Object-Oriented Software
Engineering

An Agile Unified Methodology

30

Part |

Introduction and System Engineering

cycle performs a series of activities. A TSP project begins with a TSP launch process
to build the team and produce a project plan. The launch process is guided by a trained
and qualified TSP coach. The process identifies the customer’s needs, assigns roles
to team members, produces an initial system concept, a development strategy, and
a plan to develop the system. The TSP team also produces a quality plan and a risk
management plan. The plans are presented to the management, which may approve
or request changes. The last step of each cycle is the postmortern. At the postmortem
meeting, the team reviews the launch process, identifies and records improvement
suggestions, and assigns follow-up items to team members.

The TSP activities of each eycle are specified in a script. Figure 2.10 illustrates
a script that is tailored to use the methodology presented in this textbook. That is, the
methodology implements the TSP process. The script shown in Figure 2.101s designed
to fit one semester of teamwork, including learning. It has been tested several times.
However, the script can be modified, or tuned to fit different situations. For example,
it could run in a shorter period. In this case, there will be only one or two cycles. It
could drop some topics, such as applying sitnation-specific patterns could be moved
to another course. Another alternative is running the script to produce only the design
but not the implementation.

2.5.7 Agile Processes

The waterfall process works well for tame ‘problems because such problems pos-
sess a number of nice properties. Application software development is a wicked
problem. It needs a process that is designed to solve wicked problems. Agile pro-
cesses are such processes. Agile processes emphasize teamwork, joint application
development with the users, design for change, and rapid development and frequent
delivery of small increments in short iterations. Agile development is guided by agile
values, principles, and best practices. All these take into account wicked-problem
properties.

_ Agile Manifesio

According to the Agile Manifesto,! agile development values four aspects of soft-
ware development practices, which are different from their conventional, plan-driven
counterparts. These are listed and explained below.

o Agile development values individuals and interactions over processes and tools.
» Agile development values working software over comprehensive documentation.
o Agile development values customer collaboration over coniract negotiation.

o Agile development values responding to change over following a plan.

1. Agility values individuals and interactions over processes and tools.

Conventional, plan-driven practices believe that a good software process is es-
sential for the success of a software project. One conventional wisdom is that

U

!Spe www.agilemanifesto.org.

Chapter 2 Software Process and Methodology

A Team Software Process Seript

31

Purpose

To guide n team through developing n software product

Entry Criteria

* Aninstructor guides and supports one or more five-student tearms,

* The students are all PSP trained.

¢ The instructor has the needed materials, facilities, and resources to support the teams.
¢ The instructor has described the overall product objectives.

General

Week

Step

The PSP process is designed fo support three team modes. Follow the scripts that apply;

L. Develop a small- o medium-sized software produet in two or three development cycles.

2. Develop a smaller product in a single cycle.

3. Produce a product element, such as a requirements, design, or a test plan, in part of one cycle.

Activities

1

Review

Course introduction and PSP review.
Read preface, introduction, and this chapter, focus on the PSP section.

LAU]

Review course objectives and assign student teams and roles,
Read TSP and overview of the agile nnified methodology in this chapter.

STRATI

« Apply a software architectural design style (in most cases the N-tier architecture).
Read architectural design, and project management chapter, focus on estimation and risk management
sections.

Produce the conceptual design, establish the development strategy, make size estitnates, and assess risk.

PLANI, REQ]

Define and inspect requirements, focus on high-priority requirements.

Derive use cases from the requirements, produce use case diagrams and traceability matrix, specify
high-level use cases.

+ Allocate the use cases to the cycles, produce allocation matrix.

Review the use cases, use diagrams, high-level use case specifications, and matrices.

Read system engineering, software requirements elicitation, and quality assurance chapters, focus on
requirements related sections, read deriving use cascs chapter.

REQI, DESI

Perform cycle | domain madeling (brainstorming, domain concept classification, and domain model
visualization),

Specily cycle 1 expanded use cases, produce use case based test cases.

Review domain model, expanded use cases, and use case based test cases.

Read domain modeling, actor-system interaction modeling, and sofiware testing chapters

(use case based testing).

DESL

Produce and review cycle | scenarios, scenario tables, and sequence diagrams.
Derive and inspect cycle 1 design class diagram (DCD), and user interface design.
Read object interaction modeling, deriving design class diagram, and user interface design chapters.

IMP1

Conduct cycle 1 test driven development (maybe combined with pair-programming) to fulill 100%
branch coverage.

Review unit test cnses and code.

Read implementation, quality assurance, and software testing chapters.

TEST1

¢ Build, and integrate cycle 1, run use case based test cases.
Demonstrate cycle | software to the customer and users, solicit and record feedback.
Produce user dacumestation for cycle 1.

.

PM1

Conduct a postmortem and write the cycle] final report.
Produce role and team evaluations for cycle 1.

LAU2

-

Re-form teams and roies for cycle 2,

STRAT2,
PLAN2, REQ2

Produce the strategy and plan for cycle 2, nssess risks.
= Update and review requirements, domain model, use cases, traceability matrix, and allocation matrix,

DES2

-

Apply GRASP patterns, and update and review cycle 1 sequence diagrams.

* Produce and inspect cycle 2 expanded use cases and use case based Lest cases,

» Apply GRASP, and produce and review cycle 2 scenarios, scenario tables and sequence diagrams.
* Read applying responsibility assignment patterns chaptes.

FIGURE 2.10 TSP development script

32

Part| Introduction and System Engineering

Test driven develop and inspect cycle 2, accomplish 160% branch coverage.

IMP2
il » Review unit test cases and code.
10 « Build, integrate, and test cycle 2, demonstrate cycle 2 software to the customer and users, solicit and
TEST2 record feedback.
« Produce user documentation for cycle 2.
P « Conduct a postmortemn and write the cycte 2 final report.
M2 » Produce role and team evaluations for cycle 2.
11 LAU3 + Reform teams and roles for cycic 3.
STRATS3, « Produce the strategy and plan for cycle 3, assess risks.
PLAN3,REQ3 | ¢ Update and review requirements, domain model, use cases, traceability matiix, and allocation matrix.
« Apply situation specific or Gang of Four patteras, update eycle 1 and ¢ycle 2 design diagrams.
« Produce and inspect cycie 3 expanded use cases and use case based test cases.
12 | DES3 p : o ! ,
« Produce and review cycle 3 sequence diagrams (situation-specific patterns are applied).
» Read applying situation-specific patterns chapter.
IMP3 « Test driven develop and inspect cycle 3, accomplish 100% branch coverage.
« Review unit test cases and code.
13 « Build, integrate, and test cycle 3, demonstrate finished product to the customer and users, solicit
TEST3 and record feedback.
« Produce and review user’s manual for the finished product.
« Conduct a postmortem and write the cycle 3 fizal report.
14 PM3 » Produce role and tzam evaluations for cycie 3.

» Review the product produced and the processes used, identify lessons learned and propose process

improvements.

Exit Criteria

.

Completed product or product element and user documentation.
Completed and updated project notebook.
Documented team evaluations and cycle reporis.

FIGURE 2.10 (Continued)

“the software quality is as good as the software process.” Although the conven-
tional wisdom still has its merits, experiences indicate that the abilities of the
team members as well as teamwork are more important. After all, it is the team
members who carry out the software process. If the team members do not know
how to design, or they do not communicate with each other effectively, then the
result won’t be good. Conventional practices place significant weight on the use
of tools. For this reason, many companies invest heavily in development tools and
environments. Some tools are good and solve the intended problems. But these
can only be accomplished by the right people, who know how. A UML diagram
editor won't help if the software engineer does not know how to petform QO
design. Although the editor produces nice-looking UML diagrams, these are not
necessarily good designs.

Unlike conventional practices, agile methods value individuals and team-
work. This is because software is a conceptual product and the development
activities are highly intellectual. If the team members have to work together to
jointly build the software product, then the abilities of the team members to in-
teract and contribute to the joint effort is essential to the success of the project.
Software processes and tools certainly matter, but individuals and interactions
are essential.

Chapter 2 Software Process and Methodology

2. Agility values working software over comprehensive documentation.

For years or even decades, companies spend tremendous efforts in preparing
analysis and design documents. This is partly due to standards audits and partly
due to the beliefs that “good software comes from good design documentation,
and good design documentation comes from good analysis models” These be-
liefs are true, but only partly. Many software engineers have expericinced thal in
some cases it is impossible to determine the real requirements, or whether the
design works until the code is written and tested, In these cases, comprehensive
documentation won't help and inight be harmful because it gives the illusion that
a working solution has been found. Comprehensive documentation also means
less time is available to coding and testing, which are the only means in these
cases to identify the real requirements and the needed design.

Consider, for example, a software to optimize the inventory for a large corpo-
ration. The inventory consists of textual descriptions of millions of items written
by various employees during the last several decades. Numerous acquisition and
merger activities significantly increase the number of items, categories of items,
and description formats and styles. The software is required to process the inven-
tory descriptions. The objective is to simplify the inventory and reduce inventory
costs. Clearly, the requirements for the software are what the software can do
to accomplish this objective. However, without implementing the software, no-
body knows exactly what the software can accomplish. This is an example of a
wicked problem—the specification and the implementation cannot be separated.
Suppose that the requirements were somehow identified without needing to im-
plement the software. Then, the design of data structures and algorithms is a
grand challenge because it is extremely difficult to know whether the algorithms
work and to what extent. This js due to the diversity of the inventory descrip-
tions, inconsistencies, incomplete entries, typos, and abbreviation variations, A
trial-and-error approach seems to be more appropriate.

Agile methods value working software because working software is the
bottom line. After all, the development team has to deliver the working soft-
ware to the customer. Only the working software can be tested to ensure that
the software system delivers the required capabilities. In this sense, the working
software is the requirements and vice versa. The inventory description classifi-
cation project discussed above illustrates this. However, this discussion must not
lead to the conclusion that agile methods do not want analysis and design. On the
contrary, agile methods construct analysis and design models. Nevertheless, agile
principles advocate just barely enough modeling to help understand the problem
and communicate the design idea but no more.

3. Agility values customer collaboration over contract negotiation.

Conventional processes involve a contract negotiation phase to identify what the
customer wants. A requirements specification is then produced and becomes a
part of the contract. During the development process the customer only partic-
ipates in a couple of design reviews and acceptance testing, Many important
design decisions that should be made with the customer are made by the de-
velopment team. Although the development team is good in making technical

33

34

Part |

introduction and System Engineering

decisions, it may not possess the knowledge and background to make decisions
for the customer. For example, a requirement to support more than one DBMS
may not specify which DBMSs are to be supported. Technically, the team may
know which DBMSs are the best and should be supported. But the customer may
consider other factors to be more important. These include the ability of its infor-
mation technology (IT) staff to maintain the types of DBMSs, costs to introduce
such systems, and compaiibility with existing systems. If the development team
makes such decisions for the customer, then the resulting system may not meet
the customer’s business needs.

Customer collaboration is essential for the success of a project. It improves
communication and mutual understanding between the team and the customer.
Improvement in communication helps in identifying real requirements and reduc-
ing the likelihood of requircments misconception. Mutual understanding implies
risk sharing; and hence, it reduces the probability of project failure. For many
projects, the exact outcome of the system, a design decision, or an algorithm is
difficult or impossible to predict. In these cases, customer collaboration is ex-
tremely important. Mutual understanding means that the development team has
a good understanding of the customer’s business domain, operations, challenges,
and priorities. This enables the team to design and implement the system to meet
the customer’s business needs.

Mutual understanding also means that the customer understands the limita-
tion of technology, which provides the means to implement business solutions;
technology alone will not solve business problems. The customer needs to under-
stand the limitation of the development team, as the following experience of the
author illustrates, A customer had insisted that 2 medium-size software product
be produced in one month, regardless that the author had indicated this was not
possible. In addition to the lack of time, the lack of qualified developers was
another challenge. After six months, the team still could not deliver; the project
failed. In this story, the customer wanted the system in one month, but no team
could meet this demand because the system had to implement a completely new
set of innovative business ideas. Customer coliaboration might save the project.
For example, the two pariies could try to understand each other’s priorities and
limitations, and develop a realistic agile development plan to incrementatly roll
oui the innovative features.

4. Agility values responding to change over following a plan.

Conventional practices emphasize “change control” because change is costly.
Once an artifact, such as a requirements specification, is finalized, then subse-
quent changes must go through a rigorous change control process. The process
hinders the team to respond to change requests. Agile methods value responding
to change over following a plan because change is the way of life. In today’s
rapidly changing world, every business has to respond quickly to change in busi-
ness conditions in order to survive or grow. Thus, change to software is inevitable.
Advances in Internet technologies enable as well as require businesses to update
their web applications quickly and frequently. The inflexibility of the conven-
tional, plan-driven practice cannot satisfy the needs of such applications. Agile
methods thus emerge,

Chapter 2 Software Process and Methodology

Agile Principles

The agile values express the emphases of agile processes. To guide agile development,
the agile community also develops a set of guiding principles called agile development
principles or agile principles for short, These principles are as follows:

1. Active user involvement is imperative.

Active user involvement is required by many agile methods. This is because iden-
tifying the real requirements is the hardest part for many software development
projects. Conventional approaches spend 15%-25% of the total development ef-
fort in requirements analysis. They implement rigid change control to freeze the
requirements. These do not seem to solve the problem. It is not the lack of time
or effort: 1t is the inability of human beings to know the real requirements in the
early stages of the development process. Moreover, the world is changing so the
requirements ought to evolve,

Active user involvement means that representatives from the user commu-
nity interact with the development team closely and as frequently as needed.
For example, a couple of knowledgeable user representatives are assigned to
the project. They stay and work with the team or visit the team regularly sev-
eral times a week. These arrangements greatly improve the communication and
understanding between the team and the users, These, in turn, ensure that require-
ment misconceptions are corrected early, users’ feedback is addressed properly
and timely, and decisions about the system are made with the users. All these
imply that real requitements are identified and prioritized, and the system is built
to meet users’ expectations.

The team must be empowered to make decisions.

Agile development values individuals and interactions over processes and tools,

This principle realizes this. That is, team members are required and encouraged

to make decisions and take responsibility and ownership. To be able to do this,

the team members are required to work as a team and interact with each other

and the users throughout the project.

3. Requirements evolve but the timescale is Jfixed.
Unlike conventional approaches that freeze the requirements, agile processes
are designed to welcome change. This principle means that the scope of work
is allowed to evolve to cope with requirements change, but the agreed time
frame and budget are fixed. This means that new or modified requirements are
accommodated at the expense of other requirements. That is, the extra effort is
compensated by giving up other requirements that are not mission critical.

4. Capture requirements at a high level; lightweight and visual,
Agile development values working software over comprehensive documentation.
After all, the bottom line is to deliver the working system, not the analysis and
design documentation. To accomplish this, agile methods capture barely enough
of the requirements with user stories, features, or use cases written on small-
size story cards. These are visualized using storyboards or sequences of screen
shots, sketches, or other visual means to show how the user would interact with
the system. These techniques avoid heavy documentation and make it easy to

N

35

36

Part |

intraduction and System Engineering

®

change and trade off requirements because story cards and storyboards are easy
to share and manipulate.

Develop small, incremental releases and iterate.

Agile projects develop and deploy the system in bite-size increments to deliver
the use cases, user stories, or features iteratively. This arrangement has several
advantages: project progress is visible, the users only need to learn a few new fea-
tures at a time, it is easier for the users to provide feedback, and small increrents
reduce risks of project failure.

Focus on frequent delivery of software products.

Before agile development, there are iterative approaches such as the spiral process
and the unified process. Agile processes differ from their predecessors in frequent
delivery of the software system in small increments. Different agile methods
suggest different iteration lengths, which range from daily to three months. For
example, Dynamic Systems Development Method (DSDM}) suggests two to six
weeks while Extreme Programming (XP) uses one to four weeks. An iteration in
Scrum is called a sprint and is usuaily set to 30 days. The iteration duration of the
methodology presented in this book can range from two weeks to three months.

Complete each feature before moving on to the next.

This principle means that each feature must be 100% implemented and thor-
oughly tested before moving onto the next. The challenge here is that how do
we know that the feature is thoroughly tested? Test-driven development (TDD}
and test coverage criteria provide a solution. TDD requires that tests for each
feature must be written before implementation. Test coverage criteria define the
coverage requirements that the tests must satisfy. For example, the 100% branch
coverage criterion is used by many companies. It requires that each branch of
each conditional statement of the source code must be tested at least once.
Apply the 80-20 rule.

This is algo referred to as the “‘good enough is enough” rule. The rule is based
on the belief that 80% of the work or result is produced by 20% of the system
functionality. Therefore, priority should be given to the 20% of the requirements
that will produce the 80% of work or result. This principle advises the devel-
opment team to direct the customer and users to identify and prioritize such
requirements. The rule also reminds team members of the diminishing return
associated with the final extra miles. This applies to features that are nice to

have, and performance optimization that is not really needed, and so forth. For
example, an optimal algorithm may not be worth the extra implementation effort

if a simpler algorithm is fast enough for the data to be processed.

Testing is integrated throughout the project life cycle; test early and often.

This principle and principles 5-7 complement each other. That is, testing is an
integral part of frequent delivery of completely implemented smatl increments
of the system. This principle is supported by test tools such as JUnit, a Java class
unit testing and regression testing tool. Using gsuch a tool, a programmer needs
to specify how to invoke the feature to be tested and how to evaluate the test
result. The tool will generate the tests, run the tests, and check the test result, all
automatically. The tests can be run as often as desired.

Chapter 2 Software Process and Methodology

10. A collaborative and cooperative approach between all stakeholders is essential.
Conventional approaches rely on comprehensive documentation to communicate
the requirements to the development team. Agile projects capture reguirements
at a high level and light weight. Therefore, collaboration and cooperation be-
tween the development team and the customer representatives and users are
essential. The parties must understand each other and work together throughout
the life cycle to identify and evolve the requirements. Because the new system
may significantly change or affect the work habit and performance of the users,
collaboration and cooperation between the team and uscrs are essential to the
success of the project.

2.6 SOFTWARE DEVELOPMENT METHODOLOGY

37

Software development requires not only a process but also a methodology or devel-
opment method. Unfortunately, the term “methodology” is often left undefined. This
leads to a certain degree of confusion. For example, methodology is often confused
with process. Process and methodology are important concepts of software en gineer-
ing. The two are related but they are not the same. Below is a definition for a software
methodology:

Definitfon 2.2 A software methodology defines the steps or how to carry out the
activities of a software process,

A process in general specifies only the activities and how they relate to each other.
It does not specify how to carry out the activities. It leaves the freedom to the software
development organization to choose a methodology, or develop one that is suitable
for the organization. The definition means that a methodology is an implementation
of a process. Software development needs a process and a methodology.

2.6.1 Difference between Process and Methodology

Figure 2.11 provides an itemized summary of the differences between a process
and a methodology. While a software process defines the phased activities or what
to do in each phase, it does not specify how to perform the activities. A software
methodology defines the detailed steps or how to carry out the activities of a pracess.
A software process specifies the input and output of each phase, but it does not dictate
the representations of the input and output. A methodology defines the steps, step
entrance, and exit criteria, and relationships between the steps. A methodology also
specifies, for each step, procedures and techniques, principles and guidelines, step
input and output, and representations of the input and output. The representations
of the artifacts provided by a methodology depend on the view of the world or the
paradigm. For example, the object-oriented paradigm views the world and systeims
as consisting of interacting objects, Therefore, object-oriented analysis and design

40

Part! Introduction and System Engineering

2.7 AGILE METHODS

Like the evolutionary prototyping model and the spiral model, all agile methods
adopt an iterative, incremental development process. However, all agile methods
follow the agile manifesto presented in Section 2.5.7. Agile processes emphasize
short iterations and frequent delivery of small increments. Although they differ in the
naming and detail of the phases, all agile methods miore or less cover requirements,
design, implementation, integration, testing, and deployment activities during each
iteration. However, their emphases are different from conventional processes. For
example, agile processes value working software over comprehensive documentation,
This means barely enough modeling in the requirements and design phases. This
section describes several of the most widely used agile methods. Figure 2.12 gives
a brief summary of some of the agile methods, which are described in more detail in
the next several sections. Each of these methods has a long list of principles, features,
values, and best practices. Instead of showing these, Figure 2.12 lists only three of
the most unique features of each agile method.

2.7.1 Dynamic Systems Development Method

The DSDM emerged in the early 1990s in the United Kingdom as an alternative
to rapid application devetopment (RAD). It is a process framework that different
projects can adapt to perform rapid application development. It has been deemed by
some authors to be most suited to financial services applications. The DSDM process
is an iterative, incremental process guided by a set of DSDM principles, which are
similar to the 10 agile principles presented in Section 2.5.7. As shown in Figure 2.13,
the DSDM process consists of five phases. The first two phases are performed only
once while the other three phases are iterative:

1. Feasibility study. During this phase, the applicability of DSDM and the technical
feasibility of the project are determined. The end products include a feasibility
report, an outline project plan, and optionally a prototype that is built to assess
the feasibility of the project. The prototype may evolve into the final system.

2. Business study. During this phase, the requirements are identified and prioritized,
a preliminary system architecture is sketched. The end products include abusiness
area definition, a system architecture definition, and an outline prototyping plan.

3, Functional model iteration. During this phase, a functional prototype is iter-
atively and incrementally constructed. The end products include a functional
model containing the prototyping code and the analysis models, a list of priori-
tized functions, functional prototype review documents, a list of nonfunctional
requirements, and risk analysis for further development. The prototype review
documents specify the user’s feedback to be addressed in subsequent increments.
The functional prototype will evolve into the final system.

4. Design and build iteration. During this phase, the system is designed and built
to fulfill the functional and nonfunctional requirements, and tested by the users.
Feedback from the users is documented and addressed in future development.

