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Directed Graphical Models (Bayesian Networks)

Directed Acyclic Graph (DAG)
G = (V, E)
Nodes v ∈ V represent random
variables

Shaded⇒ observed
Empty⇒ un-observed

Edges e ∈ E describe the
conditional independence
relationships

Conditional Probability Tables (CPT) local to each node
describe the probability distribution given its parents

P(Y1, . . . ,YN) =
N∏

i=1

P(Yi |pa(Yi))
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Plate Notation

A compact representation of replication in graphical models

Boxes denote replication for a
number of times denoted by the
letter in the corner
Shaded nodes are observed
variables
Empty nodes denote un-observed
latent variables
Black seeds (optional) identify
model parameters
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Graphical Models

A graph whose nodes (vertices) are random variables whose
edges (links) represent probabilistic relationships between the
variables

Different classes of graphs

Directed Models

Directed edges
express causal
relationships

Undirected Models

Undirected edges
express soft
constraints

Dynamic Models

Structure changes
to reflet dynamic
processes
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Directed Models - Local Markov Property

A variable Yv is independent of its non-descendants given its
parents and only its parents: i.e. Yv ⊥ YV\ch(v)|Ypa(v)

Party and Study are marginally independent
Party ⊥ Study

However, local Markov property does not
support

Party ⊥ Study |Headache
Tabs ⊥ Party

But Party and Tabs are independent given
Headache

Tabs ⊥ Party |Headache
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Joint Probability Factorization

An application of Chain rule and Local Markov Property

1 Pick a topological ordering of
nodes

2 Apply chain rule following the
order

3 Use the conditional
independence assumptions

P(PA,S,H,T ,C) =

P(PA) · P(S|PA) · P(H|S,PA) · P(T |H,S,PA) · P(C|T ,H,S,PA)
= P(PA) · P(S) · P(H|S,PA) · P(T |H) · P(C|H)
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Sampling from a Bayesian Network

A BN describes a generative process
for observations

1 Pick a topological ordering of
nodes

2 Generate data by sampling from
the local conditional probabilities
following this order

Generate i-th sample for each variable PA,S,H,T ,C
1 pai ∼ P(PA)
2 si ∼ P(S)

3 hi ∼ P(H|S = si ,PA = pai)

4 ti ∼ P(T |H = hi)

5 ci ∼ P(C|H = hi)
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Basic Structures of a Bayesian Network

There exist 3 basic substructures that determine the conditional
independence relationships in a Bayesian network

Tail to tail (Common Cause)

Y1

Y2

Y3

Head to tail (Causal Effect)

Y1 Y2 Y3

Head to head (Common Effect)

Y1

Y2

Y3
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Tail to Tail Connections

Y1

Y2

Y3

Y1

Y2

Y3

Y1

Y2

Y3

Corresponds to

P(Y1,Y3|Y2) = P(Y1|Y2)P(Y3|Y2)

If Y2 is unobserved then Y1 and Y3
are marginally dependent

Y1 6⊥ Y3

If Y2 is observed then Y1 and Y3 are
conditionally independent

Y1 ⊥ Y3|Y2

When Y2 in observed is said to block the path from Y1 to Y3
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Head to Tail Connections

Y1 Y2 Y3

Y1 Y2 Y3

Y1 Y2 Y3

Observed Y2 blocks
the path from Y1 to Y3

Corresponds to

P(Y1,Y3|Y2) = P(Y1)P(Y2|Y1)P(Y3|Y2)

= P(Y1|Y2)P(Y3|Y2)

If Y2 is unobserved then Y1 and Y3 are
marginally dependent

Y1 6⊥ Y3

If Y2 is observed then Y1 and Y3 are
conditionally independent

Y1 ⊥ Y3|Y2
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Head to Head Connections

Y1

Y2

Y3

Y1

Y2

Y3

Y1

Y2

Y3

Corresponds to

P(Y1,Y2,Y3) = P(Y1)P(Y3)P(Y2|Y1,Y3)

If Y2 is observed then Y1 and Y3 are
conditionally dependent

Y1 6⊥ Y3|Y2

If Y2 is unobserved then Y1 and Y3 are
marginally independent

Y1 ⊥ Y3

If any Y2 descendants is observed it unlocks the path
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Derived Conditional Independence Relationships

A Bayesian Network represents the local relationships encoded
by the 3 basic structures plus the derived relationships

Consider

Y1 Y2 Y3 Y4

Local Markov Relationships

Y1 ⊥ Y3|Y2

Y4 ⊥ Y1,Y2|Y3

Derived Relationship

Y1 ⊥ Y4|Y2
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d-Separation

Definition (d-separation)
Let r = Y1 ←→ . . .←→ Y2 be an undirected path between Y1
and Y2, then r is d-separated by Z if there exist at least one
node Yc ∈ Z for which path r is blocked.

