
Data Cleaning
Part 2

D
at

a
Jo

ur
na

lis
m

Angelica Lo Duca
angelica.loduca@iit.cnr.it

Data Cleansing involves the following aspects:

● missing values
● data formatting
● data normalization
● data standardization
● data binning
● remove duplicates

Data Standardization
Standardization transforms data to have a mean of zero

and a standard deviation of 1.

Techniques for standardization

● z-score
● z-map

z-score
The new value is calculated as the difference between the current value and the
average value, divided by the standard deviation.

We can use the zscore() function of the scipy.stats library.

Example
from scipy.stats import zscore
df['Value'] = zscore(df['Value'])

Value

1

3

4

Value

-1.34

0.26

1.07

MEAN: 2.66 STD: 1.25

z-map
The new value is calculated as the difference between the current value and the
average value of a comparison array, divided by the standard deviation of a
comparison array.

We can use the zmap() function of the scipy.stats library.

Example
from scipy.stats import zmap
df['Value'] = zmap(df['Value'], df['Count'])

Value Count

1 3

3 4

4 5

Value Count

-3.67 3

-1.22 4

0 5

Data Binning
Data binning (or bucketing) groups data in bins (or

buckets), in the sense that it replaces values contained into
a small interval with a single representative value for that

interval.

Binning

Binning can be applied to convert numeric values to categorical or to
sample (quantize) numeric values.

Binning is a technique for data smoothing. Data smoothing is
employed to remove noise from data. Three techniques for data
smoothing:

● binning
● regression
● outlier analysis

Techniques for binning

● convert numeric to categorical
○ binning by distance
○ binning by frequency

● reduce numeric values
○ sampling

Binning by distance - cut()
● Define the bin edges
● Convert numeric into categorical variables
● Define the number of bins and the associated labels

Size

1000

5

500

100

250

400

Size

very large

small

large

medium

large

large

bins = 4

Label Ranges

small 0-50

medium 51-100

large 101-500

very large > 500

Example
import numpy as np

bins = [0, 50, 100, 500, 1000]

labels = ['small', 'medium', 'large','very large']

df['Size'] = pd.cut(df['Size'] , bins=bins, labels=labels,
include_lowest=True)

Example 2 - Linear Space among ranges
min_value = df[‘Size’].min()

max_value = df[‘Size’].max()

n_bins = 4

bins = np.linspace(min_value,max_value,n_bins+1)

array([5. , 336.66666667, 668.33333333, 1000.])

labels = ['small', 'medium', 'large','very large']

df['Size'] = pd.cut(df['Size'] , bins=bins, labels=labels,
include_lowest=True)

Example 2 (cont.)

Size

1000

5

500

100

250

400

Size

very large

small

medium

small

small

medium

bins = 4

Label Ranges

small 0 - 5

medium 5 - 336.67

large 336.67-668.33

very large 668.33 - 1000

Binning by frequency - qcut()

● Quantile-based discretization function
● Calculate the size of each bin so that each bin contains (almost)

the same number of observations, but the bin range will vary.

Example
Size

1000

5

500

100

250

400

10

30

Size

very large

small

very large

medium

large

large

small

medium

bins = 4
2 observations for each bin

Label

small

medium

large

very large

Example (cont.)
labels = ['small', 'medium', 'large','very large']

n_bins = 4

df['Size'] = pd.qcut(df['Size'], q=n_bins,precision=1,
labels=labels)

We can set the precision parameter to define the number of decimal points.

Sampling
It permits to reduce the number of samples, by grouping similar values or
contiguous values. There are three approaches to perform sampling:

● by bin means: each value in a bin is replaced by the mean value of the bin.
● by bin median: each bin value is replaced by its bin median value.
● by bin boundary: each bin value is replaced by the closest boundary value,

i.e. maximum or minimum value of the bin.

binned_statistics()

● We exploit the binned_statistic() function of the scipy.stats
package can be used.

● This function receives two arrays as input, x_data and y_data, as well as
the statistics to be used (e.g. median or mean) and the number of bins to
be created.

● The function returns the values of the bins as well as the edges of each
bin.

Example
Size

1000

5

500

100

250

400

10

30

Size

875,625

129.375

378.125

129.375

129.375

378.125

129.375

129.376

bins = 4

Intervals

5 - 253.75

273.75 - 502.5

502.5 - 751.25

751.25 - 1000

Example (cont.)
from scipy.stats import binned_statistic

x_data = np.arange(0, len(df))

y_data = df['Size']

x_bins,bin_edges, misc = binned_statistic(y_data,x_data,
statistic="median", bins=4)

bin_intervals = pd.IntervalIndex.from_arrays(bin_edges[:-1],
bin_edges[1:],closed='both')

IntervalIndex([[5.0, 253.75], [253.75, 502.5], [502.5,
751.25], [751.25, 1000.0]])

Example (cont.)
def set_to_median(x, bin_intervals):

 for interval in bin_intervals:

 if x in interval:

 return interval.mid

Example (cont.)
df['sampled_size’'] = df['Size'].apply(lambda x:
set_to_median(x, bin_intervals))

Natural breaks in data
We can use the package jenkspy, which contains a single function, called
jenks_breaks(), which calculates the natural breaks of an array, exploiting the
Fisher-Jenks algorithm.

We can install the package by running pip3 install jenkspy.

Example
import jenkspy

breaks = jenkspy.jenks_breaks(df['Size'], nb_class=3)

df['size_break'] = pd.cut(df['Size'] , bins=breaks,
labels=labels, include_lowest=True)

Remove Duplicates
Remove all rows that appear at least twice.

The concept of duplicate

Rows 1 and 2 are duplicates

Rows 1, 2 and 3 are duplicates in column Name and Surname

Name Surname Value

Mark Grenn 3

Mark Grenn 3

Mark Grenn 4

1

2

3

Drop duplicates on the basis of all columns

keep just one row for each duplicate

Name Surname Value

Mark Grenn 3

Mark Grenn 4

Do not maintain any row for the duplicate

Name Surname Value

Mark Grenn 4

Drop duplicates on the basis of the Name and
Surname Columns

Keep just one value for column

Name Surname Value

Mark Grenn 3

Do not maintain any row for the duplicate

Name Surname Value

drop_duplicates()
df1 = df.drop_duplicates()

df2 = df.drop_duplicates(keep=False)

df3 = df.drop_duplicates(subset=["Name", "Surname"])

df4 = df.drop_duplicates(subset=["Name", "Surname"],
keep=False)