£psoa ooy EEslE B et
Jru)sis soviday 7

10 ‘auop s1

1osfoxd Jy ronguamnsop
w1848 aonpourg

e

S¥BAAT Mo

4B im ssaso1d Jesday -7
ISEI[AL JTAIIMD B33 aroxduary 1
QWTENMBIAT

28N wotanpoId
10} Wa3s£s 153 poe &may -z
sdueuLIofsad ws)sks
sao1dun pue AyenpRAg T
SuzmopInposy

lamogsng 4q
§1821 [PUOnSUny wLoyg ¢
UOUEIAN Yava Joj safiors
wuziduy pae j0apeg 'z
SMmRRaIEe 4jtpouysugacy 1
VAR 15114 0) suogEIAY

SSES[I TXou 2133 10] Ueld 'z
SSBA[AI I¥aU a7y

10§ 5311038 21y SIS ']

Supmmry

Apmis Lymguses; Pnpuo] g
uojjeardde oy

InoqE HonewIojuL 1sfjos)]

nopelo[dxy

Fo348 B RINOY O 5 JIopy «
pale[dwoo st yse v

Tuamiordagy

SSSB[O 31y Jmatmapduy
3muay iq ppng

payuemardun
84 07 SIEFE[D WLIOY
03 sarmiee) 1epnsdesuy -7
saImjea) Jumsn spafqo
JO Uenawiaiul a1y mors o}
SHEeISEIp souanbas anpoIyg -

S5AUISRG 03 Pordun §5988Y 7
waisks Lojdacy 1

Jmiojdacy

AMmeag Aq nfsagy HoRwutHaYd Iy
srrquam uonaadsonar weay -z
Tea) 03 sasse[o udwssy ¢ OUISP fuamazouy ‘| 3531 B19q 10mpwo)) 7
SRS od jorgo Bupaop womay nupdg wi3sAs ping - Iwdordagy g

usneR)] ping pue udsaqq Funsy uoneidsiuy 4
Sumrarerford
Tizdnuamdolaasp UIALP-IS3] g
WeIFEIp 5583 usisacy ¢
Surapow 101Aveg 4
Sujpepour
HONSEISUL 1090e-10i8dg ¢
Fulapow arewo -7
3Buaypd Funeponmonoy T
Wonem)1 govy Sapmg

03 S3NIANIL ssaursnq uSissy €

SIMIATIOR ssaursng
Jowuamdojeasp ampayag -1
My Aq aelg

ad4i0101d

saordde pue ‘moraag ‘PIINg "7
Auretronaung

adf0j01d Anuapy -y

UORRIN] PPOIA] reuogaunyy

SRS 1odal o) staqusm
Weal 10y Surjeaw wniog Aneqg ¢

#3u pring

01 MOy pUR Jeym surmsiop
01 3unpaty Fuyuueed dg <1
aegen) | Jundg

Sananoe

SSIUIEN] jo samgeay AJyuap] 'z
PRuone 2q 01

SAMIATIIE ssaurshg AJnuapy -

ISI] amyeaq pmg

uonujosal ysry ¢
UBiS3p [ermppeiyary 7
SjuswaIinbar
PaztitoLd aonpoag -
£pug ssoumsng

sangAnse

Ywatadorasap juds AJnuapy ¢

tunds g pafes

JUSUIAISUE UL Urifm P2u3Al[3p

3q ueD jeryy S1IemaImbal
Ajroud-dog Amumapy 7

(Hoj31o0q 1onpoad) s1usIaImbay
Fznnotid pue Anuapy -1
Bmaapy Surmregy AsBIPY

USIsop [EImaniyary g
STUSLUAION]

01 53583 3sn ufissy g

53sBY 380 dALa(] 7
Stuawannbar

2znitoud pue anmbay 1

Sunuueydaag

ondosap [apour WNPoL] p
[P0t fesan0 astmsgy ¢
Sppowt dnoid frems dopanaq 7
yEnormiyem WS4 °|
PPeIA ITBIAg dopaaaq

SYELT Auap] 'z

1afoad 10§
WASA Jo Aqzims ssasey -
Apmig Oipqiseag

SPOUDY apLy-ayry

s1oford
e jfems 10 351y ‘UIALID
-ueld Jo o1 107 JqrIMS

sjoford usapp
-uefd Jo oprde a0y s[gEIng -
SpIIng Iemgax

ssaooxd
Jao1dum o) 10adsonar wms A

s1aford wasup
-ugd 1o apFe do) slquImg »

deasuaym Aep v saum Sueia Pue ‘monsadsig pug MILAa1 TOREINWILIOD dro1dun o1 sdound gg—g uo [LH s1adojaasp
PG pue uohz13ang « | Yosumsieume uonendyire)) Hurgasm snypys Silep alnumm-c| o dX PUE ss3001g POUOSESs paE s1owndaq Jo,] «

AU AUE 1B 13YMAE 3poa LIALIp-18p0I SOY Wes L pue isumg PALNNY [ZUONEY qim TN Sose
Aun um:::uguzcmnﬂ. - PUP Basup-ainjes g & ENposd “1sepy wnig SpHpPUy - SHOM 1Y yaamamny Ve Honuea; 10y yooqyooo Ve
T e : SmEd y Say
. e R e o : TR 4 pae e

< LY i -) . ' E 3 .o S s

FIGURE 2.12 Summary of some agile methods

4

42

Part1 Introduction and Systermn Engineering

Feasibility
study

/ Business study \\

User approval &
user guidelines

Assess
business
impaet

fmplemen-

functional :
fntion

prototype

Deploy system

Review prototype

<< -

Identify : _ Creato
design F/Dﬁ design\
build iteration / yrotatype

prototype

Agree schedule

FIGURE 2.13 Process of the Dynamic Systems Development Method

5. Implementation. During this phase, the system is installed in the target environ-
ment and user training is conducted. The end products include a user’s manual
and a project review report, which summarizes the outcome of the project and

what to do in the future.

2.7.2 Scrum

Scrum is a framework that allows organizations to employ and improve their software
development practices. It consists of the Scrum teams, the roles within a team, the time
boxes, the artifacts, and the Scrum rules. Scrum is an iterative, incremental approach
that aims to optimize predictability and control risk. As displayed in Figure 2.14, there

- - P Daily Scrum
5 L] s j
r ![it . &‘!& Meeting
Release Planning ‘*All) Sprint
Sprint Planning Retrospection

w3 }—/ N,‘ _ 2-4 Weeks *ﬁ&

h:Z‘_',‘;A - 2 Potentially
 — oSy M E?y Shippable
> Product

Product Backleg Sprint Backlog Increment

FIGURE 2.14 Scrum development activities

e Lo T ol |

isa
the

er:
inct
the

be ¢
or I
15-1
Stati
met
the

2.7

A.D .
5IX |
The
by 1

1.

o

mot
chie
udhr

Chapter 2 Software Process and Methodology

is a release planning meeting. It determines the product backlog and the priorities of
the requirements as well as planning for the iterations, called sprints. During the sprint
iteration phase, the team performs the development activities to develop and deploy
increments of the product. Each sprint begins with a sprint planning meeting, at which
the team and the product owner determine which items of the product backlog are to
be delivered next and how to develop them. Each sprint lasts 30 days, but a shorter
or longer time period is allowed. One distinctive feature of the Scrum method s its
15-minute daily Scrum_meeting. It allows the team members to exchange progress
status to improve mutual understanding. Another distinctive feature of the Scrum
method is the team retrospection at the end of each Scrum sprint. This meeting allows
the team to improve its practices.

2.7.3 Feature Driven Development

As shown in Figure 2.12, the Feature Driven Development (FDD) method consists of
six steps or phases. The first three are performed once and the last three are iterative.
The FDD method is considered more suitable for developing mission critical systems
by its advocates. The six phases of FDD are briefly described as follows:

1. Develop overall model. During this phase, a domain expert provides a watk-
through of the overall system, which may include a decomposition into subsys-
tems and components. Additional walkthroughs of the subsystermns or compo-
nents may be provided by experts in their domains. Based on the walkthroughs,
smail groups of developers produce object models for the respective domains,
The development teams then work together to produce an overall model for the
system.

Build a feature list. During this phase, the team produces a feature listrepresenting

the business functions to be delivered by the system. The features of the list may

be refined by lower-level features or functions. The list is reviewed with the users
and sponsors.

3. Plan by feature. During this phase, the team produces an overall plan to guide
the incremental development and deployment of the features, according to their
priorities and dependencies. The features are assigned to the chief programmers.
The chief programmer is the main decision maker of the team. This team orga-
nization is referred to as the chief programmer team organization. The classes
specified in the overall model are assigned to the developers, called class owners.
A project schedule including the milestones is generated.

4. Design by feature, build by feature, and deployment. These three phases are itei-
ative, during which the increments are designed, implemented, reviewed, tested,
and deployed. Multiple teams may work on different sets of features simultane-
ously. Each increment lasts a few days to a few weeks.

bd

The roles and their responsibilities of an FDD project are similar to the com-
mon job titles. These include project manager, chief architect, development manager,
chief programmer, class owner, domain expert, release manager, toolsmith, system
administrator, tester, and technical writer.

43

44 Part! Introduction and System Engineering

2.7.4 Extreme Programming

Extreme programming or XP is an agile method suitable for small teams facing vague
and_changing requirements, The driving principle of XP is taking cominonsense
principles and practices to extreme levels [21]. For example, if frequent build is good,
then the teams should perform many builds every day. The XP process consists of six
phases:

1.

w

Exploration. During this phase, the development team and the customer jointly
develop the user stories for the system to the extent that the customer is convinced
that there are sufficient materials to make a good release. A user story specifies
a feature that a specific user wants from the system. For example, “as a patron, I
want to check out documents from the library system.” The development team also
explores available technologies and conducts 2 feasibility study for the project.
This phase should take no more than two weeks.

. Planning. During this phase, the development team and the customer work to-

gether to identify the stories for the next release, including the smallest, most
valuable set of stories for the customer. The stories should require about six
months of effort to implement. A plan is produced for the next release. This
phase should take no more than a couple of days.

Jterations to first release. During this phase, the overall system architecture is
defined. The customer chooses the stories, the team implements them, and the
customer tests the functionality. These activities are performed jteratively until
the software is good for production use. Each iteration lasts from one to four
weeks.

Productionizing. During this phase, issues such as performance and reliability
that are not acceptable for production use are addressed and removed. The system
is tested and certified for production use. The system is installed in the production
environment.

Maintenance. According to Beck [21], this phase is really the normal state of
an XP project. During this phase, the system undergoes continual change and
enhancements, such as major refactoring, adoption of new technology, and func-
tional enhancements with new stories from the customer. The process is repeated
for each new release of the system.

. Death. The system evolves during the maintenance phase until the system com-

pletely satisfies the customer’s business needs and hence no more customer stories
are added. When this happens, the project is done and enters the death phase, dur-
ing which the team produces the system documentation for training, repair, and
reference. The project also enters the death state if it cannot live to the customer’s
expectation,

2.7.5 Agile or Plan-Driven

Although agile methods are getting increasingly popular in the software industry, that
does not mean that they do not have limitations. In (351, Boehm and Turner point out
that agile methods and plan-driven appro aches “have home grounds where one clearly

Chapter 2 Software Process and Methodology

dominates the other.” Agile methods work well for small to medium-size projects that
face frequent changes in requirements. Plan-driven approaches remain the de facto
choice for large, complex systems and equipment manufacturers where predlctablhty
is important. Therefore, both approaches are needed. According to Boehm and Turner
{35], plan-driven and agile methods “have shortcomings that, if left unaddressed, can
lead to project failure. The challenge is to balance the two approaches to take advantage
of their sirengths and compensate for their weaknesses.” That is, we need methods
that can adapt to the cultures and circumstances of different software development
projects and organizations, Such methods include Crystal Orange [50], DSDM [140],
FDD [119], Lean Development [124], lightweight unified process (LUP) [104], and
the methodology presented in this book.

2.8 OVERVIEW OF PROCESS AND METHODOLOGY
OF THE BOOK

45

This section presents the agile unified process (AUP) and the methodology used in
this book. As shown in Figure 2.15(b), the process could be viewed as a vertical
slicing of the waterfall process. Each slice denotes an iteration, which ranges from
one week to three months. The process can be viewed as consisting of two axes. The
horizontal axis represents the iterations and the vertical axis represents the workflow
activities of each iteration, Each iteration performs most of the workflow acfivities
as the waterfall process except that they deal only with the use cases allocated to the
iteration. As shown in Figure 2.15(b), before the iterations, there is a brief planning
phase, which lasts about a couple of weeks, to identify requirements, derive use cases,

Iteration
workflow activit|ies :
I
1 | i
| | i

I
I
] !]
|Requir<t:ments I;Xnalysisr l
[I '
| l I
1 Desi ugm]

1
|

I Requirements Analysis l

v
L Design |
'

] Implementation

|
I
L
v
| Testing —[[_
|

Implamcntation
1 i
I |

I I

RPNV R Y~ N, U e SRS R

|
IIU[mg[:
— i } i
I I
- ' b
Deployment . Dcp oyment !
l Planning h ' :]
phase J I ! I Iterations
.
E
———p Major time linge ————F Minor time line
(2) Waterfall Process (b} Agile Unified Process

FIGURE 2,15 Waterfall and an agile process

OBJECT-ORIENTED AND CLASSICAL
SOFTWARE ENGINEERING

FIFTHEDITION [%

Stephen R. Schach
Vanderbilt University

G

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St |ouis
Bangkok Bogotd Caracas KualaLumpur lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

PART

INTRODUCTION TO SOFTWARE
ENGINEERING

The first nine chapters of this book play a dual role. They introduce the reader to the software process, and
they also provide an overview of the book. The software process is the way we produce software. It starts with
concept exploration and ends when the product is finaily decommissioned. During this period, the product
goes through a series of phases such as requirements, specification, design, implementation, integration,
maintenance, and ultimately, retirement. The software process also includes the tools and techniques we use
to develop and maintain software as well as the software professionals involved.

In Chapter 1, “The Scope of Software Engineering,” it is pointed out that techniques for software pro-
duction must be cost effective and promote constructive interaction between the members of the sofiware
production team. The importance of objects is stressed throughout the book, starting with this chapter.

“I'he Software Process” is the fitle of Chapter 2. Each phase of the process is discussed in detail. Many
problems of software engineering are described, but no solutions are put forward in this chapter. Instead, the
reader is informed where in the book each problem is tackled. In this way, the chapter serves as a guide to the
rest of the book. The chapter concludes with material on software process improvement:

A variety of different software life-cycle models are discussed in detail in Chapter 3, “Software Life-Cycle
Models.” These include the waterfall model, the rapid prototyping model, the incremental model, extreme
programming, the synchronize-and-stabilize model, and the spiral model. To enable the reader to decide on an
appropriate life-cycle model for a specific project, the various life-cycle models are compared and contrasted.

Chapter 4 is entitled “Teams.” Today’s projects are too large to be completed by a single individual within
the given time constraints. Instead, a team of software professionals collaborate on the project. The maior
topic of this chapter is how teams should be organized so that team members work together productively.
Various different ways of organizing teams are discussed, including democratic teams, chief programmer
teams, synchronize-and-stabilize teams, and extreme programming teams.

Chapter 5 discusses “The Tools of the Trade.” A softwarc engincer needs to be able to use a number of
different tools, both theoretical and practical. In this chapter, the reader is introduced to a variety of software
engineering tools. One such tool is stepwise refinement, a technique for decomposing a large problem
into smaller, more tractable problems. Another tool is cost-benefit analysis, a technique for determining
whether a software project is financially feasible. Then, computer-aided software engineering (CASE) tools are

1

PART 1+ Introduction to Software Engineering

described. A CASE tool is a software product that assists software engineers to de-
velop and maintain software. Finaily, to manage the software process, it is necessary
to measure various quantities to determine whether the project is on track. These
measures (metrics} are critical to the success of a project,

The last two topics of Chapter 5, CASE toois and metrics, are treated in detail
in Chapters 10 through 16, which describe the specific phases of the software life
cycle. There is a discussion of the CASE tools that support each phase, as well as a
description of the metrics needed to manage that phase adequately.

An important theme of this book is that testing is not a separate phase to be carried
out just before delivering the product to the client or even at the end of each phase
of the software life cycle. Instead, testing is performed in paralle] with all software
production activities. In Chapter 6, “Testing,” the concepts undeslying testing are
discussed. The consideration of testing techniques s pecific to individual phases of the
software life cycle is deferred until Chapters 10 through 16.

Chapter 7 is entitled “From Modules to Objects.” A detailed explanation is given
of classes and objects, and why the object-oriented paradigm is proving to be more
successful than the structured paradigm. The concepts of this chapter then are utilized
in the rest of the book, particularly Chapter 12, “Object-Oriented Analysis Phase,”
and in Chapter 13, “Design Phase,” in which object-oriented design is presented.

The ideas of Chapter 7 are extended in Chapter 8, “Reusability, Portability, and
Interoperability.” It is important to be able to write reusable software that can be
posted to a variety of different hardware and run on distributed architectures such
as client~server. The first part of the chapter is devoted to reuse; the topics include
a variety of reuse case studies as well as reuse strategies such as object-oriented
patterns and frameworks. Portability is the second major topic; portability strategies
are presented in some depth. The chapter concludes with interoperability topics such
as CORBA and COM. A recurring theme of this chapter is the role of objects in
achieving reusability, portability, and interoperability.

The last chapter in Part 1 is Chapter 9, “Planning and Estimating.” Before starting
a software project, it is essential to plan the entire operation in detail. Once the
project begins, management must closely monitor progress, noting deviations from
the plan and taking corrective action where necessary. Also, it is vital that the client
be provided accurate estimates of how long the project will take and how much it will
cost. Different estimation techniques are presented, including function points and
COCOMO L. A detailed description of a software project management plan is given,
The material of this chapter is utilized in Chapters 11 and 12. When the classical
paradigm is used, major planning and estimating activities take place at the end of the
specification phase, as explained in Chapter 11. When software is developed using the
object-oriented paradigm, this planning takes place at the end of the object-oriented
analysis phase (Chapter 12).

chapfter

THE ScoPE OF SOFTWARE ENGINEERING

A well-known story tells of an executive who received a computer-generated bill for $0.00. After having a
good laugh with friends about “idiot computers,” the executive tossed the bill away. A month later a similar bill
arrived, this time marked 30 days. Then came the third bill. The fourth bill arrived a month later, accompanied
by a message hinting at possible legal action if the bill for $0.00 was not paid at once.

The fifth bill, marked 120 days, did not hint at anything—the message was rude and forthright, threatening
all manner of legal actions if the bill was not immediately paid. Fearful of his organization’s credit rating in
the hands of this maniacal machine, the executive called an acquaintance who was a software engineer and
related the whole sorry story. Trying not to laugh, the software engineer told the executive to mail a check
for $0.00. This had the desired effect, and a receipt for $0.00 was received a few days later. The executive
carefully filed it away in case at some future date the computer might allege that $0.00 was still owing.

This well-known story has a less well-known sequel. A few days later the executive was summeoned by
his bank manager. The banker held up a check and asked, “Is this your check?”

The executive agreed that it was.

“Would you mind telling me why you wrote a check for $0.007” asked the banker.

So the whole story was retold. When the executive had finished, the banker turned to him and she quietly
asked, “Have you any idea what your check for $0.00 did to our computer system?”

A computer professional can laugh at this story, albeit somewhat nervously, After all, every one of us has
designed or implemented a product that, in its ot ginal form, would have resulted in the equivalent of sending
dunning letters for $0.00. Up to now, we have always caught this sort of fault during testing. But our laughter
has a hollow ring to it, because at the back of our minds is the fear that someday we will not detect the fault
before the product is delivered to the customer.

A decidedly less humorous software fanlt was detected on November 9, 1979. The Strategic Air Command
had an alert scramble when the worldwide military command and control system (WWMCCS) computer
network reported that the Soviet Union had launched missiles aimed toward the United States [Neumann,
1980]. What actually happened was that a simulated attack was interpreted as the real thing, just as in the
movie WarGames some S years later. Although the U.S. Department of Defense understandably has not given
details about the precise mechanism by which test data were taken for actual data, it seems reasonable to
ascribe the problem to a software fault. Either the system as a whole was not designed to differentiate between
simulations and reality, or the user interface did not include the necessary checks for ensuring that end users

CHAPTER 1

The Scope of Software Engineering

Just in Case You Wanrtep To Know

In the case of'the WWMCCS network, disaster was
averted at the last minute. However, the consequences
of other software faplts sometimes have been tragic. For

-example, between 1985 and 1987, at least two patients
died as a consequence of severe overdoses of radiation
delivered by the Therac-25 medical linear accelerator
[Leveson and Turner, 1993]. The cause was a fault in
the control software,

During the 1991 Guif War, a Scud Imss1lc pen-
etrated the Patriot antimissile shield and struck a
barracks near Dhahran, Saudi Arabia. In all, 28 Ameri-
cans were killed and 98 wounded. The software for the
Patriot misstle contained a cumulative timing fault. The
Patriot was designed to operate for only a few hours at

a time, after which the clock was reset. As a result, the
fault never had a significant effect and therefore was
not detected. In the Guilf War, however, the Patriot mis
sile battery at Dhahran ran continuously for over 100
hours. This caused the accumulated time discrepancy to
become large enough to render the system inaccurate,

During the Gulf War, the United States shipped Pa-
triot missiles to Israel for protection against the Scuds.
Isracli forces detected the timing problem after only 8
hours and immediately reported it to the manufacturer
in the United States. The manufacturer corrected the
fault as quickly as it could but, tragically, the new soft-
ware arrived the day after the direct hit by the Scud
[Mellor, 1994].

¥

of the system would be able todistinguish fact from fiction. In other words, a software
fault, if indeed the problem was caused by software, could have brought civilization
as we know it to an'unpleasant and abrupt end. (See the Just in Case You Wanted to
Know box above for information on disasters caused by other software faults,)
Whethed we are dealing with billing or air defense, much of our software is
delivered late, over budget, and with resjdual fanits. Software engineering is anattempt
to solve these problems. In.other words, software engineering is-a discipline whose
aim is the production of fauit free software delivered-on time and within budget, that
satisfies the user’s needs 'Fartheriore, the software ;must be easy to modify when
lhe user’s needs charge; To ag:hleve these goals, a software engineer has to acquire a
broad range of skills, both technical and managerial. These skills have to be applied
not just to programming buf to every phase of software production, from requirements
".to inaintenance. T
The scope of software engineering is extremely broad. Sofne aspects of software
engineering can be categorized as mathematics or computer science; other aspects
fal into the areas of economics, management, or psychology. To display the wide-
reaching realm of software engineering, five different aspects now will be examined.

Pl
7

i HIS’I’O_RICAI- AsSPECTS -

It is a fact that electric power generators fail, but far 'les!s frequently than payroll
products. Bridges Sometimes coll'lp-;e but considerably less often than operating
systems. In the belief that software design, :mplemenhtlon and maintenance could be

11 HISTORICAL ASPECTS

put on the same footing as traditional engineering disciplines, a NATO study group in
1967 coined the term software engineering. The claim that building software is similar
to other engineering tasks was endorsed by the 1968 NATO Software Engineering
Conference held in Garmisch, Germany {Naur, Randell, and Buxton, 1976]. This
endorsement is not too surprising; the very name of the conference reflected the belief
that software production should be an engineeringlike activity. A conclusion of the
conferees was that software engineering should use the philosophies and paradigms
of established engineering disciplines to solve what they termed the software crisis;
namely, that the quality of software generally was unacceptably low and that deadlines
and cost limits were not being met.

Despite many software success stories, a considerable amount of software still
is being delivered late, over budget, and with residual faults. That the software crisis
still is with us, over 30 years later, tells us two things. First, the software production
process, while resembling traditional engineering in rany respects, has its own unique- -
properties and-problems. Second, the software crisis pethaps should be refiamed the
software depression, in view of its long duration and poor prognosis.

Certainly, bridges collapse less frequently than operating systems. Why then
cannot bridge-building techniques be used to build operating systems? What the
NATO conferees overlooked is that bridges are as different from operating systems
as chalk is from cheese.