In other words, d-separation holds if at least one of the
following holds

r contains an head-to-tail structure Yi −→ Yc −→ Yj (or
Yi ←− Yc ←− Yj ) and Yc ∈ Z
r contains a tail-to-tail structure Yi ←− Yc −→ Yj and
Yc ∈ Z
r contains an head-to-head structure Yi −→ Yc ←− Yj and
neither Yc nor its descendants are in Z
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Markov Blanket and d-Separation

Definition (Nodes d-separation)
Two nodes Yi and Yj in a BN G are said to be d-separated by
Z ⊂ V (denoted by DsepG(Yi ,Yj |Z ) if and only if all undirected
paths between Yi and Yj are d-separated by Z

Definition (Markov Blanket)

The Markov blanket Mb(Y ) is the minimal set of nodes which
d-separates a node Y from all other nodes (i.e. it makes Y
conditionally independent of all other nodes in the BN)

Mb(Y ) = {pa(Y ), ch(Y ),pa(ch(Y ))}
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Are Directed Models Enough?

Bayesian Networks are used to model asymmetric
dependencies (e.g. causal)
What if we want to model symmetric dependencies

Bidirectional effects, e.g. spatial dependencies
Need undirected approaches

Directed models cannot represent some (bidirectional)
dependencies in the distributions

Y1

Y2

Y3

Y4

What if we want to represent
Y1 ⊥ Y3|Y2,Y4?
What if we also want
Y2 ⊥ Y4|Y1,Y3?

Cannot be done in BN! Need
undirected model
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Markov Random Fields

Undirected graph G = (V, E) (a.k.a. Markov Networks)
Nodes v ∈ V represent random variables Xv

Shaded⇒ observed
Empty⇒ un-observed

Edges e ∈ E describe bi-directional dependencies between
variables (constraints)

Often arranged in a structure that is coherent with the
data/constraint we want to model
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Image Processing

Often used in image processing to impose spatial
constraints (e.g.smoothness)
Image de-noising example

Lattice Markov Network (Ising model)
Yi → observed value of the noisy pixel
Xi → unknown (unobserved) noise-free pixel value

Can use more expressive structures
Complexity of inference and learning can become relevant
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Conditional Independence

What is the undirected equivalent of d-separation in directed
models?

A ⊥ B|C

Again it is based on node separation, although it is way simpler!
Node subsets A,B ⊂ V are conditionally independent
given C ⊂ V \ {A,B} if all paths between nodes in A and B
pass through at least one of the nodes in C
The Markov Blanket of a node includes all and only its
neighbors
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Joint Probability Factorization

What is the undirected equivalent of conditional probability
factorization in directed models?

We seek a product of functions defined over a set of nodes
associated with some local property of the graph
Markov blanket tells that nodes that are not neighbors are
conditionally independent given the remainder of the nodes

P(Xv ,Xi |XV\{v ,i}) = P(Xv |XV\{v ,i})P(Xi |XV\{v ,i})

Factorization should be chosen in such a way that nodes
Xv and Xi are not in the same factor

What is a well-known graph structure that includes only nodes
that are pairwise connected?
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Cliques

Definition (Clique)
A subset of nodes C in graph G such that G contains an edge
between all pair of nodes in C

Definition (Maximal Clique)
A clique C that cannot include any further node from the graph
without ceasing to be a clique
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Maximal Clique Factorization

Define X = X1, . . . ,XN as the RVs associated to the N nodes in
the undirected graph G

P(X) =
1
Z

∏
C

ψ(XC)

XC → RV associated with nodes in the maximal clique C
ψ(XC)→ potential function over the maximal cliques C
Z → partition function ensuring normalization

Z =
∑

X

∏
C

ψ(XC)

Partition function is the computational bottleneck of undirected
modes: e.g. O(K N) for N discrete RV with K distinct values
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Potential Functions

