
8 Sorting in Linear Time

We have now introduced several algorithms that can sort n numbers in O(n lg n)
time. Merge sort and heapsort achieve this upper bound in the worst case; quicksort
achieves it on average. Moreover, for each of these algorithms, we can produce a
sequence of n input numbers that causes the algorithm to run in !(n lg n) time.

These algorithms share an interesting property: the sorted order they determine
is based only on comparisons between the input elements. We call such sorting
algorithms comparison sorts. All the sorting algorithms introduced thus far are
comparison sorts.

In Section 8.1, we shall prove that any comparison sort must make !(n lg n)
comparisons in the worst case to sort n elements. Thus, merge sort and heapsort
are asymptotically optimal, and no comparison sort exists that is faster by more
than a constant factor.

Sections 8.2, 8.3, and 8.4 examine three sorting algorithms—counting sort, radix
sort, and bucket sort—that run in linear time. Needless to say, these algorithms use
operations other than comparisons to determine the sorted order. Consequently, the
!(n lg n) lower bound does not apply to them.

8.1 Lower bounds for sorting

In a comparison sort, we use only comparisons between elements to gain order
information about an input sequence 〈a1, a2, . . . , an〉. That is, given two elements
ai and a j , we perform one of the tests ai < a j , ai ≤ a j , ai = a j , ai ≥ a j , or
ai > a j to determine their relative order. We may not inspect the values of the
elements or gain order information about them in any other way.

In this section, we assume without loss of generality that all of the input elements
are distinct. Given this assumption, comparisons of the form ai = a j are useless,
so we can assume that no comparisons of this form are made. We also note that
the comparisons ai ≤ a j , ai ≥ a j , ai > a j , and ai < a j are all equivalent in that

166 Chapter 8 Sorting in Linear Time

≤ >

≤ >

1:2

2:3 1:3

〈1,2,3〉 1:3 〈2,1,3〉 2:3

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉

≤ >

≤ >

≤ >

〈2,3,1〉

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node an-
notated by i : j indicates a comparison between ai and a j . A leaf annotated by the permutation
〈π(1), π(2), . . . , π(n)〉 indicates the ordering aπ(1) ≤ aπ(2) ≤ · · · ≤ aπ(n). The shaded path indi-
cates the decisions made when sorting the input sequence 〈a1 = 6, a2 = 8, a3 = 5〉; the permutation
〈3, 1, 2〉 at the leaf indicates that the sorted ordering is a3 = 5 ≤ a1 = 6 ≤ a2 = 8. There are 3! = 6
possible permutations of the input elements, so the decision tree must have at least 6 leaves.

they yield identical information about the relative order of ai and a j . We therefore
assume that all comparisons have the form ai ≤ a j .

The decision-tree model

Comparison sorts can be viewed abstractly in terms of decision trees. A decision
tree is a full binary tree that represents the comparisons between elements that
are performed by a particular sorting algorithm operating on an input of a given
size. Control, data movement, and all other aspects of the algorithm are ignored.
Figure 8.1 shows the decision tree corresponding to the insertion sort algorithm
from Section 2.1 operating on an input sequence of three elements.

In a decision tree, each internal node is annotated by i : j for some i and j in the
range 1 ≤ i, j ≤ n, where n is the number of elements in the input sequence. Each
leaf is annotated by a permutation 〈π(1), π(2), . . . , π(n)〉. (See Section C.1 for
background on permutations.) The execution of the sorting algorithm corresponds
to tracing a path from the root of the decision tree to a leaf. At each internal
node, a comparison ai ≤ a j is made. The left subtree then dictates subsequent
comparisons for ai ≤ a j , and the right subtree dictates subsequent comparisons
for ai > a j . When we come to a leaf, the sorting algorithm has established the
ordering aπ(1) ≤ aπ(2) ≤ · · · ≤ aπ(n). Because any correct sorting algorithm
must be able to produce each permutation of its input, a necessary condition for
a comparison sort to be correct is that each of the n! permutations on n elements
must appear as one of the leaves of the decision tree, and that each of these leaves
must be reachable from the root by a path corresponding to an actual execution of
the comparison sort. (We shall refer to such leaves as “reachable.”) Thus, we shall
consider only decision trees in which each permutation appears as a reachable leaf.

8.1 Lower bounds for sorting 167

A lower bound for the worst case

The length of the longest path from the root of a decision tree to any of its reachable
leaves represents the worst-case number of comparisons that the corresponding
sorting algorithm performs. Consequently, the worst-case number of comparisons
for a given comparison sort algorithm equals the height of its decision tree. A lower
bound on the heights of all decision trees in which each permutation appears as a
reachable leaf is therefore a lower bound on the running time of any comparison
sort algorithm. The following theorem establishes such a lower bound.

