Problemi NP-completi

- Sono i problemi più difficili all'interno della classe NP
 - Se esistesse un algoritmo polinomiale per risolvere uno solo di questi problemi, allora
 - tutti i problemi in NP potrebbero essere risolti in tempo polinomiale,
 - dunque P = NP
 - Quindi:
 - tutti i problemi NP-completi sono risolvibili in tempo polinomiale oppure nessuno lo è

Riduzioni polinomiali

 $\Pi_{\rm 1}$ e $\Pi_{\rm 2}$ = problemi decisionali ${\rm I_1}$ e ${\rm I_2}$ = insiemi delle istanze di input di $\Pi_{\rm 1}$ e $\Pi_{\rm 2}$

 Π_{l} si riduce in tempo polinomiale a Π_{l}

$$\Pi_1 \leq_p \Pi_2$$

se esiste una funzione $f: I_1 \rightarrow I_2$ calcolabile in tempo polinomiale tale che, per ogni istanza x di Π_1

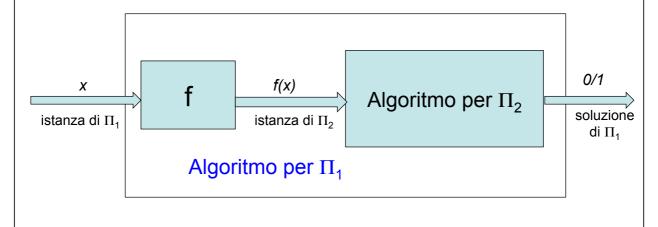
x è un'istanza accettabile di $\Pi_{\rm l}$ SE E SOLO SE

f(x) è un'istanza accettabile di Π_2

Riduzioni polinomiali

Se esistesse un algoritmo per risolvere Π_2 potremmo utilizzarlo per risolvere Π_1

$$\Pi_{\mathbf{1}} \leq_{\mathbf{p}} \Pi_{\mathbf{2}} \quad \mathbf{e} \quad \Pi_{\mathbf{2}} \in \mathbf{P} \quad \Longrightarrow \quad \Pi_{\mathbf{1}} \in \mathbf{P}$$



Problemi NP ardui

Un problema decisionale Π si dice NP-arduo se

per ogni
$$\Pi' \in NP$$
, $\Pi' \leq_p \Pi$

Problemi NP completi

Un problema decisionale Π si dice NP-completo se

 $\Pi \in \mathsf{NP}$ $\Pi \stackrel{\bullet}{\mathsf{e}} \mathsf{NP}$ -arduo

5

Problemi NP completi

- Dimostrare che un problema è in NP può essere facile
 - Esibire un certificato polinomiale
- ullet Non è altrettanto facile dimostrare che un problema Π è NP-arduo
 - Bisogna dimostrare che TUTTI i problemi in NP si riducono polinomialmente a Π
 - In realtà la prima dimostrazione di NP-completezza aggira il problema

SAT

Soddisfacibilità di formule booleane

Definizioni

- Insieme V di variabili Booleane
 - Letterale: variabile o sua negazione
 - Clausola: disgiunzione (OR) di letterali
- Un'espressione Booleana su V si dice in forma normale congiuntiva (FNC) se è espressa come congiunzione di clausole (AND di OR)

Esempio

$$V = \{x, y, z, w\}$$

$$FNC: (x \lor \overline{y} \lor z) \land (\overline{x} \lor w) \land y$$

SAT

 Data una espressione in forma normale congiuntiva

verificare se esiste una assegnazione di valori di verità alle variabili che rende l'espressione vera

Esempio

• La formula

$$(x \vee \overline{y} \vee z) \wedge (\overline{x} \vee w) \wedge y$$

è soddisfatta dall'assegnazione

$$x = 1 \quad y = 1 \quad z = 0 \quad w = 1$$

$SAT \in NP$

Certificato per SAT?

Un'assegnazione di valori (0 o 1) alle variabili che renda vera l'espressione

Teorema di Cook

SAT

problema della soddisfacibilità di una espressione booleane in forma normale congiuntiva (FNC)

Teorema

SAT è NP completo

13

Teorema di Cook (idea)

Cook ha mostrato un algoritmo che

dati un qualunque problema Π ed una qualunque istanza x per Π

costruisce una espressione Booleana in forma normale congiuntiva che descrive il calcolo di un algoritmo per risolvere Π su x

L'espressione è vera se e solo se l'algoritmo restituisce 1

Problemi NP completi

Un problema decisionale Π è NP completo se

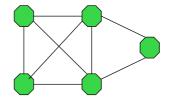
- $-\Pi \in NP$
- SAT $\leq_p \Pi$

(o un qualsiasi altro problema NPC)