A major difference between bridges and operating systems lies in the attitudes of
the civil éngineering community and the software engineering community to the act
of collapsing. When a bridge collapses, as the Tacoma Namrows bridge did in 1940,
the bridge almost always has to be redesigned and rebuilt from scratch. The original
design was faulty and posed a threat to human safety; certainly, the design requires
drastic changes. In addition, the effects of the collapse in almost every instance will
have caused so much damage to the bridge fabric that the only reasonable thing is
to demolish what is left of the faulty bridge, then cornpletely redesign and rebuild
it. Furthermore, othef bridges built to the same design have to be carefully inspected
and, in the worst case, redesigned and rebuilt. : :

Incontrast, an operating system crash is not considered unusual and rarely triggers
an immediate investigation into its design. When a crash occurs, it may be possible
simply to'reboot the system in the hope that the set of circumstances-that cansed the
crash will not recur, This may be the only remedy if, as often is ttie case, there is no
evidence s to the cause of the crash. The damage caused by the crash uisually will

‘be minor: a database partially corrupted, a few files lost. Even when damage to'the’

file system is considerable, backup data often can restore the file system to 4 state rfot-
too far removed from its precrash cendition. Perhaps, if software engineers treated
an operating system crash as seriously as civil engineers treat a bridge collapse, the
overall level of professionalism within software engineering would rise. .
New consider a real-time system, that is, a system able to respond to inpus from

the reat world as fast as thex occur. An example is a computer-controlled intensive care
uzit, Trrespective of how many fnedical emergencies occur virtually simultaneously,
the systern must continue to alert the medica]hstaff to every new emergency without
ceasing to monitor those patients whose condition is critical but stable. In general,
the failure of a real-time system, whether it controls an intensive care unit, a nuclear

[

CHAPTER 1 ¢ The Scope of Software Engmeermg

reactor, or the climatic conditions aboard a space station, has sngmﬁcant effects Most
real-time systems, therefore, include some element of faulttolerance to minimize the
effects of a failure, . That is, the system'is dcmghccr% attempt an"automatic recovery
from any failure.... .« . =

The very concept of fault tolerance highlights a major difference between bridges
and operating systems. Bridges are engineered to withstand every reasonably antici-
pated condition: high winds, flash floods, and so on. An implicit assumption of all too
many software builders is that we cannot hope to anticipate all possible conditions
that the software must withstand, so we must design our software to try to mini-
mize the damage that an unanticipated condition might cause, In other words, bridges
are assumed to be perfectly engineered, In contrast, most operating systems are as-
sumed to be imperfectly engineered; many are designed in such a way that rebooting
is a simple operation that the user may perform whenever needed. This difference
is a fundamental reason why so much software today cannot be considered to be
engineered.

It might be suggested that this difference is only temporary. After all, we have
been building bridges for thousands of years, and we therefore have considerable
experience and expertise in the types of conditions a bridge must withstand. We have
only 50 years of experience with operating systerns. Surely with more experience,
the argument goes, we will understand operating systems as well as we understand
bridges and so eventually will be able to construct operating systems that will not fail.

The flaw in this argument is that hardware, and hence the associated operating
system, is growing in complexity faster than we can master it. In the 1960s, we
had multiprogramming operating systems; in the 1970s, we had to deal with virtual
memory; and now, we are attempting to come to terms with multiprocessor and
distributed (network) operating systems. Until we can handle the complexity caused

Zhy the interconnections of the various components of a software product such as an
operating systerm, we cannot hope to understand it fuI],y and if we do not understand
it, we cannot hope to engineer it.

Part of the reason for the complexity of software is that, as it executes, software
goes through discrete states. Changing even orie bit causes the software to change
state. The total number of such states can be vast, and many of them have not been
considered by the development team. If the software enters such an unanticipated
state, the resuit often is software failure. In contrast, bridges are continuous (ana-
log) systems. They are described using continnous mathematics, essentially calculus.
However, discrete systems such as operating systems have to be described using dis-
crete mathematics [Parnas, 1990). Software engineers therefore have to be skilled in
discrete mathematics, a primary tool in trying to cope with this complexity.

A second major difference between bridges and operating systems is mainte-
nance. Maintaining a bridge generally is restricted to painting it, repairing minor
cracks, resurfacing the road, and so on. A civil engineer, if asked to rotate a bridge
through 90° or to move it hundreds of miles, would consider the request outrageous.
However, we think nothing of asking a software engineer to convert a batch operating
ﬁstpm into a time-sharing one or to port it from one machine to another with totally

« different architectural characteristics. It is not unusual for 50 percent of the source

s

1.2 Economic ASPECTS
L
code of an operating system to be rewritten over a 5-year period, especially if it is
ported to new hardware. But no engineer would consent to replacing half a bridge;
safety requirements would dictate that a new bridge be built. The area of maintenance,
therefore, is a second fundamental aspect in which software engineering differs from
traditional engineering. Further maintenance aspects of software engineering are de-
scribed in Section 1.3. But first, economic-oriented aspects are presented.

-

1.2 EcoNomic ASPECTS i

An insight into the relationship between software engineering and computer science
can be obtained by comparing and contrasting the relationship between chemical
engineering and chemistry. After all, computer science and chemistry are both sci-
ences, and both have a theoretical component and a practical component. In the case
of chemistry, the practical component is laboratory work; in the case of computer
science, the practical component is programming.

Consider the process of extracting gasoline from coal. During World War 11, the
Germans used this process to make fuel for their war machine because they largely
were cut off from oil supplies. While the antiapartheid oil embargo was in effect, the
government of the Republic of South Africa poured billions of doliars into SASOL
{(an Afrikaans acronym standing for “South African coal into oil”). About half of
South Africa’s liquid fuel needs were met in this way. :

From the viewpoint of a chemist, there are many possible ways to convert coal
into gasoline and all are equally important. After all, no one chemical reaction is more
important than any other. But from the chemical engineer’s viewpoint, at any one time
there is exdctly one important mechanism for synthesizing gasoline from coal—the
reaction that is economically the most attractive. In other words, the chermical engineer
evaluates all possible reactions, then rejects atl but that one reaction for whmh the
cost per liter is the lowest.

A similar relationship holds between computer science and software engineering.
The computer scientist investigates a variety of ways to produce software, some good
and some bad, But the software engineer is interested in only those technigues that
make sound economic sense.

For instance, a software organization currently using coding technique CTgyq
discovers that new coding technique, CTyew, would result in code being produced in
only nine-tenths of the time needed by CTyq and, hence, at nine-tenths of the cost.
Common sense seerns to dictate that T, 1s the appropriate technique to use. In fact,
although common sense certainly dictates that the faster technique is the technique
of choice, the economics of software engineering may imply the opposite.

One reason is the cost of introducing new technology into an organization. The
fact that coding is 10 percent faster when technigue CTpey is used may be less im-
portant than the costs incurred in introducing CTaew into the organization. It may be
necessary to complete two or three projects before recouping the cost of training.

~”

CHAPTER 1 ¢ The Scope of Software Engineering

Also, while attending courses on CTyew, software personnel are unable to do produc-
tive work. Even when they return, a steep learning curve may be involved; it may take
months of practice with CT,y before software professionals become as proficient
with CTpew as they currently are with CTqq. Therefore, initial projects using CThew
may take far longer to complete than if the organization had continued to use CToa.
All these costs need to be taken inte account when deciding whether to change to
CThew-

A second reason why the economics of software engineering may dictate that
(T, be retained is the maintenance conseguence. Coding technique CTyey indeed
may bé 10 percent faster than CToq, and the resulting code may be of comparable
quality from the viewpoint of satisfying the client’s current needs. But the use of
technique CTpew may result in code that is difficult to maintain, making the cost of

. CTyew higher over the life of the product. Of course, if the software developer is
not responsible for any maintenance, then, from the viewpoint of just that developer,
CT,ew is a most attractive proposition. After all, use of CTyey would cost 10 percent
less. The client should insist that techniq'{]e CT,iq be used and pay the higher initial
costs with the expectation that the fotal lifetime cost of the software wiil be lower.
Unfortunately, often the sole aim of both the client and the software provider is
to produce code as quickly as possible. The long-term effects of using a particular
technique generally are ignored in the interests of short-term gain. Applying economic
principles to software engineering requires the client to choose techniques that reduce
long-term costs.

We now consider the importance of maintenance.

. 'I.3 MAINTENANCE ASPECTS

‘The series of steps that software undergoes, from concept exploration through final
retirement, is termed its life cycle. During this time, the product goes through a
series of phases: requirements, specification, design, implementation, integration,
maintenance, and retirement. Life-cycle models are discussed in greater detail in
Chapter'3; the topic is introduced at this point so that the concept of maintenance can
be defined. -

Until the end of the 1970s, most organizations were producing software using
as their life-cycle model what now is termed the waterfall model. There are many
variations of this model, but by and large, the product goes through seven broad phases.
These phases probably do not correspond exactly to the phases of any one particular
organization, but they are sufficiently close to most practices for the purposes of
this book. Similarly, the precise name of each phase varies from organization to
organization. The names used here for the various phases have been chosen to be as
general as possible in the hope that the reader will feel comfortable with them. For
easy reference, the phases are summarized in Figure 1.1, which also indicates the
chapters in this book in which they are presented.

!

1.3 MAINTENANCE ASPECTS

Requirements phase [Chapter 10}

Specification {analysis) phase (Chapters 11 and 12)
Dasign phase (Chapter 13}

Implementation phase {Chapers 14 and 15}
infegration phase [Chapler 15)

Maintenance phase [Chapter 16}

Retirement

N p P~

Figure 11 The phases of the software life cycle and
the chapters in this book in which they are presented.
"
Requirements phase. The concept is explored and refined, and the client’s re-
quirements are elicited.

Specification (analysis) phase. The client’s requirements are analyzed and pre-
“sented in the form of the specification document, “what the product is supposed
to do.” This phase sometimes is called l}fe’andlj?.?z kafs‘E At the end of this
= phase a plan is drawn up, the software project management plan, describing the
proposed software development in full detail.

Design phase. The specifications undergo two consecutive design processes. First

comes architectural design, in which the product as a whole is broken down i into -

components, called modules. Then, each module is designed; this process is
termed detailed design. The two resulting design documents describe “how the
product does it.”

Implementation phase. The various components are coded and tested.

Integration phasé.’ The components of the product are combined and tested as
a whiole. When the developers are satisfied that the product functions correctly,
it is tested by the client (acceptance testing). This phase ends when the product
is accepted by the client and installed on the client’s computer. (We will see in
Chapter 15 that the integration phase should be performed in parallel with the
implementation phase.}

Maintenance phase. The product is used to perform the tasks for which it was de-
veloped. During this time, it is maintained, Maintenance includes all changes to
the product once the client has agreed that it satisfies the specification document
(but see the Just in Case You Wanted to Know box on page 10). Maintenance
includes féorrective maintenance (orsoftware repair), which consists of the re-
moval of residual faults while leaving the specifications unchanged, as well as
enhdncement (ot software update), which consists of changes to the specifica-
tions and the implementation of those changes. There are, in turn, two types of
enhancement. The first is perfective maintenance)’changes that the client thinks
will improve the effectiveness of the product, such as additional functionality or
decreased response time. The second is @daptive maintenance, changes made in
response to changes in the environment in which the product operates, such as

CHAPTER 1 ¢ The Scope of Software Engineering

: new government regulations. Studies have indicated that, on average, maintain-
ers spend approximately 17.5 percent of their time on corrective maintenance,
60.5 percent on perfective maintenance, and 18 percent on adaptive maintenance
{Lientz, Swanson, and Tompkins, 1978].

7. Retirement. The product is removed from service. This-occurs when the function-
ality provided by the praduct no longer is of any use to the client organization,

Just IN Case You WanTep To Know

In the 19705, software production was viewed as con-
sisting of two distinct activities performed sequentially:
development followed by maintenance. Starting from
scratch, the software product was developed then in-
stalled on the client’s computer. Any change to the soft-
ware after installation, whether to fix a residual fault or
extend the functionality, constituted classical mainte-
nance [IEEE 610.12, 1990]. Hence, the way that soft-
ware was developed classically can be described as the
development-then-maintenance model.,

This is a temporal definition; that is, an activity is
classified as development or maintenance depending

on when it is performed. Suppose that a fauit in the |

software is detected and corrected a day after the sofi-
ware has been installed. This clearly constitutes mainte-
nance, Butif the identical faultis detected and corrected
the day before the software is installed, in terms of the
classical definition, this constitutes development.
There are two reasons why this model is unrealistic
today. First, nowadays it is certainly not unusual for
construction of a product to take a year or more.
During this time, the client’s requirerdents may well
change. For example, the client might insist that the
product now be implemented on a-faster micropro-
cessor that has become available. Alternatively, the
client organization may have expanded into Canada
while development was under way, and the product
now has to be modified so it also can handle sales in
Canada. To see how this sort of change in requirements
affects the software life cycle, suppose that the client’s
requirements change while the design is being devel-
oped. The software engineering team has to suspend
development and modify the specification document to
reflect the changed requirements. Furthermore, it then
may be ncceséary to modify the design as well, if the

changes to the specifications necessitate corresponding
changes to those portions of the design already com-
plated. Only when these changes have been made can
development proceed. In other words, developers have
to perform “maintenance” long before the product is
installed.

A second problem with the classical development-
then-maintenance mode! arose as a result of the way
in which we now construct software. In classical soft-
ware engineering, a characteristic. of development was
that the development team built the target product from
scratch. In contrast, as a consequence of the high cost of
software production today, developers try to reuse parts
of existing software wherever possible in the sofiware
to be constructed (reuse is discussed in detail in Chap-
ter 8). Therefore, the developn‘fent'—then—.maintenance
model is inappropriate whenever there is reuse.

A more realistic way of looking at maintenance is
to view maintenance as the process that occurs when
“software undergoes madifications to code and associ-
ated documentation due to a problem or the need for
improvement or adaptation” [ISO/IEC 12207, 1995].
By this Qeﬁnition, maintenance occurs whénever a fault
is fixed or the requirements change, irrespective of

* whether this takes place before or after installation of

the product. .

However, until such time as the majority-of soft-
ware engineers realize that the development-then-
maintenance model is outdated, there is little point in
trying to change the usage of the word maintenance.
In this book, I accordingly still refer to maintenance as
the activity carried out after development is complete
and the product installed. Nevertheless, | hope that the
true nature of maintenance soon will be more widely
recognized,

1.3 MAINTENANCE ASPECTS

Returning to the topic of mainteriance, it sometimes is said that only bad software
products undergo maintenance, In fact, the opposite is true; bad products are thrown
away, whereas good products are repaired and enhanced, for 10, 15, or even 20 years.
Furthermore, a software product is'a model of the real world, and the real world is
perpetually changing. As a consequence, software has to be maintained constantly
for it to remain an accurate reflection of the real world. .

For instance, if the sales tax rate changes from 6 percent to 7 percent, almost
every software product that deals with buying or selling has to be changed Suppose
the product contains the C44- statement

const float salesTax = 6 0; .

or the equwalent Java statement
public static hnal flout sa]esTax = (Houf) 6.0;

declaring that salesTaxis a ﬂoatmg pamt constant initialized to the value 6. O In this
case, maintenance is relatively simple. With the aid of a text editor the value 6.0 is
replaced by 7.0 and the code is reconipiled and relinked. However, if instead of using
the name saleslax, the actual va}ue 6.0 has been used in the product wherever the-
value of the sales tax is invoked, then such a product will be extremely difficult to
maintain. For example, there may be occurrences of the value 6.0 in the source code
that should be changed to 7.0 but are overlooked or instances of 6.0 that do not refer
to sales tax but incorrectly are changed to 7.0. Finding these faults almost always is
difficult and time consuming. In fact, with some software, it might be less expensive
in the long-run to throw away the product and recode it rather than try to determine
which of the many corptants need to be changed and how to make the modifications.

The real-time real world also is constantly changing. The missiles with which ajet
fighter is armed may be replaced by a new model, requixing a change to the weapons’
control eompﬁnent of the associated avionics system. A six-cylinder enging is to be
offered as an option in a popular four-cylinder antomobile; this implies changing the
on-board corfiputer that controls the fuel injection system, timing, and so on.

Heallhy orgamzatlons change; only dying organizations are static. This means
that maimtenance in the form of enhancement is a positive part of an organization’s
actl*J.tLes,{eﬂectmg that the organization is on the move.

-But just how much time is devoted to maintenance? The pie chart in Figure
“{.2"was obtained by averaging data from various sources, including [Elshoft, 1976;
Daly, 1977; Zelkowitz, Shaw, and Gannon, 1979; and Boehm, 1981]. Figure 1.2
shows the approximate percentage of time (= money) spent on each phase of the
software lfe cycle. About 15 years later, the proportion of time spent on the various
development phases had hardly changed. This is shown in Figure 1.3, which compares
the data in Figure 1.2 with more recent data on 132 Hewlett-Packard projects [Grady,
1994]. The data from Flgure 1 2 have been grouped to make them comparabié:to the’
newer data.! i

| ‘Fugura 1.3 reflects only the development phases. The proportion of develol;]:mem time devoied to the require- -

menis and specification phases in Figure 1.2 s (2 + 5]/33, or 21%, as shown in Flgure 1.3.

n

12 CHAPTER ¥ o The Scope of Software Engineering

Module

Specification
(analysls)
5%
Requirements
2%

Maintenance
67%

S r
Figure 1.2 Approximate relative costs of the phases of the
software life cycle.

Various Projects 132 More Recent
between 1976 and Hewlett-Packard
1981 Projects
Requirements and specification ‘ -
(onalysis] phases 21% 18% -
Design phase . d 18 - 19
Implementation mese] 36 . 34
- Integration phase 24 .29
o Figure 1.3 Comparison of approximale average percentages of time spent
on the development phases for various projects between 1976 and 1981 and for
. 132 more recent Hewlet-Packard projects.

As can be seen in Figure 1.2, about two-thirds of total software costs were devoted
to maintenance. ‘Né'weg data confirm the continuing emphasis on maintenance. For
example, in'1992 between 60 and 80 percent of research and development personnel at

.. Hewlett-Packard were involved in maintenarice; and maintenance constituied between
-~ : 40 and 60 percent of the total cost of software, [Coleman, Ash, Lowther, and Oman,
1994]. However, many organizations devote as much as 80 percent of their time and
effort to maintenance [Yourdon, 1996]: Therefore, maintenance is an exiremely time
consuming, expenisive phase of the software life cycle.
Consider again the software organization currently using coding technique CTo
- that learns that CTye, will reduce coding time by 10 percent. Even if CTye, has no

“y

1.4 SPECIFICATION AND DESIGN ASPECTS

adverse effect on maintenance, an astute software manager will think twice before
changing coding practices. The entire staff will have to be retrained, new software
development tools purchased, and perhaps additional staff members hired who are
experienced in the new technique. All this expense and disruption has to be endured
for a possible 0.5 percent decrease in software costs because, as shown in Figure 1.2,
module coding constitutes on average only 5 percent of total software costs.

Now suppose a new technique that reduces maintenance by 10 percent is devel-
oped. This probably should be introduced at once because, on average, it will reduce
overall costs by 6.7 percent. The overhead involved in changing to this technique is
a small price to pay for such large overall savings.

Because maintenance is so important, a major aspect of software engineering
consists of those techniques, tools, and practices that lead to a reduction in mainte-
nance costs.

1

1.4 'sﬁzcmcnﬂou AND DESIGN ASPECTS

" Software professionals are. human and therefore sometimes make errors while devel-

oping a product. As a result; there will be a fault in the software, If the error is made
during the requirements ph:isa then the resulting fault probably-also will appear in the
spet_:lﬁcatmns the design, and the code. Clearly, the earlier we correct a fault, the better.
" The relative costs of fixing a fault af various phases in the software life cycle are
shown in Figure 1.4 [Boehm, 1981]. The figure reflects data from IBM [Fagan, 1974),
GTE [Daly, 1977], the Safeguard project [Stephenson, 1976}, and some smaller TRW
projects {Boehm, 1980]. The solid line in Figure 1.4 is the best fit for thé data relating
to the larger projects, and the dashed line is the best fit for the smaller projects. For
each of the phases of the software life cycle, the corresponding relative cost to detect
and correct a fault is depicted in Figure 1.5. Each step on the solid line in Figure 1.5
is constructed by taking the corresponding point on the solid straight line 6f Figure
1.4 and plotting the data on a linear scale. '
Suppose it costs $40 to detect and correct a specific fault during the design
phase. From the solid line in Figure 1.5 (projects between 1974 and 1980), that same
fault would cost only about $30 to fix during the specification phase. But, during the
maintenance phase, that fault would cost around $2000 to detect and correct. Newer
data show that now it is even more important to detect faults early. The dashed line in
Figure 1.5 shows the cost of detecting and correcting a fault during the development
of system software for the IBM AS/400 [Kan et al., 1994]. On average, the same fault
would have cost $3680 to fix during the maintenance phase of the AS/400 software.
The reason that the cost of correcting a fault increases so steeply is related to
fwhat has to be doe to correct a fault! Early in the development life cycle, the product
essentially exists Only on paper, and correcting a fault may simply. mean using an

‘eraser and pencil: The other extréme is a product already delivered to a client. At -

the very least, correcting a fault means editing the code, recompiling and relinking
it, and then carefully testing that the problem is solved. Next, it is criticdl to check

that making the change has not created a new problem elsewhere in the product. All -

13

14

CHAPTER 1 ¢ The Scope of Software Engineering

100
o Larger software projects

5001 &} 1BM-SSD

200 DE GTE

100 - ; 80%) o—o0
I Median (TRW survey.

=g 20%

| O5° SAFEGUARD

=
A

-
<
-

——
—
-

Relative cost to fix fault
N
(=]

Smaller software projects
0 (Boehm, 1980]

2 -

1 1 | | |

Raquirements Implementation Acceptance
and specification test

Design Integration Maintenance
Phase in which fault was detected and corrected

Figure 1.4 Relalive cost of fixing a fault ot éach phase of the
software life cycle. The solid line is the best fit for the dato relating to
) the larger software projects, and the dashed line is the best fit for the
' smaller software projects. (Barry Boehm, Softiware Engineering
" Economics, ®1981, p. 40. Adapted by permlsmon of Prentice Hall,
Inc., Englewood Chffs, N}

e
}

‘the relevant documentatmn 1nclud1ng manuals, then needs to be updated. Fmally,
the corrected product must be delivered and installed. The moral of-the story is this:
We must find faults early or élse it will cost us money. We therefore should employ
techniques for detecting faults during the réqmrements and specification (analysis)
phases.

There is a further nccd for such techniques. Studles have shown [Boehm, 1979]
that betweeh 60 and 70 percent of all faults detected in large-scale projects are spec-
ification or design faults. Newer results bear out this preponderance of specification
and design faults. An inspection is a careful examination of a document by a team
(Section 6.2,3). During 203 inspections of Jet Propulsion Laboratory software for the
NASA unmanned interplanetary space program, on average, about 1.9 faults were
detected per page of @ specification document, 0.9 faults per page of a design, but
only 0.3 faults per page of code [Kelly, Sherif, and Hops, 1992].

Therefore, it is important that we improve our specification and design techniques,
not only so that faults can be found as early as possible but also because specification
and design faults constitute such a large proportion of all faults. Just as the example
in the previous section showed that reducing maintenance costs by 10 percent will
reduce overall costs by nearly 7 percent, reducing specification and design faults by
10 pci:ccnt.will reduce the overall number of faults by 6 to 7 percent.

