Design Patterns:
Adapter

Adapters in real life

European Wall Qutlet

AC Power Adapter

Standard AC Plug

The US laptop expetts
another interfate.

P

The adapter tonverts one
interfate into another.

Object-Oriented Adapters

Your Vendor
Existing Class
System ;

Your Adapter Vendor Your Adapter | Vendor
Existing . Class Existing > Class
System / | / - System
{
\ (£~
\ ¢ ; A
The adapter Impicmgn{,: the And talks to the vendor inbertate No tode thanaes New fa.'lﬁd" Ne tode f-h&hﬁ!i-
C 2 ' ests. " *

intertale Your tlasses cu:?g(_{;, iee Your yeow

to sery

public interface Duck {
public void display():
public void swim(); }

oBeza0s ()

g

public interface Swan{
public void show();
public void swim(); }

public class Duckling implements Duck {
public void display() {

System.out.printin(“I'm a pretty duckling");

}

public void swim() {

System.out.printin("I'm learning...

"),

public class HuglyDuckling implements Swan{
public void show() {
System.out.printin(“I'm large and hugly");
}
public void swim() {
System.out.printin("I'm swimming!™);

Two hierarchies and the need to deal
with objects in a uniform way

public interface Duck { tpublic interface Swan/{
public void display(); public void show() ;
public void swim() ; public void swim() ;

<<imterface>>
Duck <<imterface>>
: Swan
Client
A A
! !
Duckling HuglyDuckling |

Hugly Duckling with Adapter

Client

<<|nterface>>
Duck

+display() : void
+swim() : void

Duckling

+display() : void
+swim() : void

swan

SwanAdapter

+display() : void
+swim() : void

<<Interface>>
Swan

+show() : void
+swim() : void

N

HuglyDuckling

+show() : void
+swim() : void

display() {System.out.printin(“I'm a pretty duckling");}

swim() {System.out.printin("I'm learning...");}

show() {System.out.printin(“'m large and hugly");}

swim() {System.out.printin("l'm swimming...");}

display() {swan.show;}
swim() {swan.swim;}

Hugly Duckling with Adapter

mom_duck : Client d : Duckling a : SwanAdapter h : HuglyDuckling
I I I I
: 1: display() : : :
I I
1.1: display() : :
I I
I I I
I 2: display() I I
; 2.1: show() :
| .
I :
| >|: ¢ 2.1.1: show()

Adapter Pattern explained

Adaptee

Client

The Client is implemented
against the target interface.

adﬂﬂtﬂa
et
rar9 The Adapter implements the Turkey was the
target interface and holds an adaptee nterkate

instance of the Adaptee.

Adapter Pattern defined

The Adapter Pattern converts the interface of a
class into another interface the clients expect.

Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.

Adapter pattern

Delegation is used to bind an Adapter to an Adaptee

Interface inheritance is used to specify the interface of the Adapter class.
Target and Adaptee (usually called legacy system) pre-exist the Adapter.

Target may be realized as an interface in Java.

Client target Target
+Request()
i
Adapter adaplee Adaptee
+Request() +SpecificRequest()
I

adaptes SpecificRaequest() Ib‘

Participants

Target: Defines the application-specific interface that clients
use.

Client: Collaborates with objects conforming to the target
interface.

Adaptee: Defines an existing interface that needs adapting.

Adapter: Adapts the interface of the adaptee to the target
interface.

Adapter Pattern and Strategy Pattern

at some point, strategy.algorithminterfaced |_\.|

Context

Sirateqgy

r————

+oontextinterfaced:

strateqy

+algorthiminterface):

i

ConcreteStrat1

i

ConcreteStrat2

+algorithminterface):

+algorithminterfaced:

Standard AC Plug

The adapter can play the
role of a concrete strategy: if
we have several modules
implementing the same
functionality and we wrote
adapters for them, we have
a set of adapters that
implement the same
interface.

We can hence replace the
adapters objects at run time.

Homework: DPHomework4

Extend the ugly duckling example to adapt turkeys too.

Desing a solution that combines Adapter and Strategy

Facade

Another GoF pattern

Forwards requests to many adaptees