15

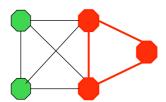
Riduzione: SAT ≤_pCLIQUE

Dato un grafo G = (V,E) e un intero k > 0, stabilire se G contiene una clique di k nodi



CLIQUE

Dato un grafo G = (V,E) e un intero k > 0, stabilire se G contiene una clique di k nodi

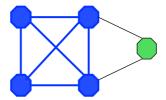


Clique di 3 nodi

17

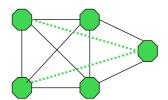
CLIQUE

 Dato un grafo G = (V,E) e un intero k > 0, stabilire se G contiene una clique di k nodi



Clique di 4 nodi

Dato un grafo G = (V,E) e un intero k > 0, stabilire se G contiene una clique di k nodi



Non contiene clique di 5 nodi

19

CLIQUE è NP completo

$SAT \leq_p CLIQUE$

data un'espressione booleana F in forma normale congiuntiva con k clausole

costruire in tempo polinomiale

un grafo G che contiene una clique di k vertici se e solo se F è soddisfacibile.

Riduzione: vertici

 Ad ogni letterale in ciascuna clausola di F corrisponde un vertice in G.

Esempio:

```
F = (a v b) \wedge (!a v !b v c) \wedge !c

G = (V, E),

V = { a<sup>1</sup>, b<sup>1</sup>, !a<sup>2</sup>, !b<sup>2</sup>, c<sup>2</sup>, !c<sup>3</sup> }
```

21

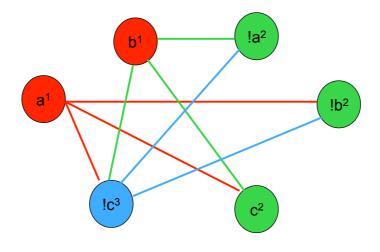
Riduzione: archi

$$(x^i, y^j) \in E \iff i \neq j \ e \ x \neq !y$$

Due letterali sono adiacenti in G se e solo se

- appartengono a clausole diverse
- possono essere veri contemporaneamente.

$F = (a \lor b) \land (!a \lor !b \lor c) \land !c$



23

Clique in G

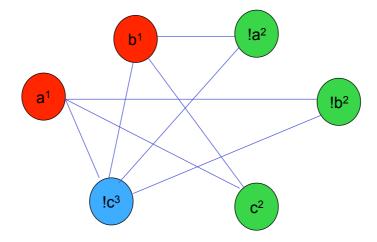
- composta da k nodiuno per ogni clausola di F
- non può contenere due nodi della stessa clausola perché non sono adiacenti.

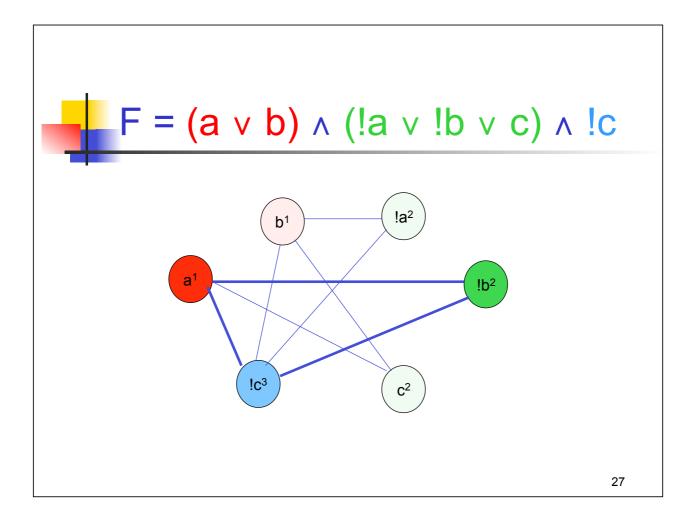
G contiene una clique ⇒ F è soddisfacibile