1.5 TeAM PROGRAMMING ASPECTS

= 400
8 368
p T
— - I |
5 350 | !
£ I I
3 L [|
S 300 , ,
5) 1
o | \
9 250 - I [
g .
¥4 200
£ 200
k3
8
@ 150
% Projects between 1974 and 1980
@ - — — — IBM AS/400[Kan et al., 1994]
= 100 -
2
[+]
E 29
E 50 - i
o
g 1 3 4 10 i
I T 1 T I !
Reguirements Design integration
Specification [mplementation Maintenance

{Analysis)

Figure 1.5 The solid line depicts the points on the solid line
of Figure 1.4 plotted on o linear scale. The dashed lire depicts
newer dala,

Newer data on a number of projects are reported in [Bhandari et al., 1994]. For
example, a compiler was undergoing extensive changes. At the end of the design
phase, the faults detected during the project were categorized. Only- 13 percent of
the faults were carry-overs from previous versions of the compiler. Of the remaining
faults, 16 percent were introduced during the specification phase, and 71 percent

/ were introduced during the design phase. That so many faults are introduced early in
the software life cycle highlights another important aspect of software engineering;
namely, techniques that yield better specifications and designs. - .

Most software is produced by a team of software engineers rather than by asingle
individual responsible for every phase of the development and maintenance life cycle.
We now consider the implications of this.

1.5 TeEam PROGRAMMING ASPECTS

" The performance—price factor of a computer ml'ay be defined as follows:

performance-price factor = time to perform 1 million additions
% cost of CPU and main memory

16

CHAPTER 1 ¢ The Scope of Software Engineering

This qugptity has decreased by an order of magnitude with each succeeding
generation of computers. This decrease has been a consequence of discoveries in
electronics, particularly the transistor, and very large-scale integration (VLSI).

The result of these discoveries has been that organizations easily can afford
hatdware that can run large products, that is, products too large to be written by

one person within the allowed time constraints, For example, if a product hae to he
. P ¥ r

“delivered within 18 months but would take a single programmer 15 years to complete,

then the_product must be developed by a team. However, team programming leads
to interface problems among code components and communication problems among

‘team members. : .

For example, Joe and Freda code modules p and q; fesPBCti\;ely, where module

p calls module . When Joe codes p, he writes a call to q with five arguments in

the argument list. Freda codes q with five arguments but in-a different order from

" those ofJoe. Unless function prototypes are used, this will not be detected by an
- ANSI C compilér. A few software tools, such as the Java interpreter and loader,

[int for C (Section 8.7.4), or an Ada linker, detect such a type violation and .only

- if the interchanged arguments are of different types; if they are of the same type,
.then the problem may not be detected for a long period of time. It may be debated

that this is a design problem, arid if the modules had been more carefully designed,
this problem would not have happened. That may be true, but in practice a design
often is changed after coding commences but notification of a change may not be
distributed to all members of the development team. Thus, when a design that af-
fects two or more programmers has been changed, poor communication can lead
to the interface problems Joe and Freda experienced, This sort of problem is less
likely to occur when only one individual is responsible for every aspect of the prod-
udt, as was the case before powerful computers that can run huge products became
afférdable. i .
But interfacing problems are merely the tip of the iceberg when it comes to prob-
lems that can arise when software is developed-by teams. Unless the team is properly
organized, an inordinate amount of time can be wasted in conferences between team
members. Suppose that a product takes a single programmer 1 year to compiete. If
the same task is assigned toa team of three programmers, the time for completing

' the task frequently is closer to 1 year than the expected 4 months, and the quality of

the resulting code may well be lower than if the entire task had been assigned to one
individual. Because a considerable proportion of today’s software is developed and
maintained by teams, the scope of sofiware engineering must include techniques for

“ensuring that teams are properly organized and managed.

As has been shown in the preceding sections, the scope of software engineering
is extremely broad. It includes every phase of the software life cycle, from require-
ments to retirement. It also (includes human aspects, such as team organization; eco-
nomic aspects; and legal aspects, such as copyright law. All these aspects implicitly
are incorporated in the definition of software engineering given at the beginning of
this chapter; namely, that software engineering is a discipline whose aim is the pro-
duction of fauli-free software delivered on time, within budget, and satisfying the

user's needs. M
b

oy

1.6 THE OBJECT-ORIENTED PARADIGM

1.6 THE OBJECT-ORIENTED "'PARAMGM

Before 1975, most software organizations used no specific techniques; each individual
worked his or her own way. Major breakthroughs were made between approximately
1975 and 1985, with the development of the so-called structured paradigm. The tech-

niques constituting the structured paradigm include structured systems analysis (Sec-

tion 11.3), data fiow analysis (Section 7.1), structured programming,-and structured
testing (Section 14.8.2). These techniques seemed extremely promising when ficst
used. However, as time passed, they proved to be somewhat less successful in two
respects. First, the techmques sometimes were unable to cope with the i increasing size
of software products. That is, the structured techniques were adequate when dealing
with products of (say) 5,000 or even 50,000 lines of code. Today, however, products
containing 500,000 lines of code are not considered large; even products of 5 mil-
lion or more lines of code are not that unusual. However, the structured techniques
frequently could not scale up sufficiently to handle today’s larger products.

"The mainterfance phase is the second area in which the structured paradigm did
not live up.to earlier expectations. A major driving force behind the development of
the structured paradigm 30 years ago was-that, on average, two-thirds of the soft-
ware budget was being devoted to maintenance (see Pigure 1.2). Unfortunately, the
structured paradigm has not solved this problem; as pointed out in Section 1.3, many
organizations still' spend up to 80 percent of their time and effort on mmntenance
[Yourdon, 1996]. J

The reason for the limited success of the structured paradigm is that the structured
techniques are either action oriented or data oriented but not both. The basi¢ compo-

nents of a software product are the actions? of the product and the data on which those -

actions operate. For example, determine average height is an action that operates
on a collection of heights (data} and returns the average of those heights (data). Some
structured techniques, such as data flow analysis (Section 13.3), are action oriented.
That is, such techniques concentrate on the actions of the product; the data are of
secondary importance. Conversely, techniques such as Jackson system development
(Section 13.5) are data oriented, The emphasis here is on the data; the actions that
operate on the data are less significant.

In contrast, the object-oriented paradigm considers both data and actions to ‘be
equally important. A simplistic way of looking at an object is as a unified software
component that incorporates both the data and the actions that operate on the data. This

definition is incomplete and will be fleshed out later in the book, once inheritance has -
been defined (Section 7.7). Nevertheless, the definition captures much of the essence

of an object.
A bank account is one example of an object (see Figure 1.6). The data component

" of the object is the account balance. The actions that can be performed on that

account balance include deposit money, withdraw money, and determine balance.
Yrom the viewpoint of the structured paradigm, a product that deals with banking

! 2The word action is used in this bock rather than process Io avoid conlusion wilh the ferm sofiware process.

17

18 CHAPTER 1

The Scope of Software Engineering

. ——

! \
\
account y

!
\ balance !

1 !

balance

- ~ ~
yid withdraw
/ \

deposit . withdraw
s ~
{ account®
= _\l:iaianc/e A
determine
balance

message ———m

message

message

(a}

(b}

Figure 1.6 Comparison of implementalions of bank account using {a struclured paradigm and (b} objectoriented
paradigm. The solid black line surrounding the object denotes that details as to how account balance is implemented are not

known outside the object.

would have to incorporate a data clement, the account balance, and three actions,
deposit, withdraw, and determine balance. From the object-oriented viewpoint, a
bank account is an object. This object combines a data element together with the three
actions performed on that data element in a single unit,

Up to now, there seems to be little difference between the two approaches. How-
ever, a key point is the way in which an object is implemented, Specificaily, details
as to how the data element of an object is stored are not known from outside the
object. This is an instance of “information hiding” and is discussed in more detail in
Section 7.6. In the case of the bank account object shown in Figure 1,6(b), the rest
of the software product is aware that there is such a thing as a balance within a bank
account object, but it has no idea as to the format of account balance., That is, there
is no knowledge outside the object as to whether the account balance is implemented
as an integer or a floating-point number or whether it is a field (component) of some
larger structure. This information barrier surrounding the object is denoted by the
solid black line in Figure 1.6(b), which depicts an implementation using the object-
oriented paradigm. In contrast, a dashed line surrounds account balance in Figure
1.6(a), because all the details of account balance are known to the modules in the
implementation using the structured paradigm, and the value of account balance
therefore can be changed by any of them.

Returning to Figure 1.6(b), the abject-oriented implementation, if a customer
deposits $10 in an account, then a message is sent to the depositaction (method) of the
relevant object telling it to increment the account balance data element (attribuze) by
$10. The depositmethod is within the bank account object and knows how the account
balance is implemented; this is denoted by the dashed line inside the object. But no
entity external to the object needs to have this knowledge. That the three methods in

1.6 THE OBJECT-ORIENTED PARADIGM

Figure 1.6(b) shield account halance from the rest of the product symbolizes this
localization of knowledge.

At first sight, the fact that implementation details are local to an object may not
seem to be terribly useful. The payoff comes during maintenance. First, suppose that
the banking product has been constructed using the structured paradigm. If the way
that an account balance is represented is changed from (say) an integer to a field of a
structure, then every part of that product with anything to do with an account balance
has to be changed and these changes have to be made consistently. In contrast, if the
object-oriented paradigm is used, then the onty changes that need be made are within
the bank account object itself. No other part of the product has knowledge of how
an account balance is implemented, so no other part can have access to an account
balance. Consequently, no other part of the banking product needs to be changed.
Thus, the object-oriented paradigm makes maintenance quicker and easier, and the
chance of introducing a regression fault (that is, a fault inadvertently introduced into
one part of a product as a consequence of making an apparently unrelated change to
another part of the product) is greatly reduced,

In addition to maintenance henefits, the object-oriented paradigm makes devel-
opment easier. In many instances, an object has a physical counterpart. For example,
the object bank account in the bank product corresponds to an actual bank account in
the bank for which this product is being written. As will be shown in Chapter 12, mod-
eling plays a major role in the object-oriented paradigm. The close correspondence
between the objects in a product and their counterparts in the real world promotes
better software development.

There is yet another way of looking at the benefits of the object-oriented paradigm.
Well-designed objects are independent units. As has been explained, an object con-
sists of both data and the actions performed on the data. If all the actions performed
on the data of an object are included in that object, then the object can be considered
a conceptually independent entity. Everything in the product that relates to the por-
tion of the real world modeled by that object can be found in the object itself. This
conceptual independence sometimes is termed encapsulation (Section 7.4). But there
is an additional form of independence, physical independence. In a well-designed
object, information hiding ensures that implementation details are hidden from ev-
erything outside that object. The only allowable form of communication is the sending
of a message to the object to carry out a specific action. The way that the action is
carried out is entirely the responsibility of the object itself. For this reason, object-
oriented design sometimes is referred to as responsibility-driven design [Wirfs-Brock,
Wilkerson, and Wiener, 1990] or design by contract [Meyer 1992a]. (For another view
of responsibility-driven design, see the Just in Case You Wanted to Know box on
page 20.)

A product built using the structured paradigm essentially is a single unit. This
is one reason why the structured paradigm has been less successful when applied
to larger products. In contrast, when tﬁe object-oriented paradigm is used correctly,
the resulting product consists of a number of'smaller, largely independent units. The
object-oriented paradigm reduces the level of complexity of a software product and
hence simplifies both development and maintenance.

L1

20 CHAPTER T @

The Scope of Software Engineering

Just 1IN €asE You WanTED To Know

Suppose that you live in New Orleans, and you want to
have a floral arrangement delivered to your auntin Jowa
City on her birthday [Budd, 1991]. One way would be
to try to obtain a list of all the florists in Towa City, then
determine which one is located closest to your aunt’s
home. An easier way is to call 1-800-FLOWERS and
leave the entire responsibility for delivering the floral
arrangement to that organization. You need not know

the identity of the Towa City florist who wiil deliver the
flowers.

In exactly the same way, when a message is sent
to an object, not only is it entirely irrelevant how the
request is carried out, but the unit that sends the message
is not even allowed to know the internai structure of the
object. The object itself is entirely responsible for every
detail of carrying out the message.

Another positive feature of the object-oriented paradigm is that it promotes reuse:
Because objects are independent entities, they can be utilized in future products. This
reuse of objects reduces the time and cost of both development and maintenance, as

g explained in Chapter 8.

When the object-oriented paradigm is utilized, the software life cycle (Figure
1.1) has to be modified somewhat. Figure 1.7 shows the software life cycles of both
structured and object-oriented paradigms. To appreciate the difference, first consider
the design phase of the structured paradigm. As stated in Section 1.3, this phase
is divided into two subphases: architectural design followed by detailed design. In
the architectural design subphase, the product is decomposed into componeants, called
modules. Then, during the detailed design subphase, the data structures and algorithms
of each module are designed in turn. Finally, during the implementation phase, these
modules are implemented,

If the object-oriented paradigm is used instead, one of the steps during the object-
oriented analysis phase is to determine the objects. Because an object is a kind of mod-
ule, architectural design therefore is performed during the object-oriented analysis

Structured Paradigm Object-Oriented Paradigm

1. Requirements phase 1. Requirements phase

2. Specification {analysis) phase 2'. Objectoriented analysis phase

3. Design phase . 3. Object-orienied design phase

4. Implementation phase 4, Objectoriented programming phase
5. lnlegration phose 5, Integrofion phase

6. Maintenance phase . 6. Maintenance phase

7. Relirement 7. Retirement

Figure 1.7 Comparison of life cycles of the structured paradigm and the
object-oriented paradigm,

1.7 TERMINOLOGY

Structured Paradigm Object-Oriented Paradigm
2. Specification {analysis) phase 2’. Objectoriented analysis phase
= Determine what the product is ie do * Determine what the product is to do

» Extract the objects

3. Design phase 3. Objectoriented design phose
» Architectural design [exiract the « Detailed design
modules)

+ Detailed design

4. Implementation phase 4'. Obijectoriented programming phase
+ Implement in appropriate programming + Implement in appropriate
longuage objectoriented programming language

Figure 1.8 Differences between the structured paradigm and the objectariented paradigm.

phase. Thus, object-oriented analysis goes further than the corresponding specifica-
tion (analysis) phase of the structured paradigm. This is shown in Figure 1.8.

This difference between the two paradigms has major consequences. When the
structured paradigm is used, there almost always is a sharp transition between the
analysis (specification) phase and the design phase. After all, the aim of the specifica-
tion phase is to determine what the product is to do, whereas the purpose of the design
phase is to decide sow to do it. In contrast, when object-oriented analysis is used,
objects enter the life cycle from the very beginning. The objects are extracted in the
analysis phase, designed in the design phase, and coded in the implementation phase.
Thus, the object-oriented paradigm is an integrated approach; the transition from
phase to phase is far smoother than with the structured paradigm, thereby reducing
the number of faults during development.

As already mentioned, it is inadequate to define an object merely as a software
component that encapsulates both data and actions and implements the principle of
information hiding. A more complete definition is given in Chapter 7, where objects
are examined in depth. But first, the terminology used in this book must be considered
in greater detail.

1.7 TERMINOLOGY

A word used on almost every page of this' book is saftware. Software consists of
not just code in machine-readable form but also all the documentation that is an
intrinsic component of every project. Software includes the specification document,
the design document, legal and accounting documents of all kinds, the software project
. mana‘glg}?nt plan, and other management documents as well as all types of manuals.

22

¢HAPTYER 1 ¢ The Scope of Software Engineering

Since the 1970s, the difference between a program and a system has become
blurred. In the “good old days,” the distinction was clear. A program was an au-
tonomous piece of code, generally in the form of a deck of punched cards, that could
be executed. A system was a related collection of programs. Thus, a system might
consist of programs P, Q, R, and S. Magnetic tape T was mounted, then program P
was run, It caused a deck of data cards to be read in and produced as output tapes
T2 and T3. Tape T2 then was rewound, and program Q was run, producing tape Ty as
ontput. Program R now merged tapes T3 and T4 into tape Ts; T served as input for
program S, which printed a series of reports.

Compare that situation with a product, running on a machine with a front-end
communications processor and a back-end database manager, that performs real-time
control of a steel mill. The single piece of software controlling the steel mill does far
more than the old-fashioned system, but in tertms of the classic definitions of program
and system, this software undoubtedly is a program. To add to the confusion, the term
system now also is used to denote the hardware—software corbination. For example,
the flight control system in an aircraft consists of both the in-flight computers and
the software running on them. Depending on who is using the term, the flight control
system also may include the controls, such as the joystick, that send commands to
the computer and the parts of the aircrafi, such as the wing flaps, controlled by the
cormputer.

To minimize confusion, this book uses the term product to denote a nontrivial
piece of software. There are two reasons for this convention. The first is simply to
obviate the program versus system confusion by using a third term. The second reason
is more important.-This book deals with the process of software production, and the
end result of a process is termed a product. Software production consists of two
activities: software development followed by maintenance. Finally, the term system
is used in its modern sense, that is, the combined hardware and software, or as part of
universally accepted phrases, such as operating system and management information
system.

Two words widely used within the context of software engineering are method-
ology and paradigm. Both are used in the same sense, a collection of techniques for
carrying out the complete life cycle. This usage offends language purists; after all,
methodology means the science of methods and a paradigm is a model or a pattern.
Notwithstanding the best efforts of the author and others to encourage software en-
gineers to use the words correctly, the practice is so widespread that, in the interests
of clarity, both words are used in this book in the sense of a collection of techniques.
Erudite readers offended by this corruption of the English language are warmly in-
vited to take up the cudgels of linguistic accuracy on the author’s behalf; he is tired
of tilting at windmills.

One term that is avoided as far as possible is bug (the history of this word is in the
Tust in Case You Wanted to Know box on page 23). The term bug nowadays is simply a
euphemism for error: Although there generally is no real harm in using euphemisms,
the word bug has overtones that are not conducive to good software production.
Specifically, instead of saying, “I made an error,” a programmer will say, “A bug
crept into the code” (not my code but the code), thereby transferring responsibility for
the error from the programmer to the bug. No one blames a programmer for coming

CHAPTER REVIEW

23

‘Just IN €ase Youv Wanrtep To Know

The first use of the word bug to denote a fault is at-
tributed to the late Rear Admiral Grace Murray Hop-
per, one of the designers of COBOL. On September
9, 1945, a moth flew into the Mark II computer that
Hopper and her colleagues used at Harvard and lodged
batween the contact plates of a relay. Thus, there was
actually a bug in the system. Hopper taped the bug to
the log book and wrote, “First actual case of bug being
found.” The log book, with moth still attached, is in the

slang in the 19th century [Shapiro, 1994]. For exam-
ple, Thomas Alva Edison wrote on November 18, 1878,
“This thing gives out and then that—'Bugs’—as such
little faults and difficulties are called ...” [Josephson,
1992). One of the definitions of bug in the 1934 edition
of Webster’s New English Dictionary is “A defect in
apparatus or its aperation.” It is clear from Hopper’s
remark that she, too, was familiar with the use of the
word In that context; otherwise, she would have ex-

Naval Museum at the Naval Surface Weapons Center, plained what she meant.
in Dahlgren, Virginia.

Although this may have been the first use of bug
in acomputer context, the word was used inengineering

down with a case of influenza, because the flu is caused by the flu bug. Referring to
an error as a bug is a way of casting off responsibility. In contrast, the programmer
who says, “I made an error,” is a compauter professional who takes responsibility for
his or her actions.

There is considerable confusion regarding object-oriented terminology. For ex-
ample, in addition to the term afrribute for a data component of an object, the term
state variable sometimes is used in the object-oriented literature. In Java, the term
is instance variable; in C++-, the term field is used. With regard to the actions of
an object, the term method usually is used; in C+---, however, the term is member
function. In C+++, a member of an object refers to either an attribute (“field”) or 2
method. In Java, the term field is used to denote either an attribute (“instance vari-
able™) or a method. To avoid confusion, wherever possible, the generic terms atiribute
and method are used in this book.

Fortunately, some terminology is widely accepted. For example, when a method
within an object is invoked, this almost universally is termed sending a message (o
the object.

In this section we defined the various terms used in this book. One of those terms,
process, is the subject of the next chapter.

CHAPTER REVIEW

Software engineering is defined (Section 1.1) as a discipline whose aim is the pro-
duction of fault-free software that satisfies the us&l’s needs and is delivered on time
and within budget. To achieve this goal, appropriaté techniques have to be used in

24

CHAPTER 1 ¢ The Scope of Software Engineering

all phases of software production, including specification (analysis) and design (Sec-
tion 1.4) and maintenance (Section 1.3). Software engineering addresses all phases
of the software life cycle and incorporates aspects of many different areas of human
knowledge, including economics (Section 1.2) and the social sciences (Section 1.5).
In Section 1.6, objects are introduced, and a brief comparison between the struc-
tured and object-oricnted paradigms is made., In the final section (Section 1.7), the
terminology used in this book is explained.

For FURTHER READING

A classic source of information on the scope of software engineering is [Boehm,
1976]. [DeMarco and Lister, 1989] is a report on the extent to which software engi-
neering techniques actually are used. For an analysis of the extent to which software
engineering can be considered to be a true engineering discipline, see [Wasserman,
1996] and [Ebert, Matsubara, Pezzé, and Bertelsen, 1997]. The future of software
engineering is discussed in [Lewis 1996a, 1996b; Leveson, 1997; Brereton et al.,
1999; Kroeker et al., 1999; and Finkelstein, 2000]. Critical factors in software de-
velopment are discussed in the May/Tune 1999 issue of IEEE Software, especially
[Reel, 1999].

The current practice of software engineering is described in {Yourdon, 1996].
For a view on the importance of maintenance in software engineering and how to
plan for it, see [Parnas, 1994]. The unreliability of software and the resulting risks
(especially in safety-critical systems) are discussed in [Littlewood and Strigini, 1992;
Mellor, 1994; and Neumann, 1995]. Modern views of the software crisis appear in
[Gibbs, 1994] and [Glass, 1998]. [Zvegintzov, 1998] explains how little accurate data
on software engineering practice actually is available.

The fact that mathematics underpins software engineering is stressed in [Parnas,
1990]. The importance of economics in software engineering is discussed in [Boehm,
1981] and [Baetjer, 1996].

Two classic books on the social sciences and sofiware engineering are [Weinberg,
19711 and [Shneiderman, 1980]. Neither book requires prior knowledge of psychology
or the behavioral sciences in general. A newer book on the topic is [DeMarco and
Lister, 1987].

Brooks’s timeless work, The Mythical Man-Month [Brooks, 1975], is a highly
recommended introduction to the realities of software engineering. The book includes
sections on all the topics mentioned in this chapter,

Excellent introductions to the object-oriented paradigm are [Budd, 19917 and
[Meyer, 1997}. A balanced perspective of the paradigm is given in [Radin, 1996].
[Khan, Al-A’ali, and Girgis, 1995] explains the differences between the classical and
object-oriented paradigms. Three successful projects carried using the object-oriented
paradigm are described in [Capper, Colgate, Hunter, and James, 1994]. A survey of the
attitudes of 150 experienced software developers toward the object-oriented paradigm
is reported in [Johnson, 2000). Lessons learned from developing large-scale object-
oriented products are presented in [Maring, 1996] and [Fichman and Kemerer, 1997].

1.1

1.2

1.3

1.4

1.5

PROBLEMS

[Scholtz et al., 1993] is a report on a workshop heid in April 1993 on the state of
the art and the practice of object-oriented programming. A variety of short articles
on recent trends in the object-oriented paradigm can be found in {El-Rewini et al.,
1995]. Important articles on the object-oriented paradigm are found in the October
1992 issue of IEEE Computer, the January 1993 issue of IEEE Software, and the
Tanuary 1993 and November 1993 issues of the Journal of Systems and Saofrware.
Potential pitfalls of the object-oriented paradigm are described in [Webster, 1993].