Theorem 8.1
Any comparison sort algorithm requires !(n lg n) comparisons in the worst case.

Proof From the preceding discussion, it suffices to determine the height of a
decision tree in which each permutation appears as a reachable leaf. Consider a
decision tree of height h with l reachable leaves corresponding to a comparison
sort on n elements. Because each of the n! permutations of the input appears as
some leaf, we have n! ≤ l. Since a binary tree of height h has no more than 2h

leaves, we have

n! ≤ l ≤ 2h ,

which, by taking logarithms, implies

h ≥ lg(n!) (since the lg function is monotonically increasing)
= !(n lg n) (by equation (3.18)) .

Corollary 8.2
Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof The O(n lg n) upper bounds on the running times for heapsort and merge
sort match the !(n lg n) worst-case lower bound from Theorem 8.1.

Exercises

8.1-1
What is the smallest possible depth of a leaf in a decision tree for a comparison
sort?

8.1-2
Obtain asymptotically tight bounds on lg(n!) without using Stirling’s approxi-
mation. Instead, evaluate the summation

∑n
k=1 lg k using techniques from Sec-

tion A.2.

168 Chapter 8 Sorting in Linear Time

8.1-3
Show that there is no comparison sort whose running time is linear for at least half
of the n! inputs of length n. What about a fraction of 1/n of the inputs of length n?
What about a fraction 1/2n?

8.1-4
You are given a sequence of n elements to sort. The input sequence consists of n/k
subsequences, each containing k elements. The elements in a given subsequence
are all smaller than the elements in the succeeding subsequence and larger than the
elements in the preceding subsequence. Thus, all that is needed to sort the whole
sequence of length n is to sort the k elements in each of the n/k subsequences.
Show an !(n lg k) lower bound on the number of comparisons needed to solve
this variant of the sorting problem. (Hint: It is not rigorous to simply combine the
lower bounds for the individual subsequences.)

8.2 Counting sort

Counting sort assumes that each of the n input elements is an integer in the range
0 to k, for some integer k. When k = O(n), the sort runs in "(n) time.

The basic idea of counting sort is to determine, for each input element x , the
number of elements less than x . This information can be used to place element x
directly into its position in the output array. For example, if there are 17 elements
less than x , then x belongs in output position 18. This scheme must be modified
slightly to handle the situation in which several elements have the same value, since
we don’t want to put them all in the same position.

In the code for counting sort, we assume that the input is an array A[1 . . n], and
thus length[A] = n. We require two other arrays: the array B[1 . . n] holds the
sorted output, and the array C[0 . . k] provides temporary working storage.

COUNTING-SORT(A, B, k)

1 for i ← 0 to k
2 do C[i]← 0
3 for j ← 1 to length[A]
4 do C[A[j]]← C[A[j]] + 1
5 ! C[i] now contains the number of elements equal to i .
6 for i ← 1 to k
7 do C[i]← C[i] + C[i − 1]
8 ! C[i] now contains the number of elements less than or equal to i .
9 for j ← length[A] downto 1

10 do B[C[A[j]]]← A[j]
11 C[A[j]]← C[A[j]] − 1

8.2 Counting sort 169

2 5 3 0 2 3 0 3

1 2 3 4 5 6 7 8

2 0 2 3 0 1

1 2 3 4 5

A

C

(a)

2 2 4 7 7 8C

(b)

3

1 2 3 4 5 6 7 8

2 2 4 6 7 8

B

C

(c)

3

1 2 3 4 5 6 7 8

1 2 4 6 7 8

B

C

(d)

0 3

1 2 3 4 5 6 7 8

1 2 4 5 7 8

B

C

(e)

0 3

3

1 2 3 4 5 6 7 8

B

(f)

0 30 2 2 3 5

0

1 2 3 4 50

1 2 3 4 50 1 2 3 4 50

1 2 3 4 50

Figure 8.2 The operation of COUNTING-SORT on an input array A[1 . . 8], where each element
of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after
line 4. (b) The array C after line 7. (c)–(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 9–11, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

Figure 8.2 illustrates counting sort. After the initialization in the for loop of
lines 1–2, we inspect each input element in the for loop of lines 3–4. If the value of
an input element is i , we increment C[i]. Thus, after line 4, C[i] holds the number
of input elements equal to i for each integer i = 0, 1, . . . , k. In lines 6–7, we de-
termine for each i = 0, 1, . . . , k, how many input elements are less than or equal
to i by keeping a running sum of the array C .