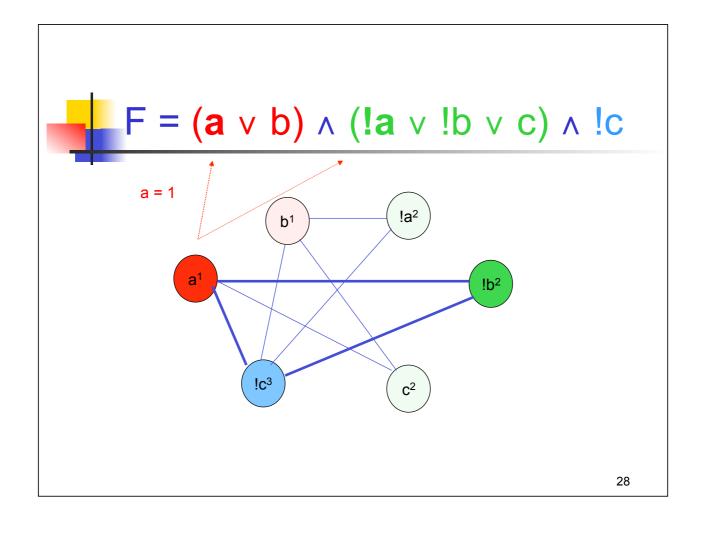
- si dà valore 1 (true) ai k letterali che corrispondono ai nodi della clique
- tutte la clausole corrispondenti diventano di valore 1 (true)
- F = 1 (true), soddisfacibile.

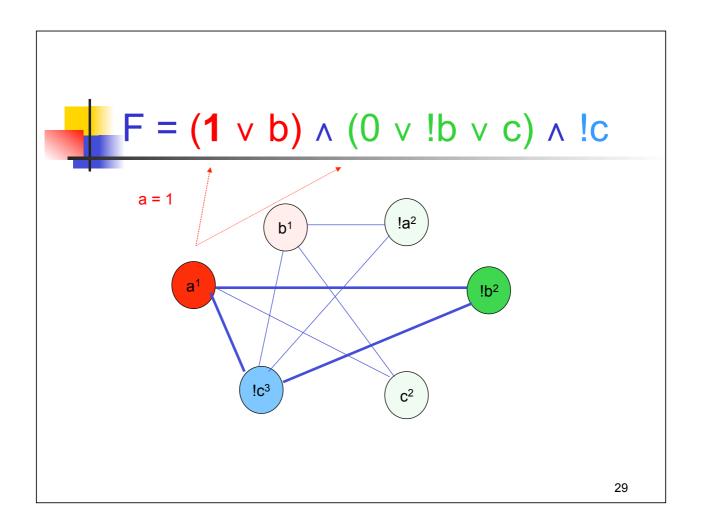
25

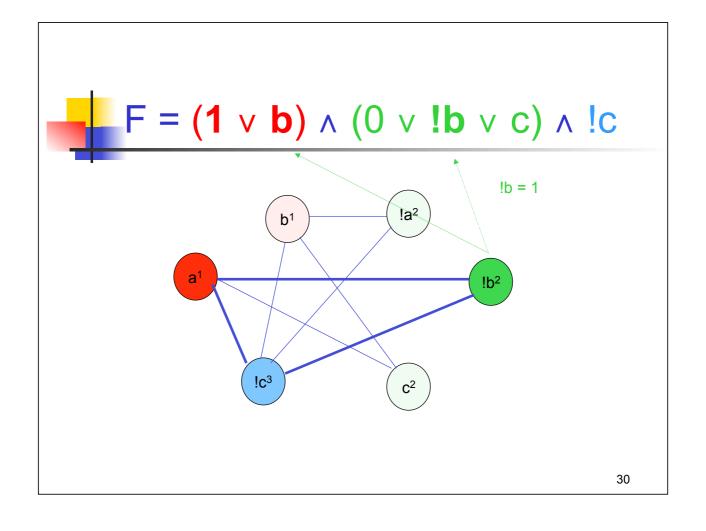
$F = (a \lor b) \land (!a \lor !b \lor c) \land !c$