PROBLEMS

You are in charge of developing a raw materials control system for a major manu-
facturer of digital telephones. Your development budget is $430,000. Approximately
how much money should you devote to each phase of the development life cycle?
How much do you expect future maintenance will cost?

You are a software-engineering consuitant. The executive vice-president of a pub-
lisher of paperback books wants you to develop a product that will carry out all the
accounting functions of the company and provide online information to the head office
staff regarding orders and inventory in the various company warchouses. Terminals
are required for 15 accounting clerks, 32 order clerks, and 42 warehouse clerks. In
addition, 18 managers need access to the data. The president is willing to pay $30,000
for the hardware and the software together and wants the complete product in 4 weeks.
What do you tell him? Bear in mind that, as a consultant, you want his business, no
matter how unreasonable his request.

You are a vice-admiral of the Navy of the Republic of Clarement. It has been decided
to call in a software development organization to develop the control software for a
new generation of ship-to-ship missiles. You are in charge of supervising the project.
To protect the government of Claremont, what clauses do you include in the contract
with the software developers?

You are a software engineer and your job is to supervise the development of the
software in Problem 1.3. List ways your company can fail to satisfy the contract with
the Navy. What are the probable causes of such failures?

Fifteen months after delivery, a fault is detected in a mechanicai engineering product
that determines the optimal viscosity of oil in internal combustion engines. The cost
of fixing the fault is $18,730. The cause of the fault is an ambiguous sentence in
the specification document. Approximately how much would it have cost to have
corrected the fault during the specification phase?

Suppose that the fault in Problem 1.5 had been detected during the implementation
phase. Approximately how much would it have cost to have fixed it then?

You are the president of an organization that builds large-scale software. You show
Figure 1.5 to your employees, urging them to find faults early in the software life cycle.
Someone responds that it is unreasonable to expect anyone fo remove faults before
having entered the product, For example, how can anyone remove a fault during the
design phasge if the fault in question is a coding fault? What do you reply?

25

26

CHAPTER 1 ¢ The Scope of Software Engineering

Look up the word system in a dictionary. How many different definitions are there?
Write down those definitions that are applicable within the context of software
engineering.

It is your first day at your first job. Your manager hands you a listing and says, ““See
if you can find the bug.” What do you reply?

You are in charge of developing the product in Problem 1.1. Will you use the object-
oriented paradigm or the structored paradigm? Give reasons for your answer.

(Term Project) Suppose that the Broadlands Area Children’s Hospital (BACH) product
of Appendix A has been implemented exactly as described. Now the Joining Children
with their Families (JCF) program is to be extended to all patients, not just those living
within a 500-mile radius of the city of Broadlands. In what ways will the existing
product have to be changed? Would it be better to discard everything and start again
from scratch?

{(Readings in Software Engineering)} Your instructor will distribute copies of [Reel,
1999]. How would you manage a product to be able to detect any signs of project
failure as early as possible?

REFERENCES

[Baetjer, 1996] H. BAETIER, Software as Capital: An Economic Perspective on Software
Engineering, IREE Computer Society Press, Los Alamitos, CA, 1996.

[Bhandari et al., 1994] I, BHANDARI, M. J. HaLLIDAY, J. CHAAR, R. CHILLAREGE, K. JoNES,
1. 8. ATkinson, C. LEPORI-COSTELLG, P. Y. JASPER, E. D, TARVER, C. C. LEWIS, AND
M. YoNEZAWA, “In-Process Improvement through Defect Data Interpretation,” IBM
Systems Journal 33 (No. 1, 1994), pp. 182-214.

[Bochm, 1976] B. W, Botum, “Software Engineering,” IEEE Transactions on Computers
C-25 (December 1976), pp. 1226-41.

[Boehm, 1979} B. W. BoruM, “Software Engineering, R & D Trends and Defense Needs,” in
Research Directions in Saftware Technology, P. Wegner (Editor), The MIT Press,
Cambridge, MA, 1979.

[Boehm, 1980] B. W. Bognm, “Developing Small-Scale Application Software Products:
Some Experimental Results,” Proceedings of the Eighth IFIP World Computer
Congress, October 1980, pp. 321-26.

[Boehm, 19811 B. W. BoeHm, Software Engineering Economics, Prentice Hall, Englewood
Cliffs, NJ, 1981.

[Brereton et al., 1999] P. BrRERETON, D. BunceN, K. BENNETT, M. MuNRo, P. LavzevLr,
L. MacauLay, D. GRiFrrTHS, AND C. STANNETT, “The Future of Software,”
Communications of the ACM 42 (December 1999), pp. 78-84.

[Brocks, 19751 F. P. Brooxs, Ir., The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley, Reading, MA, 1975, Twentieth Anniversary Edition,
Addison-Wesley, Reading, MA, 1995,

[Budd, 1991]) T. A, BUDD, An Introduction to Object-Oriented Programming,
Addison-Wesley, Reading, MA, 1991.

REFERENCES

[Capper, Colgate, Hunter, and James, 1994] N. P. Capegr, R. J. CoLGATE, J. C. HUNTER, AND
M. E. JamEs, “The Impact of Object-Oriented Technology on Software Quality: Three
Case Histories,” IBM Systems Journal 33 (No. 1, 1994), pp. 131-57.

[Coleman, Ash, Lowther, and Oman, 1994] D. CoLEMAN, D. AsH, B. LOWTHER, AND
P. Onan, “Using Metrics to Evaluate Software System Maintainability,” JEEE
Computer 27 (August 1994), pp. 44-49.

{Daly, 1977] E. B, DALy, “Management of Software Development,” [EEE Transactions on
Saftware Engineering SE-3 (May 1977), pp. 229-42.

[DeMarco and Lister, 1987] T. DEMarco aNp T. LISTER, Peopleware: Productive Projects
and Teams, Dorset House, New York, 1987,

[DeMarco and Lister, 1989] T, DEMarco anp T. LISTER, “Software Development: The State
of the Art vs. State of the Practice,” Proceedings of the 11th International Conference on
Software Engineering, Pittsburgh, May 1989, pp. 271-75.

[Ebert, Matsubara, Pezz€, and Bertelsen, 1997] C. EBErT, T. MATSUBARA, M. PEZZE, AND
O. W. BERTELSEN, “The Road to Maturity: Navigating between Craft and Science,”
IEEE Software 14 (November/December 1997), pp. 77~88.

[El-Rewini et al., 1995] H. EL-Rewin, S. Hamivtow, Y.-P. SHaN, R. EARLE,

8. McGAUGHEY, A. HELAL, R. BADRACHALAM, A. CHIEN, A. GriMsHAW, B, LEE,
A. WaDg, D. MoRrsE, A. BLMAGRAMID, E. PITOURA, R. BINDER, AND P. WEGNER,
“Object Technology,” IEEE Computer 28 {October 1995), pp. 58-72.

[Elshoff, 1976] 1. L. ELsHOFE, “An Analysis of Some Commercial PL/I Programs,” IEEE
Transactions on Software Engineering SE-2 (June 1976), 113-20.

[Fagan, 1974] M. E. Pacan, “Design and Code Inspections and Process Control in the
Development of Programs,” Technical Report IBM-SSD TR 21.572, IBM Corporation,
December 1974,

[Fichman and Kemerer, 1997] R, G. FricHMaN anD C. F. KEMERER, “Ohbject Technology and
Reuse: Lessons from Harly Adopters,” IEEE Computer 30 (July 1997}, pp. 47-57.

[Finkelstein, 2000] A. FiNkeLSTEIN (Eprrow), The Future of Software Engineering, IEEE
Computer Society Press, Los Alamitos, CA, 2000.

[Gibbs, 1994] W. W. GIBBS, “Software’s Chronic Crisis,” Scientific American 271
(September 1994), pp. 86-95.

{Glass, 1998] R. L.. GLass, “Is There Really a Software Crisis?* JEEE Software 15
(January/February 1998), pp. 104-5.

(Grady, 1994] R. B. GraDY, “Successfully Applying Software Metrics,” JEEE Computer 27
{September 1994), pp. 18-25.

[IEEE 610.12, 1990] “A Glossary of Software Engineering Terminology,” IEEE 610.12-19%90,
Institute of Electrical and Blecteonic Engineers, Inc., New York, 1990.

[ISO/IEC 12207, 1995] “ISO/IEC 12207:1995, Information Technology—Software
Life-Cycle Processes,” International Organization for Standardization, International
Electrotechnical Commission, Geneva, 1995.

[Tohnson, 2000] R. A. Jounson, “The Ups and Downs of Object-Oriented System
Development,” Communications of the ACM 43 (October 2000), pp. 69-73.

[Josephson, 1992] M. JoserHson, Edison: A Biography, John Wiley and Sons, New York,
1992,

[Kan et al., 19941 8. H. Xan, 8. D. Durr, D. N. AMUNDsON, R. J. LINDNER, AND
R. I. HEDGER, “AS/400 Software Quality Management,” IBM Systems Journal 33
(No. 1, 1994), pp. 62-88.

[Kelly, Sherif, and Hops, 1992] J. C. KELLY, I. S. SHERIF, AND I. Hops, “An Analysis of
Defect Densities Found during Software Inspections,” Journal of Systems and Software
17 (Januagry 1992), pp. 111-17.

27

28

CHAPTER 1 ¢ The Scope of Software Engineering

[Khan, Al-A'ali, and Girgis, 1995] E. H. Kuan, M. AL-A’aLI, AND M. R. GIRGIS,
“Dbject-Oriented Programming for Structured Procedural Programming,” IEEE
Compurer 28 (October 1995), pp. 48-57.

[Kroeker et al., 1999] K. K. Kroeker, L. WaLL, . A, TavLor, C. Horn, P, BASSETT,

1. K. OusTERHOUT, M. L. Guuss, R, M. SOLEY, . WaLDo, AND C. S1MONYI, “Software
[Rlevolution: A Roundtable,” [EEE Computer 32 (May 1999), pp. 48-57.

[Leveson, 1997] N. G. Leveson, “Software Engineering: Stretching the Limits of
Complexity,” Conununications of the ACM 40 (February 1997), pp. 129-31.

[Leveson and Turner, 1993] N. G. LEVESoN aND C. S. TURNER, “An Investigation of the
Therac-25 Accidents,” IEEE Computer 26 (July 1593), pp. 18-41.

[Lewis, 1996a] T. LEwis, “The Next 10,000, Years: Part I," JEEE Computer 29 (April 1996),
pp. 64-70.

[Lewis, 1996b] T. LEwrs, “The Next 10,000, Years: Part IL” IEEE Computer 29 (May 1996),
pp. 78-86.

[Lientz, Swanson, and Tompkins, 1978] B. B. LienTz, E. B. SwansoN, aNb G, E. TOMPKINS,
“Characteristics of Application Software Maintenance,” Communications of the ACM
21 (fune 1978), pp. 466-71.

[Littlewood and Strigini, 1992] B. LirtLEwoop AND L. STrIGINY, “The Risks of Software,”
Scientific American 267 (November 1992), pp. 62-75,

[Maring, 1996] B. Maring, “Object-Oriented Development of Large Applications,” [EEE
Software 13 (May 1996), pp. 33-40.

[Mellor, 1994] P. MELLOR, “CAD: Computer-Aided Disaster,” Technical Report, Centre for
Software Reliability, City University, London, UK., July 1594.

[Meyer, 1992a] B. Mever, “Applying ‘Design by Contract’,” JEEE Computer 25 (October
1992), pp. 40-51.

[Meyer, 1997] B. Mever, Object-Oriented Software Construction, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, 1997.

[Naur, Randell, and Buxton, 1976] P. Naur, B. RANDELL, AND J. N. BuxTon (Editors),
Sofrware Engineering: Concepts and Techniques: Proceedings of the NATO
Conferences, Petrocelli-Charter, New York, 1976.

[Neumann, 1980] P. G. NEuMaNN, Letter from the Editor, ACM SIGSOFT Software
Engineering Notes 5 (July 1980), p. 2.

[Neumann, 19951 P. G. NEUMANN, Computer-Related Risks, Addison-Wesley, Reading, MA,
1995,

[Parnas, 1990] D. L. PARNAs, “Education for Computing Professionals,” IEEE Computer 23
(January 1990), pp. 17-22.

[Parnas, 1994] D. L. ParNaAs, “Software Aging," Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 1994, pp. 279-87.

[Radin, 1996] G. Rapin, “Object Techunology in Perspective,” IBM Systems Journal 35
(No. 2, 1996), pp. 124-126.

[Reel, 1999] 1. 8. RekL, “Critical Success Factors in Software Projects,” IEEE Software 16
(May/Tune 1999), pp. 18-23.

[Scholtz et al,, 1993] I, ScHoLTz, S. CHIDAMBER, R, GLASS, A. GOERNER, M. B. Rosson,,
M. STARK, AND L. VESSEY, “Object-Oriented Programming: The Promise and the
Reality,” Journal of Systems and Software 23 (November 1993), pp. 199-204,

[Shapiro, 1994] F. R, SHAPIRO, “The First Bug,” Byre 19 (April 1994), p. 308.

[Shneiderman, 1980] B. SHNEIDERMAN, Software Psychology: Human Factors in Computer
and Information Systems, Winthrop Publishers, Cambridge, MA, 1980.

[Stephenson, 1976] W. E. STEPHENSON, “An Analysis of the Resources Used in Safeguard
System Software Development,” Beli Laboratories, Draft Paper, August 1976.

REFERENCES

(Wasserman, 1996] A. I. WasserMaN, “Toward a Discipline of Software Engineering,” [EEE
Software 13 (November/December 1996), pp. 23-31.

[Webster, 1995] B. F. WEBSTER, Pitfalls of Object-Oriented Development, M&T Books, New
York, 1995.

[Weinberg, 19711 G. M. WEINBERG, The Psychology of Computer Programming,

Van Nostrand Reinhold, New York, 1971,

[Wirfs-Brock, Wilkerson, and Wiener, 1990] R. WirFs-Brock, B. WILKERSON, AND
L. WieNER, Designing Object-Oriented Software, Prentice Hall, Englewood Cliffs, NJ,
1990,

[Yourdon, 1996] E. YOURDON, Rise and Resurrection of the American Programmey, Yourdon
Press, Upper Saddle River, NJ, 1996.

[Zelkowitz, Shaw, and Gannon, 1979] M. V. ZeLxowitz, A, C. SHAW, AND J. D, GANNON,
Principles of Software Engineering and Design, Prentice Hall, Englewood Cliffs, NJ,
1979.

[Zvegintzov, 1998] N. ZvEGINTZOYV, “Frequently Begged Questions and How to Answer
Them,” IEEE Software 15 (January/February 1998), pp. 93-96.

29

chapter

=

SOFTWARE LiFe-CycLE MODELS

A software product usually begins as a vague concept, such as “Wouldn’t it be nice if the computer could
plot our graphs of radioactivity levels,” or “If this corporation doesn’t have an exact picture of our cash flow
on a daily basis, we will be insolvent in six months,” or even “If we develop and market this new type of
spreadsheet, we’ll make a million dolars!” Once the need for a product has been established, the product goes
through a series of development phases. Typically, the product is specified, designed, and implemented. If the
client is satisfied, the product is installed and, while operational, maintained. When the product finally comes
to the end of its useful life, it is decommissioned. The series of steps through which the product progresses is
called the life-cycle model.

The life-cycle history of each product is different. Some products spend years in the conceptual stage,
perhaps because current hardware just is not fast enough for the product to be viable or because fundamental
research has to be done before an efficient algorithm can be developed, Other products are quickly designed
and implemented, then spend years in the maintenance phase being modified to meet the users’ changing needs.
Yet other products are designed, implemented, and maintained; then after many years of radical maintenance,
it will be cheaper to develop a completely new product rather than attempt to patch the current version yet
again.

In this chapter, a number of different life-cycle models are described. The two most widely used models
are the waterfall model and the rapid prototyping model. In addition, the spiral model now is receiving
considerable attention. To help shed light on the strengths and weaknesses of these three models, other life-
cycle models also are examined, including incremental models, the synchronize-and-stabilize model, and the
highly unsatisfactory build-and-fix model.

3.1 BuiLb-AND~FIX MODEL

It is unfortunate that many products are developed using what might be termed the
build-gnd-fix model. The product is constructed with no specifications or attempt at
design. Instead, the developers simply build a product that is reworked as many times

64

e e e e e e e A e

st o T

3.2 WATERFALL MODEL

Build first
version

Modifyuntit T~ T~ 7

client is satisfied :
|
|
|

Maintenance
phase

~— Development
JT 7 Mamnanee

Figure 3.1 Buildandfix model,

as necessary to satisfy the client. This approach is shown in Figure 3.1. Although
this approach may work well on short programming exercises 100 or 200 lines long,
the build-and-fix mode! is totally unsatisfactory for products of any reasonable size.
Figure 1.5 shows that the cost of changing a software product is relatively small
if the change is made during the requirements, specification, or design phases but
grows unacceptably large if changes are made after the product has been coded or,
worse, if it is already in the maintenance phase. Thus, the cost of the build-and-fix
approach actually is far greater than the cost of a properly specified, carefully designed
product. In addition, the maintenance of a product can be extremely difficult with no
specification or design documents and the chance of a regression fault occurrmg is
considerably greater.

Instead of the build-and-fix approach, it is essential that, before development
of a product begins, an overall game plan or life-cycle model be chosen. The life-
cycle model (sometimes abbreviated to just model) specifies the various phases of the
software process, such as the requirements, specification, design, implementation,
integration, and maintenance phases, and the order in which they are to be carried
out. Once the life-cycle model has been agreed to by all parties, development of the
product can begin.

Until the early 1980s, the waterfall modet was the only widely accepted life-cycle
model, This model is now examined in some detail.

3.2 WATERFALL MODEL

The waterfall model was first put forward by Royce [Royce, 1970]. A version of
the model appears as Figure 3.2. First, requirements are determined and checked by

65

66

CHAPYTER 3 o Software Life-Cycle Models

= = =
Requirements { Changed i S
phase l'"""‘l requirements I
p oo 1 '
Verif | i I
g ! 1} S |
b |
Y i
Specification !
phase e e e ~ :
Verify : II
I
Y i
Design f :
phase e — 211
Verify : } :
| i
]
- Implementation I Ly
phase ——— : |
|
Test | : ! }
I g
Pl
i
Intagration] : (I
phase Pyl
[
Tast L1
l (AN
[
Maintenance
— Development phase
- — —» Maintenance 'l'

Retirement

Figure 3.2 Waterfall model.

the client and members of the software quality assurance (SQA) group. Then the
specifications for the product are drawn up; that is, a document is produced stating
what the product is to do. The specifications are checked by the SQA group and
shown to the client. Once the client has signed off the specification document, the
next step is:to draw up the software project management plan, a detailed timetable
for developing the software, This plan also is checked by the SQA group. When
the client has approved the developers’ duration and cost estimates for the product,
the design phase begins. In contrast to the specification document that describes what
the product is to do, the design documents describe how the product is to do it.

o

e —

e v e e i S

3.2 WATERFALL MODEL

During the design phase, sometimes a fault in the specification document becomes L2y
Vﬁﬁ %:9-* tQ..

agparent The specifications may be incomplete (some Teatuies of the product have

been omitted), contradlctm y (two (two or more statemment E“

define the product in Incomp’atlbie ‘ways), or ambiguous (the specification document

has more than one possible interpretation). The presence of incompleteness, contra- @@O Mq%&

dictions, or ambiguities necessitates a revision of the specification document before C[&

the software development process can continue. Referring again to Figure 3.2, the A

arrow from the left side of the design phase box back to the specification phase box D

constitutes a feedback loop. The software production process follows this leop if the X ’k@“? cle

developers have torevise the specification document during the design phase. With the Lo W‘-“ % Ca e

client’s permission, the necessary changes are made to the specification document, s =

and the planning and design documents are adjusted to incorporate these changes. o Ac‘yv(‘),edbo

When the developers finally are satisfied, the design documents are handed to the - st
CoPrshiic ~®

programmers for implementation. L _

Flaws in the design may appear during implementation. For example, the design MV' R 2l)
of a real-time system may prove to be too slow when.implemented. An example of- [o .
such a design flaw results from the fact that most compilers generate code to store g Wl‘f"ﬂm

the elements of an array b in row-major ordex, that is, in the order b{1, 1}, b{1, 2),
b{1,3), ..., b(1, n), b2, 1), b2, 2), b{2, 3), ..., b(2, n), and s0 on. Suppose a ~ ©
200 x 200 array b is stored on disk with one row to a block, that is, a 200-word row = Q"’%l\«&«u
is read into a buffer in main memory each time a read statement is executed. The
complete array is to be read from disk into main memory. If the array is read row by
row, then exacily 200 blocks have to be transferred from the disk to main memory
to read all 40,000 elements. The first read statement causes the first row to be put in
the buffer, and the first 200 reads use the contents of the buffer. Only when the 201st
element is required does a second block need to be transferred from disk to main
memory. But, if the product reads the array column by column, then a fresh block has
to be transferred for every read, because consecutive reqds access different rows and,
hence, different blocks. Thus, 40,000 block transfers would be required, instead of
200 when the array is read in row-major order, and the input-output time for that part
of the product would be 200 times longer. Design faults of this type must be corrected
before the team can continue software development,

During the implementation phase, the waterfall model with its feedback loops
permits modifications to be made to the design documents, the specification document,
and even the requirements, if necessary. Modules are implemented, documented, and
integrated to form a complete product. (In practice, the implementation and integration
phases usually are carried out in parallel. As described in Chapter 15, each module is
integrated as soon as it has been implemented and tested.) During integration it may
be necessary to backtrack and make modifications to the code, preceded perhaps by
modifications to the specification and design documents,

A critical point regarding the waterfall nodel is that no phase is completeuntil the
documentation for that been completed and the products of that phase have

been approved by the SQA group. This camies over into modifications; if the products
of an earlier phase have to be changed as a consequence of following a feedback loop,
that earlier phase is deemed to be complete only when the documentation for the phase
has been modified and the modifications have been checked by the SQA group.

Ty

e

68

CHAPTER 3 * Software Life-Cycle Models

‘When the developers feel that the product has been successfully completed, it is
given to the client for acceptance testing. Deliverables at this stage include the user
manual and other documentation listed in the contract. When the client agrees that
the product indeed satisfies its specification document, the product is handed over to
the client and installed on the client’s computer.

Once the client has accepted the product, any changes, whether to remove resid-
ual faults or to extend the product in any way, constitute maintenance. As can be seen
in Figure 3.2, maintenance may require not just implementation changes but aiso
design and specification changes. In addition, enhancement is triggered by a change
in requirements. This, in turn, is implemented via changes in the specification doc-
ument, design documents, and code. The waterfall model is a dynamic model, and
the feedback loops play an important role in this dynamism. Again, it is vital that the
documentation be maintained as meticulously as the code itself and the products of
each phase be checked carefully b e a

The waterfail model has been used with great success on a wide variety of
products. However, there have also been failures, To ile_m_df__vgqt_l'lgr_m'_ml_m_gg_
the waterfall model for a project, it is necessary to understand both its §trengths

and weaknesses.
L - SRS —

3.2 Anavysis of THE Warerrawr, Mobpsr

The waterfall model has many advantages, including the enforced disciplined ap-
proach—the stipulation that documentation be provided at each phase and the'require-
ment that all the products of each phase (including the documentation) be checked
carefully by SQA. An essential aspect of the milestone terminating each phase is
approval by the SQA group of all the products of that phase including all the docu-
mentation stipulated for that phase.