Finally, in the for loop of lines 9–11, we place each element A[j] in its correct
sorted position in the output array B. If all n elements are distinct, then when
we first enter line 9, for each A[j], the value C[A[j]] is the correct final position
of A[j] in the output array, since there are C[A[j]] elements less than or equal
to A[j]. Because the elements might not be distinct, we decrement C[A[j]] each
time we place a value A[j] into the B array. Decrementing C[A[j]] causes the
next input element with a value equal to A[j], if one exists, to go to the position
immediately before A[j] in the output array.

How much time does counting sort require? The for loop of lines 1–2 takes
time !(k), the for loop of lines 3–4 takes time !(n), the for loop of lines 6–7
takes time !(k), and the for loop of lines 9–11 takes time !(n). Thus, the overall
time is !(k+n). In practice, we usually use counting sort when we have k = O(n),
in which case the running time is !(n).

Counting sort beats the lower bound of "(n lg n) proved in Section 8.1 because
it is not a comparison sort. In fact, no comparisons between input elements occur

170 Chapter 8 Sorting in Linear Time

anywhere in the code. Instead, counting sort uses the actual values of the elements
to index into an array. The !(n lg n) lower bound for sorting does not apply when
we depart from the comparison-sort model.

An important property of counting sort is that it is stable: numbers with the same
value appear in the output array in the same order as they do in the input array. That
is, ties between two numbers are broken by the rule that whichever number appears
first in the input array appears first in the output array. Normally, the property of
stability is important only when satellite data are carried around with the element
being sorted. Counting sort’s stability is important for another reason: counting
sort is often used as a subroutine in radix sort. As we shall see in the next section,
counting sort’s stability is crucial to radix sort’s correctness.

Exercises

8.2-1
Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the
array A = 〈6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2〉.

8.2-2
Prove that COUNTING-SORT is stable.

8.2-3
Suppose that the for loop header in line 9 of the COUNTING-SORT procedure is
rewritten as

9 for j ← 1 to length[A]

Show that the algorithm still works properly. Is the modified algorithm stable?

8.2-4
Describe an algorithm that, given n integers in the range 0 to k, preprocesses its
input and then answers any query about how many of the n integers fall into a
range [a . . b] in O(1) time. Your algorithm should use "(n + k) preprocessing
time.

8.3 Radix sort

Radix sort is the algorithm used by the card-sorting machines you now find only
in computer museums. The cards are organized into 80 columns, and in each col-
umn a hole can be punched in one of 12 places. The sorter can be mechanically
“programmed” to examine a given column of each card in a deck and distribute the

8.3 Radix sort 171

329
457
657
839
436
720
355

329

457
657

839

436

720
355 329

457
657

839
436

720

355

329

457
657

839

436

720

355

Figure 8.3 The operation of radix sort on a list of seven 3-digit numbers. The leftmost column is
the input. The remaining columns show the list after successive sorts on increasingly significant digit
positions. Shading indicates the digit position sorted on to produce each list from the previous one.

card into one of 12 bins depending on which place has been punched. An operator
can then gather the cards bin by bin, so that cards with the first place punched are
on top of cards with the second place punched, and so on.

For decimal digits, only 10 places are used in each column. (The other two
places are used for encoding nonnumeric characters.) A d-digit number would then
occupy a field of d columns. Since the card sorter can look at only one column
at a time, the problem of sorting n cards on a d-digit number requires a sorting
algorithm.

Intuitively, one might want to sort numbers on their most significant digit, sort
each of the resulting bins recursively, and then combine the decks in order. Unfor-
tunately, since the cards in 9 of the 10 bins must be put aside to sort each of the
bins, this procedure generates many intermediate piles of cards that must be kept
track of. (See Exercise 8.3-5.)

Radix sort solves the problem of card sorting counterintuitively by sorting on the
least significant digit first. The cards are then combined into a single deck, with
the cards in the 0 bin preceding the cards in the 1 bin preceding the cards in the 2
bin, and so on. Then the entire deck is sorted again on the second-least significant
digit and recombined in a like manner. The process continues until the cards have
been sorted on all d digits. Remarkably, at that point the cards are fully sorted
on the d-digit number. Thus, only d passes through the deck are required to sort.
Figure 8.3 shows how radix sort operates on a “deck” of seven 3-digit numbers.