Potential functions ψ(XC) are not probabilities!
Express which configurations of the local variables are
preferred
If we restrict to strictly positive potential functions, the
Hammersley-Clifford theorem provides guarantees on the
distribution that can be represented by the clique
factorization

Definition (Boltzmann distribution)
A convenient and widely used strictly positive representation of
the potential functions is

ψ(XC) = exp {−E(XC)}

where E(XC) is called energy function
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Directed Vs Undirected Models

Long story short
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From Directed To Undirected

Straightforward in some cases

Requires a little bit of thinking for v-structures

Moralization a.k.a. marrying of the parents
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The BN Structure Learning Problem

Y2

Y1

Y4

Y3

Y5 Y6

Y1 Y2 Y3 Y4 Y5 Y6
1 2 1 0 3 4
4 0 0 0 1 2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 0 1 3 2 1

Observations are given for a set of
fixed random variables
But the structure of the Bayesian
Network is not specified

How do we determine which arcs
exist in the network (causal
relationships)?

Determining causal relationships
between variables entails

Deciding on arc presence
Directing edges
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Structure Finding Approaches

Search and Score
Model selection approach
Search in the space of the
graphs

Constraint Based
Use tests of conditional
independence
Constrain the network

Hybrid
Model selection of constrained
structures
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Constraint-based Models Outline

Tests of conditional independence I(Xi ,Xj |Z ) determine
edge presence (network skeleton)

Estimate mutual information MI(Xi ,Xj |Z ) and assume
conditional independence if MI is below a threshold, e.g.
I(Xi ,Xj |Z ) = MI(Xi ,Xj |Z ) < αcut

Testing order is the fundamental choice for avoiding
super-exponential complexity

Level-wise testing: tests I(Xi ,Xj |Z ) are performed in order
of increasing size of the conditioning set Z (PC algorithm by
Spirtes, 1995)
Nodes that enter Z are chosen in the neighborhood of Xi
and Xj

Markovian dependencies determine edge orientation
(DAG)

Deterministic rules based on the 3 basic substructures
seen previously
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PC Algorithm Skeleton Identification

1 Initialize a fully connected graph G = (V, E)
2 for each edge (Yi ,Yj) ∈ V

if I(Yi ,Yj) then prune (Yi ,Yj)

3 K ← 1
4 for each test of order K = |Z |

for each edge (Yi ,Yj) ∈ V
Z ← set of conditioning sets of K -th order for Yi ,Yj

if I(Yi ,Yj |z) for any z ∈ Z then prune (Yi ,Yj)

K ← K + 1
5 return G
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PC Algorithm
Order 0 Tests

Y2

Y1

Y4

Y3

Y5 Y6

Y3

Y5

Y1 Y2 Y3 Y4 Y5 Y6

1 2 1 0 3 4
4 0 0 0 1 2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 0 1 3 2 1

Step 1 Initialize
Step 2 Check unconditional

independence I(Yi ,Yj)

Step 3 Repeat unconditional tests
for all edges
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PC Algorithm
Order 1 Tests

Y2

Y1

Y4

Y3

Y5 Y6

Y1

Y6

Y2 Y3

Y5

Y2 Y3

Y1 Y2 Y3 Y4 Y5 Y6

1 2 1 0 3 4
4 0 0 0 1 2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 0 1 3 2 1

Step 4 Select an edge (Yi ,Yj)

Step 5 Add the neighbors to the
conditioning set Z

Step 6 Check independence for
each z ∈ Z

Step 7 Iterate until convergence
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Take Home Messages

Directed graphical models
Represent asymmetric (causal) relationships between
variables and provide a compact representation of
conditional probabilities
Difficult to assess conditional independence relationships
(v-structures)
Straightforward to incorporate prior knowledge and to
interpret

Undirected graphical models
Represent bi-directional relationships between variables
(e.g. constraints)
Factorization in terms of generic potential functions which,
however, are typically not probabilities
Easy to assess conditional independence, but difficult to
interpret the encoded knowledge
Serious computational issues associated with computation
of normalization factor
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Next Lecture

Inference in Graphical Models
Exact inference

Inference on a chain
Inference in tree-structured models
Sum-product algorithm

Elements of approximate inference
Variational algorithms
Sampling-based methods
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