' Inherent in every phase of the waterfall model is testing. Testing is not a separate
phase to be performed only after the product has been constructed, it is not to be
performed only at the end of each phase. Instead, as stated in Chapter 2, testing
should proceed continuously throughout the software process. Specifically, while
the requirements are being drawn up they must be verified, as must the specification
document and the software project management plan as well as the design documents.
The code must be tested in a variety of ways. During maintenance it is necessary to
ensure not only that the modified version of the product still does what the previous
version did-—and still does it correctly (regression testing)—but that it totally satisfies
any new requirements imposed by the client.

The specification docurment, design documents, code docurmentation, and other
documentation such as the database manual, user manual, and operations manual
are essential tools for maintaining the product. As stated in Chapter !, on average
67 percent of a software budget is devoted to maintenance, and adherence to the
waterfall model with its documentation stipulations make this maintenance easier.
As mentioned in the previous section, the same methodical appreach to software
production continues during maintenance. Every change must be refiected in the

R e S LS

3.2 WATERFALE MODEL

relevant documentation. Many of the successes of the waterfall model have been due
to its essence as a documentation-driven model.

However, the faci that the waterfall model is documentation driver: also can be
a disadvantage. To see this, consider the following two somewhat bizarre scenarios.
First, Joe and Jane Johnson decide to build a house. They consult with an architect.
Instead of showing them sketches, plans, and perhaps a model, the architect gives themn
a 20-page single-spaced typed document describing the house in highly technical
terms. Even though neither Joe nor Jane has any previous architectural experience
and hardly understands the document, they enthusiastically sign it and say, “Go right
ahead, build the house.”

Another scenario is as follows. Mark Marberry buys his suits by mail order.
Instead of mailing him pictures of the suits and samples of available cloths, the
company sends Mark a written description of the cut and the cloth of its products.
Mark orders a suit solely on the basis of a written descriptiomn.

The preceding two scenarios are highly unlikely. Nevertheless, they typify pre-
cisely the way software often is constructed using the waterfall model. The process
begins with the specifications. In general, specification documents are long, detailed,
and quite frankly, boring to read. The client usually is inexperienced in reading soft-
ware specifications, and this difficulty is compounded because the specification doc-
uments usually are written in a style with which the client is unfamiliar. The difficulty
is even worse when the specifications are written in a formal specification language
like Z [Spivey, 1992] (Section 11.8). Nevertheless, the client proceeds to sign off the
specification document, whether properly understood or not. In many ways, there is
little difference between Joe and Jane Johnson contracting o have a house built from
a written description they only partially comprehend and clients approving a soft-
ware product described in terms of a specification document that they only partially
understand.

Mark Marberry and his mail-order suits may seem bizarre in the extreme, but that
is precisely what happens when the waterfall model is used in software development.
The first time that the client sees a working product is only after the entire product
has been coded. Small wonder that software developers live in fear of the sentence,
“T know this is what I asked for, but it isn’t really what I wanted.”

What has gone wrong? There is a considerable difference between the way a
client understands a product as described by the specification document and the actual
product. The specifications exist only on paper; the client therefore cannot really
understand what the product itself will be like. The waterfall model, depending as it
so crucially does on written specifications, can lead to the construction of products
that simply do not meet the clients’ real needs,

In fairness, it should be pointed out that, just as an architect can help a client
to understand what is to be built by providing models, sketches, and plans, so the
software engineer can use graphical techniques, such as data flow diagrams (Section
11.3.1), to communicate with the client. The problem is that these graphical aids do
not describe how the finished product will work. For example, there is a considerable
difference between a flowchart (a diagrammatic description of a product) and the
working product itself.

69

_

70

S pco L
AR ol 50 <
BLCfrin

v

cHAPTER 3 ¢ Software Life-Cycle Models

The strength of the next life-cycle model to be examined, the rapid prototyping
model, is that it can help ensure that the client’s real needs are met.

3.3 RAPID PrOTOTYPING MODEL

A rapid prototype is a working model functionally equivalent fo a subset of the
product. For example, if the target product is to handle accounts payable, accounts
receivable, and warehousing, then the rapid prototype might consist of a product that
performs the screen handling for data capture and prints the reports, but does no file
updating or error handling. A rapid prototype for a target product that is to determine
the concentration of an enzyme in a solution might perform the calculation and display
the answer, but without any validation or reasonableness checking of the input data.

The first step in the rapid prototyping life-cycle model depicted in Figure 3.3 is
to build a rapid prototype and let the client and future users interact and experiment
WOH&M that the rapid prototype indeed
does most of what is required, the developers can draw up the specification document
with some assurance that the product meets the client’s rezal needs.

Having constructed the rapid prototype, the software process continues as shown
in Figure 3.3. A major strength of the rapid prototyping model is that the develop-
ment of the product essentially is linear, proceeding from the rapid prototype to the
delivered praduct; the feedback loops of the waterfall model (see Figure 3.2) are less
likely to be needed in the rapid prototyping model. There are a number of reasons for
this. First, the members of the development team-use-the. rapid prototype to construct
the specification document. BCB&Hﬁ&ﬂl&Mn_gﬁlpld prototype has been validated
through interaction with the client, it is reasonable to expect that the resulting spec-
ification document will be correct. Second, consider the design phase. Even though
the rapid prototype (quite rightly) has been hurriedly assembled, the design team can
gain insights from it—at worst, they will be of the “how not to do it” variety. Again,
the feedback loops of the waterfall model are less likely to be needed here.

Implementation comes next. In the waterfall model, implementation of the design
sometimes leads to design faults coming to light. In the rapid prototyping model, the
fact that a preliminary{working modctatready as been built el yhias been builttends 1o lessen the need to
repair the design during or after implementation. The profotype gives some'insight to
the design team, even though it may reflect only partial functionality of the complete
target product.

Once the product has been accepted by the client and installed, maintenance
begins. Depending on the maintenance that has to be performed, the cycle is reentered
either at the requirements, specification, design, or implementation phase.

An essential aspect of a rapid prototype is embodied in the word rapid. The
developers should endeavor to construct the prototype as rapidly as possible to speed

up the software development process. After all, the sole use of the rapid rototype is
to determine wha 's real needs are; once this has been determined, the rapid

prototype implementation is d:scmded?lﬁfhe lessons learned are retained and used
in subsequent development phases. For this reason, the internal structure of the rapid

s o s

3.3 RaPID PROTOTYPING MODEL 1
i e "
Rapid i Changed fin =
prototype l_.__J requirements t
| T T 1 '
Verif | i
d | __ Vet :
¥ ¥ :
Specification :
hase
p = ——— — — —————— — '—] l
Vatify : :
|l
¥ | i
. |1
Design | _ _ _ _ _ _ __
phase il —: : :
Verify : : :
I
r Fq !
byl =
Implementation e ——— 1) I
phase i |
t |
Test l [l |
1 [I i
| | (I
k] I | 1
I
Integration | : |
phase BN
I
Test B
I
Pt
> Development Maintenance
- ——+ Maintenance phase
[Retirement |

Figure 3.3 Rapid protoiyping model.

prototype is not relevant. What is important is that the prototype be built rapidly and
modified rapidly to refleci the client’s needs. Therefore, speed is of the essence.

3.3.1 Intecraring THE WaTErFaLL AND RaPID
Protoryrine MobkLs

Despite the many successes of the waterfall model, it has a major drawback in that what
is delivered to the client may not be what the client really needs. The rapid prototyping
model has also had many successes. Nevertheless, as described in Chapter 10, it has
not yet been proven beyond all doubt, and the model may have weaknesses of its own.

il

72

CHAPTER 3 ¢ Software Life-Cycle Models

One solution is to combine the two approaches: This can be seen by comparing
the phases of Figue 3.2 (waterfall model) with those of Figure 3.3 (rapid prototyping
model}. Rapid prototyping can be used as a requirements analysis technique; in other
words, the first step is to build a rapid prototype to determine the client’s real needs,
then to use that rapid prototype as-the-input.to the waterfall model.

This approach has a useful side effect. Some organizations are reluctant to use the
rapid prototyping approach because of the risks involved in using any new technology.
Introducing rapid prototyping into the organization as a front end to the waterfall
model gives management the opportunity to assess the technique while minimizing
the associated risk.

The rapid prototyping mode] is analyzed in greater detail in Chapter 10, where
the requirements phase is described. A different class of life-cycle model is now
examined.

3.4 INCREMENTAL MODEL

Software is built, not written. That is, software is constructed step by step, in the
same way that a building is constructed. While a software product is in the process
of being developed, each step adds to what has gone before. One day the design is
extended; the next day another module is coded, The construction of the complete
product proceeds incrementally in this way until completion.

Of course, it is nat quite true that progress is made every day. Just as a contractor
occasionally has to tear down an incorrectly positioned wall or replace a pane of glass
that a careless painter has cracked, it sometimes is necessary to respecify, redesign,
recode, or at worst, throw away what already has been completed and start again. But
the fact that the product sometimes advances in fits and starts does not negate the
basic reality that a software product is built piece by piece.

The realization that software is engineered incrementally has led to the devel-
opment of a mode! that exploits this aspect of software development, the so-called
incremental model shown in Figure 3.4. The product is designed, implemented, in-
tegrated, and tested as a series of incremental builds, where a buiid consists of code
pieces from various modules interacting to provide a specific functional capability.

For example, if the product is to control a nuclear submarine, then the navigation
system could constitute a build, as could the weapons control system. In an operating
system, the scheduler could be a build and so could the file management system. At
each stage of the incremental model, a new build is coded then integrated into the
structure, which is tested as a whole. The process stops when the product achieves
the target functionality, that is, when the product satisfies its specifications. The de-
veloper is free to break up the target product info builds as he or she sees fit, subject
only to the constraint that, as each build is integrated into the existing software, the
resulting product must be testable. If the product is broken into too few builds, then the
incremental mode] degenerates into the build-and-fix approach (Sectien 3.1). Con-

SR T Y e A

3.4 NCREMENTAL MODEL

Requirements
phase

Verify

r

Spaecification
phase

Vaerity

Y

Architectural
design

Verify

For each build:
Perform detailed [~ — 7
design, imple- !
mentation, and !
integration. Test. |

Deliver to client. :

|
|

~—— Development

h Maintenance
- =~ Maintenance

phase

Retirement —I

Figure 3.4 Incremental model,

versely, if the product consists of too many builds, then at each stage, considerable
time is spent in the integration testing of only a smali amount of additional function-
ality. What constitutes an optimal decomposition into builds varies from product to
product and from developer to developer,

The strengths and weaknesses of the incremental model are now presented.

3.4.1 Anavvsis of THE IncrementalL MobpEL

The aim of both the waterfall and rapid prototyping modeis is delivery to the client of
a complete, operational-quality product, That is, the client is presented with a product
that satisfies all requirements and is ready for use. Correct use of either the waterfall
or the rapid prototyping model results in a product that wili have been thoroughly
tested, and the client should be confident that the product can be utilized for the

73

74

CHAPTER 3 ¢ Software Life-Cycle Models

purpose for which it was developed. Furthermore, the product comes with adequate
documentation so that, not only can it be used by the client’s organization, but all
three types of maintenance—adaptive, perfective, and corrective (Section 1.3)—can
be performed as necessary. With both models there is a projected delivery date, and
the intention is to deliver the complete product in full working order on or before that
date,

In contrast, the incremental model delivers an operational-quality product at each
stage, but one that satisfies only a subset of the client’s requirements. The complete
product is divided into builds, and the developer delivers the product build by build.
A typical product usually consists of 5 to 25 builds. At each stage, the client has
an operational-quality product that does a portion of what is required; from delivery
of the first build, the client is able to do useful work. With the incremental model,
portions of the total product might be available within weeles, whereas the client
generally waits months or years to receive a preduct built using the waterfall or rapid
prototyping model.

Another advantage of the incremental model is that it reduces the traumatic
effect of imposing a completely new product on the client organization. The gradual
introduction of the product via the incremental model provides time for the client to
adjust to the new product. Change is an integral part of every growing organization;
because a software product is a model of reality, the need for change is an integral part
of delivered software. Change and adaptation are natural to the incremental model,
whereas change can be a threat when products are developed and introduced in one
large step.

From the client’s financial viewpaint, phased delivery requires no large capital
outlay. Instead, there is an excellent cash flow, particularly if the earliest builds are
chosen on the basis of delivering a high return on invesiment. A related advantage
of the incremental mode! is that it is not necessary to complete the product to get a
return on investment. Instead, the client can stop development of the product at any
time.

A difficulty with the incremental model is that each additional build somehow
has to be incorporated into the existing structure without destroying what has been
built to date, Furthermore, the existing structure must lend itself to extension in this
way, and the addition of each succeeding build must be simple and straightforward,
Although this need for an open architecture certainly is a short-term difficulty, in the
long term it can be a real strength. Every product undergoes development, followed
by maintenance. During development it is indeed important to have clear specifica-
tions and a coherent and cohesive design, But once a product enters the maintenance
phase, the requirements for that product change, and radical enhancement easily can
destroy a coherent and cohesive design to the extent that further maintenance becomes
impossible. In such a case, the product must be rebuilt virtually from scratch. That
the design must be open-ended is not merely a prerequisite for developiment using the
incremental model but is essential for maintenance, irrespective of the model selected
for the development phase. Thus, although the incremental model may require more
careful design than the holistic waterfall and rapid prototyping models, the payoff
comes in the maintenance phase. If a design is flexible enough to support the incre-
mental model, then it certainly will allow virtually any sort of maintenance without

T g e A

3.5 EXTREME PROGRAMMING

falling apart. In fact, the incremental model does not distingnish between developing
a product and enhancing (maintaining) it; each enhancement is merely an additional
build.

All too frequently, the requirements change while development is in progress;
this problem is discussed in greater detail in Section 16.4.4. The flexibility of the
incremental model gives it a major advantage over the waterfall and rapid prototyping
models in this regard. On the negative side, the incremental model too easily can
degenerate into the build-and-fix approach. Control of the process as a whole can be
lost, and the resulting product, instead of being open-ended, becomes a maintainer's
nightmare. In a sense, the incremental model is a contradiction in terms, requiring
the developer to view the product as a2 whole in order to begin with a design that
will support the entire product, including future enhancements, and simultaneously
to view that product as a sequence of builds, each essentially independent of the next.
Unless the developer is skilled enough to be able to handle this apparent contradiction,
the incremental model may lead to an unsatisfactory product.

In the incremental model of Figure 3.4, the requirements, specifications, and
architectural design all must be completed before implementation of the various builds
commences. A more risky concurrent version of the incremental model is depicted in
Figure 3.5. Once the client’s requirements have been elicited, the specifications of the
first build are drawn up. When this has been completed, the specification team turns
to the specifications of the second build while the design team designs the first build.
Thus, the various builds are constructed in parallel, with each team using information
gained in all the previous builds.

This approach incurs the real risk that the resulting builds will not fit together.
With the incremental model of Figure 3.4, the need for the specification and architec-
tural design to be completed before starting the first build means an overall design at
the start. With the concurrent incremental model of Figure 3.5, unless the process is
monitored carefully, the entire project risks falling apart, Nevertheless, this concur-
rent model has had some successes. For example, it was used by Fujitsu to develop a
large-scale communication system [Aoyama, 1993].

3.5 EXTREME PROGRAMMING

Extreme programming [Beck, 1999] is a somewhat controversial new approach to
software development based on the incremental model. The first step is that the soft-
ware development team determines the various features (stories) that the client would
like the product to support. For each such feature, the team informs the client how
long it will take to implement that feature and how much it will cost. This first step
corresponds to the requirements and specification phases of the incremental model
(see Figure 3.4)

The client selects the features to be included in the each successive build us-
ing cost-benefit analysis (Section 5.2), that is, on the basis of the time and the cost
estimates provided by the development team as well as the potential benefits of the

75

“|enow jojuawaiaul jua1induod S11 810 ﬂh-mu
o4 ! [1

dwp —~————
usiP o) sonesepy | - . wes} uonelBajul juonejuswa)duwg
18A[eq ‘uopejuswa|duy uiiseqg - suoneoyoeds | wuping oo “._om_Mu _UW_MMM “l|r..H
/ N -
/ . il -~ - -
W9 0} B uopeifarul .
Jeniea [T | ‘woneewsidwg ubisag sucpeowoads | g ping
/ e o~ ~
usio 0} uonefiz .
1oAlRg “— ‘voneswaldiy ubisag suoneaypads | g pung
/ e -~ —
/ . &~ = -
wao o} uoneibajul
lanjaq ‘uoneaLLRt W] ubiseq suoneoiyoads

1} pung

76

Ty

mrrre

N—

fo-

3.6 SYNCHROMIZE-AND-STABILIZE MODEL

feature to his or her business. The proposed build is broken down into smaller pieces,
termed tasks. A programmer first draws up test cases for a task. Then, working with
a pariner on one screen (pair programming) [Williams, Kessier, Cunningham, and
Jeffries, 2000], the programmer implements the task, ensuring that all the test cases
work correctly. The task then is integrated into the current version of the product.
Ideally, implementing and integrating a task should take no more than a few hours, In
general, a number of pairs implement tasks in parallel, so integration can take place
continuously. The test cases used for the task are retained and utilized in all further
integration testing.
A number of featares of extreme programming (XP) are somewhat unusual:

1. The computers of the XP team are set up in the center of a large room lined with
small cubicles.

A client representative works with the XP team at all times,
3. No individual can work overtime for two successive weeks.

There is no specialization. Instead, all members of the XP team work on specifi-
cations, design, code, and testing.

5. Asinthe more risky incremental model depicted in Figure 3.5, there is no overall
design phase before the various builds are constructed. Instead, the design is
modified while the product is being built. This procedure is termed refactoring.
‘Whenever atest case will not run, the code is reorganized until the team is satisfied
that the design is simple, straightforward, and runs all the test cases satisfactorily.

XP has been used successfully on a number of small- and medium-size projects.
These range from a 9 person-month shipping tariff calculation system to a 100 person-
year cost analysis system [Beck, 1999]. The strength of XP is that it is useful when
the client’s requirements are vague or changing. However, XP has not yet been used
widely enough to determine whether this version of the incremental model will fulfill
its early promise.

3.6 SYNCHRONIZE-AND-STABILIZE MODEL

Microsoft, Inc., is the world’s largest manufacturer of commercial off-the-shelf soft-
ware. The majority of its packages are built using a version of the incremental
model] that has been termed the synchronize-and-stabilize model [Cusumano and
Selby, 1997].

The requirements analysis phase is conducted by interviewing numerous potential
customers for the package and extracting a list of features with priorities set by the
customers. A specification document is drawn up. Next, the work is divided into three
or four builds. The first build consists of the most critical features, the second build
consists of the next most critical features, and so on. Each build is carried out by
a number of small teams working in paraliel. At the end of each day all the teams

77

78

CHAPTER 3 ¢ Software Life-Cycle Models

synchronize, that is, they put together the partially completed components and test
and debug the resulting product, Stebilization is performed at the end of each build.
Any remaining fanlts that have been detected are fixed and the build is frozen, that is,
no further changes will be made to the specifications.

The repeated synchronization step ensures that the various components always
work together. Another advantage of this regular execution of the partially constructed
product is that the developers obtain an early insight into the operation of the product
and can modify the requirements, if necessary, during the course of a build. The
model even can be used if the initial specification is incomplete. The synchronize-
and-stabilize model is considered further in Section 4.5, where team organizational
details are discussed.

The spiral model has been left to last because it incorporates aspects of all the
other models.

3.7 SpPirAL MODEL

Almost always, an element of risk is involved in the development of software. For ex-
ample, key personnel can resign before the product has been adequately documented.
The manufacturer of hardware on which the product is critically dependent can go
bankrupt, Too much, or too little, can be invested in testing and quality assurance. Af-
ter spending hundreds of thousands of dollars on developing a major software product,
technological breakthroughs can render the entire product worthless. An organization
may research and develop a database management system, but before the product can
be marketed, a lower-priced, functionally equivalent package is announced by a com-
petitor. The components of a product built using the incremental model of Figure 3.5
may not fit together. For obvious reasons, software developers try to minimize such
risks wherever possible.

One way of minimizing certain types of risk is to construct a prototype. As
described in Section 3.3, an excellent way of reducing the risk that the delivered
product will not satisfy the client’s real needs is to construct a rapid prototype during
the requirements phase. During subsequent phases, other sorts of prototypes may be
appropriate, For exatple, a telephone company may devise a new, apparently highly
effective algorithm for routing calls through a long-distance network. If the product is
implemented but does not work as expected, the telephone company will have wasted
the cost of developing the product. In addition, angry or inconvenienced customers
may take their business elsewhere. This scenario can be avoided by constructing a
prototype to handle only the routing of calls and testing it on a simulator. In this way,
the actual system is not disturbed, and for the cost of implementing just the routing
algorithm, the telephone company can determine whether it is worthwhile to develop
an entire network controller incorporating the new algorithm.

The idea of minimizing risk via the use of prototypes and other means is the
concept underlying the spiral model {Boehm, 1988]. A simplistic way of looking at
this life-cycle model is as a waterfall model with each phase preceded by risk analysis,
as shown in Figure 3.6. (A portion of that figure is redrawn as Figure 3.7, to reflect

Pl & vm!q

3.7 SPIRAL MODEL

the term spiral model.) Before commencing each phase, an attempt is made to control
(or resolve) the risks. If it is impossible to resolve all the significant risks at that stage,
then the project is immediately terminated.

Prototypes can be used effectively to provide information about certain classes
of risk. For example, timing constraints generalty can be tested by constructing a pro-
totype and measuring whether the prototype can achieve the necessary performance.
If the prototype is an accurate functional representation of the relevant features of
the product, then measurements made on the prototype should give the developers a
good idea as to whether the timing constraints can be achieved,

Other areas of risk are less amenabile to prototyping. For example, there often is a
risk that the software personnel necessary to build the product cannot be hired or that
key personnel may resign before the project is complete. Another potential risk is thata

Risk analysis r __Fisi_a_é@;_.l_s:]
Rapid —— Changed .
prototype Ir | requirements _""_—:
Verif | | Verif
y] __Yeily :
} ' i
Risk analysis :
Specificaion | _ _ __ _ _ _ _ _ __ = |
phase 11
Verify I
I
(I
Risk analysis | :
Design e _ N ! |
phase [~~~ _; : |
Verify Ly
l |
b !
Risk analysis by :
Implementation . : | 1
phase T Ly
Test : | : |
[
l e
Risk analysis | | | :
Integration | l I
phase [y 1
Test Ly
t I E 1t
I |
— Development Maintenance
- —— Maintenance phase
{
Retirerment

Figure 3.6 Simplistic version of spirai model.