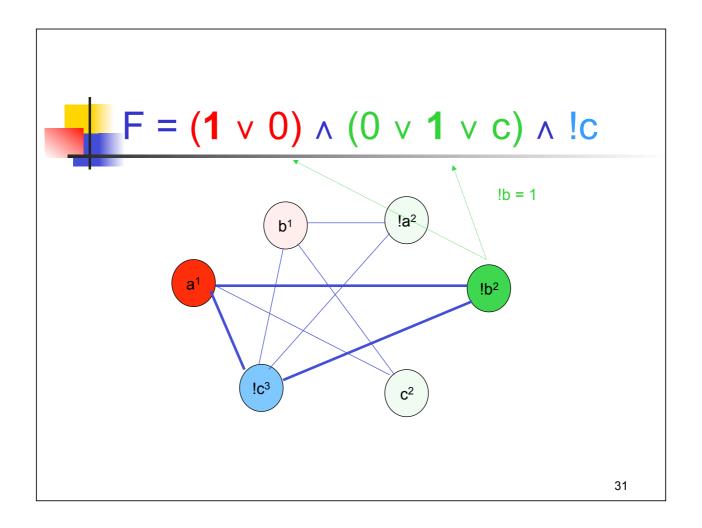


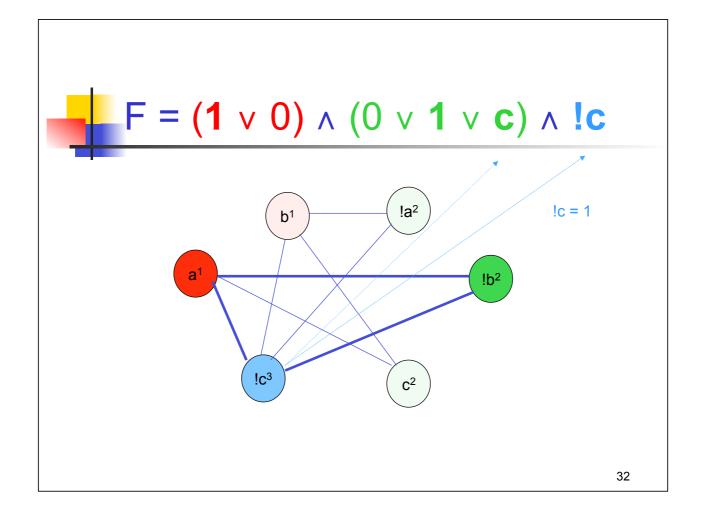


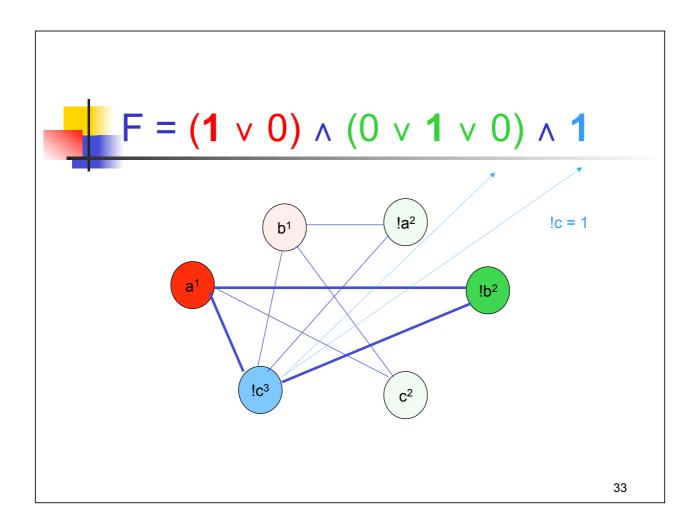


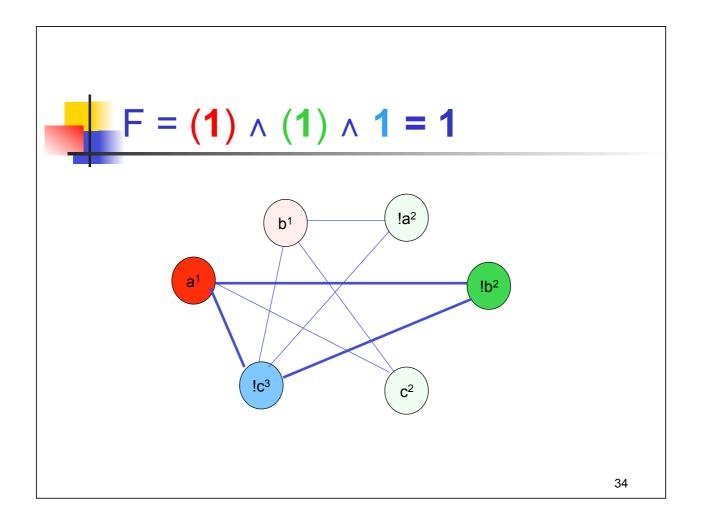












Riduzione

F è soddisfacibile ⇒ G contiene una clique

- esiste almeno un letterale vero per ogni clausola
- i corrispondenti vertici in G formano una clique.

35

Riduzione

- La riduzione da F a G = (V,E) si esegue in tempo polinomiale:
 - n = # variabili
 - *k* = # clausole
 - $|V| \le n k$
 - l'esistenza di un arco si stabilisce in tempo costante
 - $|E| \le O((n k)^2)$

Problemi NP equivalenti

- $SAT \leq_p CLIQUE \Rightarrow CLIQUE \grave{e}$ NP completo
- SAT è NP completo \Rightarrow *CLIQUE* \leq_p *SAT*
- SAT e CLIQUE sono NP equivalenti.
- Tutti i problemi NP completi sono tra loro NP equivalenti.

37

Gerarchia delle classi