It is essential that the digit sorts in this algorithm be stable. The sort performed
by a card sorter is stable, but the operator has to be wary about not changing the
order of the cards as they come out of a bin, even though all the cards in a bin have
the same digit in the chosen column.

In a typical computer, which is a sequential random-access machine, radix sort
is sometimes used to sort records of information that are keyed by multiple fields.
For example, we might wish to sort dates by three keys: year, month, and day. We
could run a sorting algorithm with a comparison function that, given two dates,
compares years, and if there is a tie, compares months, and if another tie occurs,

172 Chapter 8 Sorting in Linear Time

compares days. Alternatively, we could sort the information three times with a
stable sort: first on day, next on month, and finally on year.

The code for radix sort is straightforward. The following procedure assumes that
each element in the n-element array A has d digits, where digit 1 is the lowest-order
digit and digit d is the highest-order digit.

RADIX-SORT(A, d)

1 for i ← 1 to d
2 do use a stable sort to sort array A on digit i

Lemma 8.3
Given n d-digit numbers in which each digit can take on up to k possible values,
RADIX-SORT correctly sorts these numbers in !(d(n + k)) time.

Proof The correctness of radix sort follows by induction on the column being
sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable
sort used as the intermediate sorting algorithm. When each digit is in the range 0
to k−1 (so that it can take on k possible values), and k is not too large, counting sort
is the obvious choice. Each pass over n d-digit numbers then takes time !(n + k).
There are d passes, so the total time for radix sort is !(d(n + k)).

When d is constant and k = O(n), radix sort runs in linear time. More generally,
we have some flexibility in how to break each key into digits.

Lemma 8.4
Given n b-bit numbers and any positive integer r ≤ b, RADIX-SORT correctly
sorts these numbers in !((b/r)(n + 2r)) time.

Proof For a value r ≤ b, we view each key as having d = $b/r% digits of r bits
each. Each digit is an integer in the range 0 to 2r − 1, so that we can use counting
sort with k = 2r − 1. (For example, we can view a 32-bit word as having 4 8-bit
digits, so that b = 32, r = 8, k = 2r − 1 = 255, and d = b/r = 4.) Each pass of
counting sort takes time !(n + k) = !(n + 2r) and there are d passes, for a total
running time of !(d(n + 2r)) = !((b/r)(n + 2r)).

For given values of n and b, we wish to choose the value of r , with r ≤ b,
that minimizes the expression (b/r)(n + 2r). If b < &lg n', then for any value
of r ≤ b, we have that (n + 2r) = !(n). Thus, choosing r = b yields a running
time of (b/b)(n + 2b) = !(n), which is asymptotically optimal. If b ≥ &lg n',
then choosing r = &lg n' gives the best time to within a constant factor, which
we can see as follows. Choosing r = &lg n' yields a running time of !(bn/ lg n).
As we increase r above &lg n', the 2r term in the numerator increases faster than

8.3 Radix sort 173

the r term in the denominator, and so increasing r above !lg n" yields a running
time of !(bn/ lg n). If instead we were to decrease r below !lg n", then the b/r
term increases and the n + 2r term remains at "(n).

Is radix sort preferable to a comparison-based sorting algorithm, such as quick-
sort? If b = O(lg n), as is often the case, and we choose r ≈ lg n, then radix sort’s
running time is "(n), which appears to be better than quicksort’s average-case time
of "(n lg n). The constant factors hidden in the "-notation differ, however. Al-
though radix sort may make fewer passes than quicksort over the n keys, each pass
of radix sort may take significantly longer. Which sorting algorithm is preferable
depends on the characteristics of the implementations, of the underlying machine
(e.g., quicksort often uses hardware caches more effectively than radix sort), and
of the input data. Moreover, the version of radix sort that uses counting sort as the
intermediate stable sort does not sort in place, which many of the "(n lg n)-time
comparison sorts do. Thus, when primary memory storage is at a premium, an
in-place algorithm such as quicksort may be preferable.

Exercises

8.3-1
Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the fol-
lowing list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB,
BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

8.3-2
Which of the following sorting algorithms are stable: insertion sort, merge sort,
heapsort, and quicksort? Give a simple scheme that makes any sorting algorithm
stable. How much additional time and space does your scheme entail?

8.3-3
Use induction to prove that radix sort works. Where does your proof need the
assumption that the intermediate sort is stable?

8.3-4
Show how to sort n integers in the range 0 to n2 − 1 in O(n) time.

8.3-5 #
In the first card-sorting algorithm in this section, exactly how many sorting passes
are needed to sort d-digit decimal numbers in the worst case? How many piles of
cards would an operator need to keep track of in the worst case?