79

80

CHAPTER 3 ¢ Software Life-Cycle Models

Risk
analysis
Hisk
analysis
Risk
analysis
R. a.
Rapid
prototype

Verify

Specification

Design

Implementation

Figure 3.7 Portion of Figure 3.6 redrawn os a spiral.

particular team may not be competent enongh to develop a specific large-scale product.
A successful contractor who builds single-family homes probably would not be able
to build a high-rise office complex. In the same way, there arc essential differences
between stnall-scale and large-scale software, and prototyping is of little use. This risk
cannot be resolved by testing team performance on a much smaller prototype in which
team organizational issues specific to large-scale software cannot arise. Another area
of risk for which prototyping cannot be employed is evaluating the delivery promises
of a hardware supplier. A strategy the developer can adopt is to determine how well
previous clients of the supplier have been treated, but past performance by no means
is a certain predictor of future performance. A penalty clause in the delivery contract
is one way of trying to ensure that essential hardware will be delivered on time, but
what if the supplier refuses to sign an agreement that includes such a clause? Even
with a penalty clanse, late delivery may occur and eventually lead to legal action
that can drag on for years. In the meantime, the software developer may have gone
bankrupt because nondelivery of the promised hardware caused nondelivery of the
promised software. In short, whereas prototyping helps reduce risk in some areas, in
other areas it is a partial answer at best, and in yet other areas it is no answer at all.
The full spiral model is shown in Figure 3.8. The radial dimension represents
cumulative cost to date, the angular dimension represents progress through the spi-
ral. Bach cycle of the spiral corresponds to a phase. A phase begins (in the top left
quadrant) by determining objectives of that phase, alternatives for achieving those

o e S A S

3.7 SPIRAL MODEL 81
b cumulative
cost
/--\
! Progress
through
steps B .
Determine L valgata a!temat:'ves.
objectives, identify, resolve risks
alternatives,
conslraints Risk
Risk analysis
| Risk . analysis
analysis
. - Opera-
Risk | . .
! analysis g?;ilt e
Review _Commitment | Prototype 1 ¥p
partition Requirementsplan | T — —~ — - S_imu'lations, models, benchmarks
Life-cycle plan ' Congept of
operation Soltware Detailed
require- Software dssign
ments product
Develop- Requiremenis design
ment plan validation
integration | pesign validation
and test | ang verification

plan !

Plan next phase Accep-

. fance
lmptememahonl test

Develop, verify
nexi-level product

Figure 3.8 Full spiral madel [Boehm, 1988]. [©1988, IEEE.)

objectives, and constraints imposed on those alternatives. This process results in a
strategy for achieving those objectives. Next, that strategy is analyzed from the view-
point of risk. Attempts are made to resolve every potential risk, in some cases by
building a prototype. If certain risks cannot be resolved, the project may be termi-
nated immediately; under some circumstances, however, a decision could be made to
continue the project but on a significantly smaller scale. If all risks are successfully
resolved, the next development step is started (bottom right quadrant). This quadrant
of the spiral model corresponds to the pure waterfall model. Finally, the results of
that phase are evaluated and the next phase is planned.

The spiral model has been used successfully to develop a wide variety of products.
In one set of 25 projects in which the spiral model was used in conjunction with other
means of increasing productivity, the productivity of every project increased by at
least 50 percent over previous productivity levels and by 100 percent in most of the
projects [Boehm, 1988). To be able to decide whether the spiral model should be used
for a given project, its advantages and disadvantages now are assessed.

82

CHAPTER 3 ¢ Software Life-Cycle Models

3.71 Anavysis or e Srira. MobpiL

The spiral model has a number of strengths. The emphasis on alternatives and con-
strajnts supports the reuse of existing sofiware (Section 8.1) and the incorporation of
software quality as a specific objective. In addition, 2 common problem in software
development is determining when the products of a specific phase have been ade-
quately tested. Spending too much time on testing is a waste of money, and delivery
of the product may be unduly delayed. Conversely, if too little testing is performed,
then the delivered soflware may contain residual faults, resulling in unpleasant con-
sequences for the developers. The spiral model answers this question in terms of the
risks that would be incurred by not doing enough testing or by doing too much test-
ing. Perhaps most important, within the structure of the spiral model, maintenance is
simply another cycle of the spiral; essentially, no distinction is made between mainte-
nance and development, Thus, the problem that maintenance sometimes is maligned
by ignorant software professionals does not arise, because maintenance is treated the
same way as development.

There are restrictions on the applicability of the spiral model. Specifically, in its
present form, the model is intended exclusively for internal development of large-
scale software [Boehm, 1988]. Consider an internal project, that is, one where the
developers and client are members of the same organization. If risk analysis leads to
the conclusion that the project should be terminated, then in-house software personuel
can be simply reassigned to a different project. However, once a contract has been
signed between a development organization and an external client, an atiempt by either
side to terminate that contract can lead to a breach-of-contract lawsuit. Therefore, in
the case of contract software, all risk analysis must be performed by both client and
developers before the contract is signed and not as in the spiral model.

A second restriction on the spiral model relates to the size of the project. Specifi-
cally, the spiral model is applicable to only large-scale software. It makes no sense to
petform risk analysis if the cost of performing the risk analysis is comparable to the
cost of the project as a whole or if performing the risk analysis would significantly
affect the profit potential. Instead, the developers should decide how much is at risk
and then decide how much risk analysis, if any, to perform,

A major strength of the spiral model is that it is risk driven, but this also can be a
weakness. Unless the software developers are skilled at pinpointing the possible risks
and analyzing the risks accurately, there is a real danger that the team may believe
that all is well at a time when the project, in fact, is headed for disaster. Only if the
members of the development team are competent risk analysts should management
decide to use the spiral model.

3.8 OBJECT-ORIENTED LIFE-CYCLE MODELS

Experience with the object-oriented paradigm has shown that the need for iteration
between phases or portions of phases of the process appears to be more commen with
the object-oriented paradigm than with the structured paradigm. Object-oriented life-

r

T e

s

3.8 OBJECT-ORIENTED Lire-CycLe MODELS

cycle models have been proposed that explicitly reflect the need for iteration. One
such model is the fountain model [Henderson-Sellers and Edwards, 1990] shown in
Figure 3.9. The circles representing the various phases overlap, explicitly reflecting an
overlap between activities. The arcows within a phase represent iteration within that
phase. The maintenance circle is smaller, to symbolize reduced maintenance effort
when the object-oriented paradigm is used.

In addition to the fountain model, other object-oriented life-cycle models have
been put forward, including recursive/parallel life cycle [Berard, 1993], round-trip
gestalt design [Booch, 1994], and the model underlying the unified software develop-
ment process [Jacobson, Booch, and Rumbaugh, 1999]. All these models are iterative,
incorporate some form of paralletism (overlap of activities), and support incremental
development (Section 3.4). The danger of such life-cycle models is that they may
be misinterpreted as simply atternpts to make a virtue out of necessity, and thereby
lead to a totally undisciplined form of software development in which team members
move almost randomly between phases, first designing one piece of the product, next
analyzing another piece, and then implementing a third piece that has been neither
analyzed nor designed; the Just in Case You Wanted to Know box on page 84 gives
more on this undesirable approach. A better way to proceed is to have as an overall
objective & linear process (such as the rapid prototyping model of Section 3.3 or the
central vettical line in Figure 3.9) but appreciate that the realities of the object-oriented
paradigm are such that frequent iterations and refinements certainly are needed.

Maintenance Further
development

Operations
mode

Implementation and
integration phase

implementation
phase

DA
D) D

Objaect-oriented
design phase

analysis phase

YN Object-oriented
Y X

Requirements
phase

Figure 3.9 Fountain model,

83

84

CHAPTER 3 o Software Life-Cycle Models

Just in Case You Wantep To Know

When the members of the development team mave in object-oriented paradigm, However, just as the word
essentially haphazard fashion from one task to another, hacker now has a pejorative context in addition to its
{his is sometimes referred (o as CABTAB {(code a bii, original meaning, so0 CABTAB now is aiso used in a
test a bit). The acronym initially was used in a positive derogatory sense to refer to this undisciplined approach
sense to refer to successful iterative models, such to software development.

as those that have been used in conjunction with the

It might be suggested that this problem is simply a consequence of the relative
newness of the object-oriented paradigm. As software professionals acquire more ex-
perience with object-oriented analysis and object-oriented design, the argument goes,
and as the whole discipline matures, the need for repeated review and revision will de-
crease. To see that this argument is fallacious, consider the various life-cycle models
previously described in this chapter. First came the waterfall model (Section 3.2) with
its explicit feedback loops. The next major development was the rapid prototyping
model (Section 3.3); one of its major aims was to reduce the need for iteration. How-
ever, this was followed by the spiral model (Section 3.7), which explicitly reflects an
iterative approach to software development and maintenance. In addition, it has been
shown [Honiden, Kotaka, and Kishimoto, 1993] that backtracking is an intrinsic as-
pect of the Coad—Yourdon technique for object-oriented analysis [Coad and Yourdon,
1991a], and it is likely that similar results hold for the newer object-oriented analysis
techniques as well. In other words, it appears that iteration is an intrinsic property of
software production in general and the object-oriented paradigm in particular,

3.9 ComparisoN oF LIFE-CycLE MODELS

Six different classes of software life-cycle models have been examined with special
attention paid to some of their strengths and weaknesses. The build-and-fix model
(Section 3.1) should be avoided. The waterfall model (Section 3.2) is a known quan-
tity. Its strengths are understood and so are its weaknesses. The rapid prototyping
model (Section 3.3) was developed as a reaction to a specific perceived weakness
in the waterfall model, that the delivered product may not be what the client really
needs. Less is known about the newer rapid prototyping model than the familiar
waterfall model, and the rapid prototyping model may have some problems of its
own, as described in Chapter 10. One alternative is to combine the strengths of both
modeis, as suggested in Section 3.3.1. Another is to use a different model, the incre-
mental model (Section 3.4). This model, notwithstanding its successes, also has some
drawbacks. Extreme programming (Section 3.5) is a controversial new approach. The

o e e

ST

e ey

39 COMPARISON OF LIFE-CYCLE MODELS

synchronize-and-stabilize model (Section 3.6) has been used with great success by
Microsoft, but as yet there is no evidence of comparable successes in other corporate
cultures. Yet another alternative is to use the spiral model (Section 3.7) but only if
the developers are adeguately trained in risk analysis and risk resolution. A further
factor that needs to be considered is that, when the object-oriented paradigm is used,
the life-cycle model needs to be iterative; that is, it must support feedback (Section
3.8). The strengths and weaknesses of the various life-cycle models of this chapter
are summarized in Figure 3.10.

Each sofiware development organization should decide on a life-cycle model
appropriate for that organization, its management, its employees, and its software
process and vary the model depending on the features of the specific product currently
under development. Such a model will incorporate appropriate aspects of the various
life-cycle models, utilizing their strengths and minimizing their weaknesses,

85

Life-Cycle Model

Strengths

Weaknesses

Build-andix model {Section 3.1}

Fine for short programs that will not
require any mainfenance

Totally unsatisfactary for
nontrivial programs

Waterfall model [Section 3.2}

Disciplined approach
Document-driven

Delivered product may not
meet client's needs

Rapid prolotyping model
{Section 3.3}

Ensures that delivered product
meets client’s needs

Not yet proven beyond all doubt

Incremental model [Section 3.4)

Moaximizes early return on
investment

Promotes maintainability

Requires open archifecture

May degenerate into build-
andix

Extreme programming {Section 3.5}

Maximizes early return on
investment

Works well when clieni's
requirements are vague

Has noi yet been widely used

Synchronize-and-siabilize model
[Section 3.6}

Future users’ needs are met

Ensures components can be
succasshully integrated

Has not been widely used other
than ot Microsoft

Spiral mode! [Section 3.7)

Incorporates features of all the
above models

Can be used only for large-
scale, in-house products
Developers have to be

compatent in risk analysis
and risk resolution

Objectoriented models
{Secfion 3.8}

Suppert iteration within phases,
pardllelism between phases

May degenerate into CABTAB

Figure 3.0 Comparison of lifecycle models described in this chapter and the section in which each is defined.

g6

CHAPTER 3 ¢ Software Life-Cycle Models

CHAPTER REVIEW

A number of different life-cycle models are described, including the build-and-fix
modet (Section 3.1), waterfall model (Section 3.2), rapid prototyping model (Sec-
tion 3.3), incremental model (Section 3.4), extreme programming {Section 3.5),
synchronize-and-stabilize model (Section 3.6), spiral model (Section 3.7), and object-
oriented life-cycle models (Section 3.8). In Section 3.9, these life-cycle models are
compared and contrasted, and suggestions are made regarding choice of life-cycle

mode] for a specific project,

ForR FURTHER READING

The waterfall model was first put forward in [Royce, 1970]. An analysis of the wa-
terfall model is given in the first chapter of [Royce, 1998].

For an introduction to rapid prototyping, two suggested books are [Connell and
Shafer, 1989] and {Gane, 1989]. The role of computer-aided prototyping is assessed
in [Lugi and Royce, 1992]. The February 1995 issue of IEEE Computer contains
several articles on rapid prototyping.

A description of the evolutionary delivery model, one version of the incremental
model, can be found in [Gilb, 1988]. The concurrent incremental model is described
in {[Aoyama, 1993]. The synchronize-and-stabilize model is outlined in [Cusumano
and Selby, 1997] and described in detail in [Cusumano and Selby, 1995]. Insights
into the synchronize-and-stabilize model can be obtained from [McConnell, 1996].
The spiral model is explained in [Boehm, 1988], and its application to the TRW
Software Productivity System appears in [Boehm et al., 1984]. Extreme programming
is described in [Beck, 1999] and [Beck, 2000]; refactoring is the subject of [Fowler
et al.,, 1999],

Risk analysis is described in {Boehm, 1991, Jones, 1994¢c; Karoiak, 1996; and
Keil, Cule, Lyytinen, and Schimidt, 1998]. The May/June 1997 issue of JEEE Software
contains 10 articles on risk management.

Object-oriented life-cycle models are described in [Henderson-Sellers and Ed-
wards, 1990; Rajlich, 1994, and Jacobson, Booch, and Rumbaugh, 1999].

Many other life-cycle models have been put forward. For example, a life-cycle
model that emphasizes human factors is presented in [Mantei and Teorey, 1988], and
[Rajlich and Bennett, 2000] describes a maintenance-oriented life-cycle model. A
life-cycle model recommended by the Software Engineering Laboratory is described
in [Landis et al., 1992]. The July/August 2000 issue of IEEE Software has a variety of
papers on software life-cycle models, including [Williams, Kessler, Cunninghain, and
Jeffries, 2000], which describes an experiment on pair programming, one component
of extreme programming. The proceedings of the International Software Process
Workshops are a useful source of information on life-cycle models. [IS/IEC 12207,
1995] is a standard for software life-cycle processes.

T e

3.1

3.2

3.3

3.4

3.5

3.6

3.7
3.8
3.9

.10

an

REFERENCES

PROBLEMS

Suppose that you have to build a product to determine the inverse of 3.748571 to four
decimal places. Once the product has been implemented and tested, it will be thrown
away. Which life-cycle model would you use? Give reasons for your answer.

You are a software engineering consultant and have been called in by the vice-
president for finance of Deplorably Decadent Desserts, a corporation that manu-
factures and sells a variety of desseris to restaurants. She wants your organization to
build a product that will monitor the company’s product, starting with the purchasing
of the various ingredients and keeping track of the desserts as they are manufactured
and distributed to the various restaurants. What criteria would you use in selecting a
life-cycle model for the project?

List the risks involved in developing the software of Problem 3.2. How would you
attempt to resolve each risk?

Your development of the stock control product for Deplorably Decadent Desserts is
highly successful. As a result, Deplorably Decadent Desserts wants the product to
be rewritten as a COTS package to be sold to a variety of different organizations
that prepare and sell food to restaurants as well as to retail organizations. The new
product therefore must be portable and easily adapted to new hardware and operating
systems. How do the criteria you would use in selecting a life-cycle model for this
project differ from those in your answer to Problemn 3.2?

Describe the sort of product that would be an ideal application for the incremental
model.

Now describe the type of situation where the incremental model might lead to
difficulties,

Describe the sort of product that would be an ideal application for the spiral model.
Now describe the type of situation where the spiral model is inappropriate.

What do waterfalls and fountains have in common? What do the waterfall model and
fountain model have in common? How do they differ?

{Term Project) Which software life-cycle model would you use for the Broadlands
Area Children’s Hospital project described in Appendix A? Give reasons for your
ANSWer.

{Readings in Software Engineering) Your instructor will distribute copies of [Beck,
1999]. Would you like to work in an organization that uses extreme programming?

REFERENCES

[Aoyama, 1993] M. Aoyama, “Concurrent-Development Process Model,” I[EEE Computer
10 (July 1993), pp. 46-55.

[Beck, 19991 K. Beck, “Embracing Change with Extreme Programming,” IEEE Computer
32 (October 1999), pp. 70-77.

87

T

CHAPTER 3 + Software Life-Cycle Models

[Beck, 2000] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley
Longman, Reading, MA, 2000.

{Berard, 19931 E. V. BERARD, Essays on Object-Oriented Software Engineering, Volume 1,
Prentice Hall, Englewood Cliffs, NJ, 1993,

[Boehm, 1988] B. W. BOEHM, “A Spiral Model of Sofiware Development and Bnhancement,”
IEEE Computer 21 (May 1988), pp. 61-72.

[Boehm, 1991] B. W, BoEuM, “Software Risk Management: Principles and Practices,” IEEE
Software 8 (January 1991), pp. 32-41.

[Boehm et al,, 1984] B, W. Boenam, M. H, PeNeDo, E. D. STUCKLE, R. D). WILLIAMS, AND
A. B. PYsTER, “A Software Development Environment for Improving Productivity,”
IEEE Computer 17 (June 1984), pp. 30-44.

{Booch, 1994] G. Boach, Object-Oriented Analysis and Design with Applications, 2nd ed.,
Benjamin/Cummings, Redwood City, CA, 1994,

[Coad and Yourdon, 1991a] P. CoAD AND E. YOURDON, Object-Oriented Analysis, 2nd ed.,
Yourdon Press, Englewood Cliffs, NJ, 1991.

[Connell and Shafer, 1989] J. L. CONNELL AND L.. SHAFER, Structured Rapid Prototyping: An
Evolutionary Approach to Software Development, Yourdon Press, Englewood Cliffs, NJ,
1989,

[Cusumane and Selby, 19951 M. A. CusuMmaNoO AND R. W. SeLBY, Microsaft Secrets: How
the World's Most Powerful Software Company Creates Technology, Shapes Markets, and
Manages People, The Free Press/Simon and Schuster, New York, 1995.

fCusumano and Selby, 1997] M. A. Cusumano aND R. W. SELBY, “How Microsoft Builds
Software,” Communications of the ACM 40 (June 1997), pp. 53-61.

[Fowler et al., 1999] M, FowiLER WiTH K. BECK, J. BRANT, W, OPDYKE, AND D. ROBERTS,
Refactoring: Improving the Design of Existing Code, Addison-Wesley, Reading, MA,
1999,

[Gane, 1989]) C. GANE, Rapid System Development: Using Structured Techniques and
Relational Technology, Prentice Hall, Englewood Cliffs, NI, 1989,

[Gilb, 1988] T. GILB, Principles of Software Engineering Management, Addison-Wesley,
Wokingham, UX., 1988.

[Henderson-Sellers and Edwards, 1990] B. HENDERSON-SELLERS AND J. M. EDWARDS, "The
Object-Oriented Systems Life Cycle,” Communications of the ACM 33 (September
1990), pp. 142-59.

[Honiden, Kotaka, and Kishimoto, 1993] S. Honipen, N. KoTAka, AND Y, KISHIMOTO,

"“Formalizing Specification Modeling in OOA,” IEEE Sofitware 10 (January 1993),
pp. 54-66.

[ISOAEC 12207, 1995] “ISOAEC 12207:1995, Information Technology—Software
Life-Cycle Processes,” International Organization for Standardization, International
Electrotechnical Commission, Geneva, 1995,

[Jacobson, Booch, and Rumbaugh, 1999] 1. Jacopson, G, BoocH, AND J. RUMBAUGH, The
Unified Software Development Process, Addison-Wesley, Reading, MA, 1999,

[Jones, 1994c] C. JonEs, Assessment and Control of Computer Risks, Prentice Hall,
Englewood Cliffs, NJ, 1994.

[Karolak, 1996} D. W. KAROLAK, Software Engineering Risk Management, IEEE Computer
Society, Los Alamitos, CA, 1996,

[Keil, Cule, Lyytinen, and Schmidt, 1998] M. KEIL, P. E. CULE, K. LYYTINEN, AND
R. C. ScuminT, “A Framework for Identifying Software Project Risks,”
Communications of the ACM 41 (November 1998), pp. 76-83.

[Landis et al., 1992] L. LANDIS, 5. WALIGARA, F. MCGARRY, ET AL., “Recommended
Approach to Software Development: Revision 3,” Technical Report SEL-81-305,
Software Engineering Laboratory, Greenbelt, MD, June 1992,

S v

REFERENCES

[Lugi and Royce, 1992] LuqQl anD W, Rovck, “Status Report: Computer-Aided Prototyping,”
IEEE Software 9 (November 1992), pp. 77-81.

[Mantei and Teorey, 1988] M. M. MANTEI aND T. I. TEOREY, “Cost/Benefit Analysis for
Incorporating Human Factors in the Software Development Lifecycle,” Communications
of the ACM 31 (April 1988), pp. 428-39.

[McConnell, 1996] S. McCoNNELL, “Daily Build and Smoke Test,” IEEE Computer 13
(July 1996}, pp. 144, 143,

[Rajlich, 1994] V. RaILicH, *Decomposition/Generalization Methodology for
Object-Oriented Programming,” Journal of Systems and Saftware 24 (Febroary 1994),
pp. 181-86.

[Rajlich and Bennett, 2000] V. RasticH anp K. H. BENNETT, “A Staged Model for the
Software Life Cycle,” IEEE Computer 33 (July 2000}, pp. 66-71.

[Royce, 1970] W. W. RovcE, “Managing the Development of Large Software Systemns:
Concepts and Techniques,” 1970 WESCON Technical Papers, Western Electronic Show
and Convention, Los Angeles, August 1970, pp. A/1-1-A/1-9. Reprinted in Proceedings
of the 11th International Conference on Software Engineering, Pittsburgh, May 1989,
pp. 328-38.

[Royce, 1998] W. RoYcE, Software Project Management: A Unified Framework, Addison-
Wesley, Reading, MA, 1998,

[Spivey, 1992] . M., SeiveY, The Z Notation: A Reference Manual, Prentice Hall, New York,
1992,

[Williams, Kessler, Conningham, and Jeffries, 2000] L.. WiLLiams, R. R. KESSLER, W,
CuNNINGHAM, AND R. Jerrrigs, “Strengthening the Case for Pair Programming,” IEEE
Software 17 (Tuly/August 2000), pp. 19-25.

89

chapier

10

REQUIREMENTS PHASE

The chances of a product being developed on time and within budget are somewhat slim unless the members
of the software development team agree on what the software product will do. The first step in achieving this
unanimity is to analyze the client’s current situation as precisely as possible. For example, it is inadequate to
say, “They need a computer-aided design system because they claim their manual design system is lousy.”
Unless the development team knows exactly what is wrong with the current manual system, there is a high
probability that aspects of the new computerized system will be equally “lousy.” Similarly, if a personal
computer manufacturer is contemplating development of a new operating system, the first step is to evaluate
the firm's current operating system and analyze carefully exactly why it is unsatisfactory. To take an extreme
example, it is vital to know whether the problem exists only-in the mind of the sales manager, who blames the
operating system for poor sales, or whether users of the operating system are thoroughly disenchanted with
its functionality and reliability. Only after a clear picture of the present situation has been gained can the team
atternpt to answer the critical question, What must the new product be able to do? The process of answering
this question is carried out during the requirements phase.

