-noising example
 - Lattice Markov Network (**Ising** model)
 - $Y_i \rightarrow$ observed value of the **noisy pixel**
 - $X_i \rightarrow$ unknown (unobserved) **noise-free pixel value**
- Can use more **expressive** structures
 - Complexity of inference and learning can become relevant
Conditional Independence

What is the **undirected equivalent of d-separation** in directed models?

Again it is based on node separation, although it is way simpler!

- Node subsets $A, B \subset \mathcal{V}$ are **conditionally independent** given $C \subset \mathcal{V} \setminus \{A, B\}$ if all paths between nodes in A and B pass through at least one of the nodes in C
- The **Markov Blanket** of a node includes all and only its neighbors
Joint Probability Factorization

What is the undirected equivalent of conditional probability factorization in directed models?

- We seek a product of functions defined over a set of nodes associated with some local property of the graph.
- Markov blanket tells that nodes that are not neighbors are conditionally independent given the remainder of the nodes.

\[
P(X_v, X_i | X_{V \setminus \{v, i\}}) = P(X_v | X_{V \setminus \{v, i\}})P(X_i | X_{V \setminus \{v, i\}})
\]

- Factorization should be chosen in such a way that nodes \(X_v\) and \(X_i\) are not in the same factor.

What is a well-known graph structure that includes only nodes that are pairwise connected?
Definition (Clique)

A subset of nodes C in graph G such that G contains an edge between all pair of nodes in C.

Definition (Maximal Clique)

A clique C that cannot include any further node from the graph without ceasing to be a clique.
Maximal Clique Factorization

Define $\mathbf{X} = X_1, \ldots, X_N$ as the RVs associated to the N nodes in the undirected graph \mathcal{G}

$$P(\mathbf{X}) = \frac{1}{Z} \prod_C \psi(\mathbf{X}_C)$$

- $\mathbf{X}_C \rightarrow$ RV associated with nodes in the maximal clique C
- $\psi(\mathbf{X}_C) \rightarrow$ potential function over the maximal cliques C
- $Z \rightarrow$ partition function ensuring normalization

$$Z = \sum_{\mathbf{X}} \prod_C \psi(\mathbf{X}_C)$$

Partition function is the computational bottleneck of undirected modes: e.g. $O(K^N)$ for N discrete RV with K distinct values
Potential Functions

- Potential functions $\psi(X_C)$ are not probabilities!
- Express which configurations of the local variables are preferred
- If we restrict to strictly positive potential functions, the Hammersley-Clifford theorem provides guarantees on the distribution that can be represented by the clique factorization

Definition (Boltzmann distribution)

A convenient and widely used strictly positive representation of the potential functions is

$$\psi(X_C) = \exp \{-E(X_C)\}$$

where $E(X_C)$ is called energy function
Directed Vs Undirected Models

Long story short
From Directed To Undirected

Straightforward in some cases

Requires a little bit of thinking for v-structures

Moralization a.k.a. marrying of the parents
The BN Structure Learning Problem

- Observations are given for a set of fixed random variables
- But the structure of the Bayesian Network is not specified
 - How do we determine which arcs exist in the network (causal relationships)?
- Determining causal relationships between variables entails
 - Deciding on arc presence
 - Directing edges

Observations are given for a set of fixed random variables. But the structure of the Bayesian Network is not specified.
How do we determine which arcs exist in the network (causal relationships)? Determining causal relationships between variables entails deciding on arc presence and directing edges.
Structure Finding Approaches

- **Search and Score**
 - Model selection approach
 - Search in the space of the graphs

- **Constraint Based**
 - Use tests of conditional independence
 - Constrain the network

- **Hybrid**
 - Model selection of constrained structures
Constraint-based Models Outline

- Tests of **conditional independence** $I(X_i, X_j | Z)$ determine edge presence (**network skeleton**)
 - Estimate **mutual information** $MI(X_i, X_j | Z)$ and assume conditional independence if MI is below a threshold, e.g. $I(X_i, X_j | Z) = MI(X_i, X_j | Z) < \alpha_{cut}$

- Testing order is the fundamental choice for avoiding **super-exponential complexity**
 - **Level-wise testing**: tests $I(X_i, X_j | Z)$ are performed in order of increasing size of the conditioning set Z (PC algorithm by Spirtes, 1995)
 - Nodes that enter Z are chosen in the neighborhood of X_i and X_j

- **Markovian dependencies determine edge orientation** (**DAG**)
 - Deterministic rules based on the 3 **basic substructures** seen previously
1. Initialize a fully connected graph $G = (V, E)$
2. for each edge $(Y_i, Y_j) \in V$
 - if $I(Y_i, Y_j)$ then prune (Y_i, Y_j)
3. $K \leftarrow 1$
4. for each test of order $K = |Z|$
 - for each edge $(Y_i, Y_j) \in V$
 - $Z \leftarrow$ set of conditioning sets of K-th order for Y_i, Y_j
 - if $I(Y_i, Y_j|z)$ for any $z \in Z$ then prune (Y_i, Y_j)
 - $K \leftarrow K + 1$
5. return G
PC Algorithm
Order 0 Tests

Step 1 Initialize
Step 2 Check unconditional independence $I(Y_i, Y_j)$
Step 3 Repeat unconditional tests for all edges
PC Algorithm

Order 1 Tests

Step 4: Select an edge \((Y_i, Y_j)\)

Step 5: Add the neighbors to the conditioning set \(Z\)

Step 6: Check independence for each \(z \in Z\)

Step 7: Iterate until convergence

<table>
<thead>
<tr>
<th>(Y_1)</th>
<th>(Y_2)</th>
<th>(Y_3)</th>
<th>(Y_4)</th>
<th>(Y_5)</th>
<th>(Y_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Directed graphical models
- Represent **asymmetric (causal) relationships** between variables and provide a compact representation of conditional probabilities
- Difficult to assess conditional independence relationships (v-structures)
- Straightforward to incorporate prior knowledge and to interpret

Undirected graphical models
- Represent **bi-directional relationships** between variables (e.g. constraints)
- Factorization in terms of generic potential functions which, however, are typically **not probabilities**
- Easy to assess conditional independence, but **difficult to interpret** the encoded knowledge
- Serious **computational issues** associated with computation of normalization factor
Next Lecture

- Inference in Graphical Models
 - Exact inference
 - Inference on a chain
 - Inference in tree-structured models
 - Sum-product algorithm
 - Elements of approximate inference
 - Variational algorithms
 - Sampling-based methods