A commuoiily held misconception is that, during the requirements phase, the developers must determine
what*6oftware the client wants. On the contrary, the real objective of the requirements phase is to determine
what software the client needs. The problem is that many clients do not know what they need. Furthermore,
even a client who has a good idea of what is needed may have difficulty in accurately conveying these ideas
to the developers, because most clients aré less computer literate than the members of the development team.

In 1967, U. 3. presidential candidate George Romney put his foot into his mouth one time too many.
Calling a press conference, he proceeded to announce: “I know you believe you understood what you think
I said, but I am not sure you realize that what you heard is not what I meant.” This excuse applies equally
well to the issue of requirements analysis. The developers hear their client’s requests, but what they hear is
not what the client should be saying.

Chapter 3 pointed out that one. way of solving this communication-based problem is to build a rapid pro-
totype. In this chapter, the requirements phase is described in greater detail, and the strengths and weaknesses
of various requirements analysis techniques are described.

‘We begin by looking at requirements elicitation.

290

101 REQUIREMENTS ELICITATION

10.1 REQUIREMENTS ELICITATION

The process of discovering the client’s requirements is termed requirements elicitation
(or requirements capture). Once an initial set of requirements has been determined,
they are refined and extended; this process is termed requirements analysis. The
requirements phase usually begins with one or more members of the requircments
team meeting with one or more members of the client organization to determine what
is needed in the target product.

To elicit the client’s needs, the members of the requlrements team must be familiar
with the application domain, that is, the general area in which the proposed software
product is.to.be used. For example, it is not easy to ask meaningful questions of a
banker or a nurse without first acquiring some familiarity with banking or nursing.
Therefore, one of the initial tasks of each member of the requirements analysis team
is to acqmre familiarity with the apphcatlon domam unless he or she already has
when commumcatmg with the client and potential users of the target software. After
all, it is hard to be taken seriously by a person working in a specific domain unless
the interviewer uses the nomenclature appropriate for that domain. More important,
use of an inappropriate word may lead to a misunderstanding, eventually resulting
in a faulty product being delivered. The same problem can arise if the members of
the requirements team do not understand the subtleties of the terminology of the
domain. For example, to a layperson words like brace, beam, girder, and strut may
appear synonyms, but to a civil engineer they are distinct terms. If a developer does not
appreciate that a civil engineer is nsing these four terms in a precise way and if the civil
engineer assumesthat the developer isfamiliar with the distinctions between the terms,
the developer may treat the four terms as equivalent; the resulting computer-aided
bridge design software may contain faults that result in a bridge collapsing. Computer
professionals hope that the output of every program will be scrutinized carefully by
a human being before decisions are made based on that program, but the growing
popular faith in computers means that it is distinctly unwise to rely on the likelihood
of such a check being made. So, it is no means far-fetched that a misunderstanding
in terminology could lead to the software developers being sued for negligence.

One way to solve the problem with terminology is to build a glossary. The initial
entries are inserted while.the team learns the application domain. Then the glossary is
updated ‘whenever the members of the requirements team encounter new terminology.
Not only does such a glossary reduce confusion between client and developers, it also
is useful in lessening misunderstandings between members of the development team.

Once the requirements team have acquired familiarity with the domain, the next
step is for them to start to determine the client’s needs, that is, requirements elicitation.
The primary elicitation technique is interviewing.

10.1.1 INTERVIEWS

The members of the requirements team meet with members of the client organization
until they are convinced that they have elicited all relevant information from the client

29

292

CHAPTER 10 ¢ Requirements Phase

and future users of the product. There are two basic types of interview, structured and
unstructured. In a structured interview, specific, preplanned, close-ended questions
are posed. For example, the client might be asked how many salespeople the company
employs or how fast a response time is required. In an unstructured interview, open-
ended questions are asked, to encourage the person being interviewed to speak out,
For instance, asking the client, “Why is the enrrent product unsatisfactory?’ may
explain many aspects of the client’s approach to business. Some of these facts might
not have come to light had the interview been more structured. At the same time, it
is not a good idea if the interview is too unstructured. Saying to the client, “Tell me
about the current product” is unlikely to yield much pertinent information. Therefore,
questions should be posed in such a way as to encourage the person being interviewed
to give wide-ranging answess but within the context of the information needed by the
interviewer.

Conducting a good interview is not always easy. First, the interviewer must be
familiar with the application domain. Second, there is no point in interviewing a
member of the client organization if the interviewer already has made up his or her
mind regarding the client's needs. No matter what he or she previously has been
told or learned by other means, the interviewer must approach every interview with
the intention of listening carefully to what the person being interviewed has to say
while firmly suppressing any preconceived notions regarding the client company or
the needs of the clients and potential uses of the software product to be built.

After the interview is concluded, the interviewer must prepare & written report
outlining the results of the interview. It is strongly advised to give a copy of the report
to the person interviewed; he or'she may want to clarify statements or add over-
looked items.

10.1.2 Scenarios

Scenarios are another technique for requirements analysis. A scenario is a way a user
might utilize the target product to accomplish some objective. For example, suppose
the target product is a weight-loss planner. One possible scenario describes what
happens when the dietitian enters the age, gender, weight, height, and other personal
data of a patient. The product then prints out sample menus for that patient. When this
scenario is shown to a future user of the target product, the dietitian quickly points
out that the menus would be unsuitable for a patient with special food requirements,
such as a diabetic, a vegetarian, or someone who is lactose intolerant, The developers
modify the scenario so that the user is asked about special dietary needs before any
menus are printed. The use of scenarios enables users to communicate their needs to
the requirements analysts.

Taking the example of the weight-loss planner further, suppose that the program
solicits the height of the patient in inches but the dietitian enters the height in cen-
timeters. This is an example of an exception. A scenario should include not just the
expected sequence of events but also alt exceptions.

A scenario can be depicted in a number of ways. One technique is simply to Iist the
actions comprising the scenario; this is done in Chapter 11. Another technique is to set

g - e i R S T

e

10.1 REQUIREMENTS ELICITATION

up a storyboard, a series of diagrams depicting the sequence of events. A storyboard

can be considered a paper prototype [Rettig, 1994), that is, a series of sheets of paper

each depicting the relevant screens and the uset’s response. But, whatever method is

chosen, the scenario should depict the starting state, the expected sequence of events,

and the finishing state, together with the exceptions to the expected sequence.
Scenarios are useful in a number of different ways.

1. They can demonstrate the behavior of the product in a way that is comprehensible
to the user. This can result in additional requirements coming to light, as in the
weight-loss planner example.

2. Because scenarios can be understood by users, the utilization of scenarios can
ensure that the client and users play an active role throughout the requirements
analysis process. After all, the aim of the requirements analysis phase is to elicit
the real needs of the client, and the only source of this information is the client
and the users.

3. Sceparios (or more precisely, use cases) play an important role in object-oriented
analysis. This is discussed in detail in Section 12.3.

‘We now consider other techniques for eliciling reguirements.

10.1.3 Oruer Reouirements Enicirarion TEcHNIQUES

Yet another way of eliciting needs is to send a questionnaire to the relevant members
of the client organization. This technique is useful when the opinions of, say, hundreds
of individuals need to be determined, Furthermore, a carefully thought-out written
answer may be more accurate than an immediate verbal response to 2 question posed
by an interviewer. However, an unstructured interview conducted by a methodical
interviewer who listens carefully and poses questions that expand on initial responses
usually vields far better information than a thoughtfully worded questionnaire. Be-
cause questionnaires are preplanned, there is no way that a question can be posed in
response to an answer.

A different way of eliciting requirements, particularly in a business environment,
is to examine the various forms used by the client. For example, a form in a print shop
might reflect press number, paper roll size, humidity, ink temperature, paper tension,
and so on, The various fields in this form shed light on the flow of print jobs and
the relative importance of the steps in the printing process. Other documents, such
as operating procedures and job descriptions, also can be powerful tools for finding
out exactly what is done and how. Such comprehensive information regarding how
the client currently does business can be extraordinarily helpful in determining the
client’s needs. Therefore, careful perusal of client documentation should never be
overlooked as a source of information that can lead to an accurate assessment of the
client’s needs.

A newer way of obtaining such information is to set up videotape cameras within
the workplace to record (with the prior written permission of those being observed)
exactly what is being done. One difficulty of this technique is that it can take a long time
to analyze the tapes. In general, one or more members of the requirements analysis

293

294

CHAPTER 10 ¢ Requirements Phase

teamn has to spend an hour playing back the tape for every hour that the cameras record,
This time is in addition to what is needed to assess what was observed. More seriously,
this technique has been known to backfire badly because employees may view the
cameras as an unwarranted invasion of privacy. It is important that the requirements
analysis team have the full cooperation of all employees; it can be extremely difficult
to obtain the necessary information if people feel threatened or harassed. The possible
risks should be considered carefully before introducing cameras or, for that matter,
taking any other action that has the potential to anger employees.

Once an initial set of requirements has been elicited, the next step is to refine
them, a process called requirements analysis.

10.2 REQUIREMENTS ANALYSIS

At this stage in the process, the requirements team has a preliminary set of require-
ments. These requirements are of two types, functional and nonfunctional. Functional
requirements relate to the functionality of the target software; for example, “Royal-
ties for each artist shall be computed from the playlist data using the May 1998 CMS
formula.” Nonfunctional specifications specify properties of the target software, such
as reliability and maintainability, or relate to the environment in which the software
must run; for example, “All bar codes shall be read using the Mach/Zor ASRCA input
device.”

It is essential that the software be traceable; that is, it must be possible to trace
each statement in the requirements document through the specifications, design, and
code. In this way, the SQA group can check that every statement in the requirements
has been implemented and that this has been done correctly, To.achieve traceability,
each statement in the requirements document needs to be numbered.

All the items in the preliminary requirements document are given to the client to
get their priorities, The client (or a client team) ranks each preliminary requirement
using categaries such ag essential, highly desirable, desirable, and so on. During the
course of this process, it may become apparent that certain requirements are incorrect
or irrelevant. Any such requirements are corrected or deleted.

The next step is to further refine the preliminary requirements document. First,
the members of the requirements team discuss the list of requirements with the various
individuals interviewed to determine if anything has been omitted. Then, because the
most accurate and powerful requirements analysis technique is rapid prototyping, a
rapid prototype is built. This is described in the next section.

10.3 RAPID PROTOTYPING

A rapid prototype is hastily built software that exhibits the key functionality of the
target product. For examnple, a product that helps manage an apartment complex must

et fy u-mnimu-;i-d

R s o L T e Rt

s

o~ - P

ST

P

ot

!
s

10.3 RAPID PROTOTYPING

incorporate an input screen that allows the user to enter details of a new tenant and print
an occupancy report for each month. These aspects are incorporated into the rapid
prototype. However, error-checking capabilities, file-updating routines, and complex
tax computations probably are not included. The key point is that a rapid prototype
reflects the functionality that the client sees, such as input screens and reports, but
omits “hidden” aspects such as file updating. (For a different way of looking at rapid
prototypes, see the Just in Case You Wanted to Know box below.)

The client and intended users of the product now experiment with the rapid pro-
totype, while members of the development team watch and take notes. Based on their
hands-on experience, users tell the developers how the rapid prototype satisfies their
needs and, more important, identify the areas that need improvement. The developers
change the rapid prototype until both sides are convinced that the needs of the client
are accurately encapsulated in the rapid prototype. The rapid prototype then is used
as the basis for drawing up the specifications.

An important aspect of the rapid prototyping model is embodied in the word
rapid. The whole idea is to build the prototype as quickly as possible. After all, the
purpose of the rapid prototype is to provide the client with an understanding of the
preduct, and the sooner, the better. It does not matter if the rapid prototype hardly
works, if it crashes every few minutes, or if the screen layouts are less than perfect.
The purpose of the rapid prototype is to enable the client and the developers to agree
as quickly as possible on what the product is to do. Therefore, any imperfections
in the rapid prototype may be ignored, provided they do not seriously impair the
functionality of the rapid prototype and thereby give a misleading impression of how
the product will behave.

295

Just N Case You WanTep 10 Know

The idea of constructing models to show key aspects of
a product goes back a long time. For example, a 1618
painting by Domenico Cresti (known as “11 Passignano”
because he was born in the town of Passignano in the
Chianti region of Italy) shows Michelangelo presenting
a wooden mode] of his design for St. Peter’s {in Rome)
to Pope Paul IV. Such architectural models could be
huge; a model of an earlier design proposal for St. Pe-
ter’s by the architect Bramante is more than 20 feet long
on each side.

Architectural models were used for a number of
different purposes. First, as depicted -in the Cresti
painting (now hanging in Casa Bucnarroti in Flo-
rence), models were nsed to try to interest a client in
funding a project. This is analogous to the use of arapid

prototype to determine the client’s real needs. Sec-
ond, in an age before architectural drawings, the model
showed the builder the stracture of the building and in-
dicated to the stone masons how the building was to
be decorated. This is similar to the way we now build
a rapid prototype of the user interface, as described in
Section 10,4.

It is not a good idea, however, to draw too close
a parallel between such architectural models and soft-
ware rapid prototypes. Rapid prototypes are used dus-
ing the requiremnents phase to elicit the client’s needs.
Untike architectural models, they are not used to rep-
resent either the architectural design or the detailed de-
sign; the design is produced two phases later, that is,
during the design phase.

206

CHAPTER 10 ¢ Requirements Phase

A second major aspect of the vapid prototyping model is that the rapid prototype
must be built for change. If the first version of the rapid prototype is not what the
client needs, then the prototype must be transformed rapidly into a second version
that, it is hoped, better satisfies the client’s requirements. To achieve rapid develop-
ment throughout the rapid prototyping process, fourth-generation languages (4GLs)
and interpreted languages. such as Smalltalk, Prolog, and Lisp, have been nsed. Pop-
ular rapid prototyping languages of today include HTML and Pet], as well as visual
C++ and J++. Concerns have been expressed about the maintainability of certain
interpreted languages, but from the viewpoint of classic rapid prototyping, this is irrel-
evant. All that counts is, Can a given language be used to produce a rapid prototype?
And can the rapid prototype be changed quickly? If the answer to both questions is
yes, then that language probably is a good candidate for rapid prototyping.

Turning now to the use of rapid prototyping in conjunction with the object-
oriented paradigm, three very different object-oriented projects carried out by IBM
showed significant improvements compared to projects using the structured paradigm
[Capper, Colgate, Hunter, and James, 1994]. One of the recommendations that resulted
from these projects is that it is important to build a rapid prototype as early as possible
in the object-oriented life cycle.

Rapid prototyping also is particularly effective when developing the userinterface
to a product. This use is discussed in the next section.

10.4 HumanN FACTORS

It is important that both the client and the future users of the product interact with
the rapid prototype of the user interface. Encouraging users to experiment with the
human-computer interface (HCI) greatly reduces the risk that the finished product wiil
have to be altered. In particular, this experimentation helps achieve user-friendliness,
a vital objective for all software products.

The term user-friendliness refers to the ease with which human beings can com-
municate with the software product. If users have difficulty learning how to use a
product or find the screens confusing or irritating, then they will either not use the
product or use it incorrectly. To try to eliminate this problem, menu-driven products
were introduced. Instead of having to enter a command such as Perform compuia-
tion or Print service rate report, the user merely has to select from a set of possible
responses, such as

1. Perform computation
2. Print service rate report
3. Select view to be graphed

In this example, the user enters 1, 2, or 3 to invoke the cotresponding command.
Nowadays, instead of simply displaying lines of text, HCIs employ graphics.
Windows, icons, and pull-down menus are components of a graphical user interface

!
!
3
i

e LA

Sdepdor i

ks e e
VO o o i

oy

= e g o e N Lt i

10.4 HumaN FACTORS

(GUI). Because of the plethora of windowing systems, standards such as X Window
have evolved. Also, “point and click” selection is becoming the norm. The user moves
a mouse (that is, a handheld pointing device) to move the screen cursor to the desired
response (“point™) and pushes a mouse button (“click™) to select that response.

However, even when the target product employs modern technology, the design-
ers must never forget that the product is to be used by human beings. In other words,
the HCI designers must consider human factors such as size of letters, capitalization,
color, line length, and the number of lines on the screen.

Another example of human factors applies to the preceding menu. If the user
chooses option 3. Select view to be graphed, then another menu appears with another
list of choices. Unless a menu-driven system is thoughtfully designed, there is the
danger that the users will encounter a lengthy sequence of menus to achieve even a
relatively simple operation. This delay can anger users, sometimes causing them to
make inappropriate menu selections. Also, the HCI must allow the user to change a
previous selection without having to return to the top-level menu and start again. This
problem can exist even when a GUI is used because many graphical user interfaces
essentially are a series of menus displayed in an attractive screen format.

Sometimes, a single user interface cannot cater to all users. For example, if a
product is to be used by both computer professionals and high-school dropouts with
no previous computer experience, then it is preferable that two different sets of HCTs
be designed, each carefully tailored to the skill level and psychological profile of its
intended users. This technique ean be extended by incorporating sets of user interfaces
requiring varied levels of sophistication. If the product deduces that the user would be
more comfortable with a less-sophisticated user interface, perhaps because the user
is making frequent mistakes or is continually invoking help facilities, then the user
automatically is shown screens more appropriate to his or ber current skill level. But, as
the user becomes more familiar with the product, streamlined screens that provide less
information are displayed, leading to speedier completion. This automated approach
reduces user frustration and leads to increased productivity [Schach and Wood, 1986].

Many benefits can accrue when human factors are taken into account during the
design of an HC], including reduced learning time and lower error rates. Althoughhelp
facilities always must be provided, they are utilized less with a carefully designed HCI.
This, too, increases productivity. Uniformity of HCI appearance across a product or
group of products can result in users intuitively knowing how to use a screen they have
never seen before because it is similar to other screens with which they are familiar.
Designers of Macintosh software have taken this principle into account; this is one
of the many reasons that software for the Macintosh generally is so user-friendly.

It has been suggested that simple common sense is all that is needed to design
a user-friendly HCI, Whether or not this charge is true, it is essential that a rapid
prototype of the HCI of every product be constructed. Intended users of the product
can experiment with the rapid prototype of the HCI and inform the designers whether
the target product indeed will be user-friendly, that is, whether the designers have
taken the necessary human factors into account.

In the next two sections, superficially attractive but dangerous variants of the
rapid prototyping maodel are discussed.

207

298

CHAPTER 10 o

Requirements Phase

TECHNIQUE

— Development
- — == Maintenance

y

fm—————=
Rapid i Changed
prototype | requirements |
I d
Verif —- Verif '
Y A T A
Y
Specffication | _ _
phase
Varify
¥
Design T
phase
Verify
1
Implementation wan
phase N —}
Test :
I
|
|
Integration [
phase :
Test :
i
I

10.5 RAPID PROTOTYPING AS A SPECIFICATION

The conventional form of the rapid prototyping model, as described in Section 3.3 and
depicted in Figure 3.3, is reproduced here as Figure 10.1. (Again, the implementation
and integration steps generally are performed in paraiiel.) The rapid prototype is used

phase

Malntenance

3

Retirerment

Figure 10.1 Rapid profolyping model.

E_r' AT

70.5 RAPID PROTOTYPING AS A SPECIFICATION TECHNIQUE

as a means to determine that the client’s needs have been elicited accurately. Once
the client has signed off on the specifications, the rapid prototype implementation is
discarded (but the lessons learned ate retained and used in subsequent development
phases). A second approach is to dispense with specifications as such and use the
rapid prototype itself either as the specifications or a significant part of them. This
second type of rapid prototyping model is shown in Figure 10.2. The approach of-
fers both speed and accuracy. No time is wasted drawing up written specifications,
and the difficulties associated with specifications, such as ambiguities, omissions,
and contradictions, cannot arise. Instead, because the rapid prototype constitutes the
specifications, all that needs to be done is to state that the product will do what the
rapid prototype does and list any additional features the product must suppott, such
as file updating, security, and error handling.

[——————— |
Rapid I Changed R
prototype | requirements] !
o — e s 1l
Verify = Verify ' :
e
l I
¥ Y’ I
; |
Design | __ _ _ _ _ . _
phase ™ _: :
Verify i !
(.
) I
tmplementation |, — — : :
phase o
b
Test T
Cor
1 Py
A
Integration | I
phase : L
Test b
L
T
Y 1 1
Maintenance
phase
Y
Retirement

— Development
- — -+ Maintenance

Figure 10.2 Ropid prolotyping with the rapid profotype
serving as specifications.

299

=

300

CHAPTER 10 * Requirements Phase

This version of the rapid prototyping model can have a major drawback. If there
is a disagreement as to whether the developers have satisfactorily discharged their
obligations, it is unlikely that a rapid prototype will stand as a legal statement of a
contract between developer and client. For this reason, the rapid prototype should
never be used as the sole specification, not even if the software is developed inter-
nally (that is. when the client and developers are members of the same organization),
Although it is unlikely that the head of the investment management division of a
bank will take the data processing division to court, disagreements between client
and developers nevertheless can arise just as easily within an organization. Therefore,
to protect themselves, software developers should not use the rapid prototype as the
specifications even when software is developed internally.

A second reason why the rapid prototype should not take the place of written
specifications is potential problems with maintenance. As described in Chapter 16,
maintenance is challenging, even when all the documentation is available and up to
date. If there are no specifications, maintenance rapidly can become a nightmare. The
problem is particularly acute in the case of enhancement, where changes in require-
ments have to be implemented. It can be exceedingly difficult to change the design
documents to reflect the new specifications because, in the absence of written speci-
fications, the maintenance team have no clear statement of the current specifications.

For both these reasons, the rapid prototype should be used simply as a require-
ments analysis technicue, that is, a means of ensuring that the client’s real needs
have been elicited correctly. Thereafter, written specification documents should be
produced using the rapid prototype as a basis.

10.6 REUSING THE RAPID PROTOTYPE

In both versions of the rapid prototyping model discussed previously, the rapid pro-
totype is discarded early in the software process. An alternate, but generally unwise,
way of proceeding is to develop and refine the rapid prototype until it becomes the
product. This is shown in Figure 10.3. In theory, this approach should lead to fast soft-
ware development; after all, instead of throwing away the code constituting the rapid
prototype, along with the knowledge built into it, the rapid prototype is converted into
the final product. However, in practice the process is very similar to the build-and-fix
approach of Figure 3.1. As with the buitd-and-fix model, the first problem with this
form of the rapid prototyping model is that, in the course of refining the rapid pro-
totype, changes have to be made to a working product. This is an expensive way to
proceed, as shown in Figure 1.5. A second problem is that a primary objective when
constructing a rapid prototype is speed of building. A rapid prototype (correctly) is
put together hutriedly, rather than carefully specified, designed, and implemented.
In the absence of specification and design documents, the resnlting code is difficult
and expensive to maintain. It might seem wasteful to construct a rapid prototype then
throw it away and design the product from scratch, but it is far cheaper in both the

el

