160

Chapter 4 Greedy Algorithms

’ ”(’:I’US[QI 1 ‘

Cluster 2

i i steri ith k = 3 clusters. The clusters
i le of single-linkage clustering wit) t .
iguéi;éﬁlbﬁm%dges between points in order of increasing distance

(4.26 he components PR C ’()]Hle{i by deleti. the k—1 ost
2 'y ng
iy pore; ts C ,C PR S m
expen)swe edges 01 the minimum spanning tree T constitute a k'CZusfeIlTlg D’

maximuim spacing.

i Ci isel
Proof. Let C denote the clustering C;, Gy, - - - » G- T%le spacm.g _of Cis spr:gn in;r
th le;l th d* of the (k — 1) most expensive edge in Fhe rmnlmurlrll D naing
tr:E' thigs is the length of the edge that Kruskal’s Algorithm would have

d it.
next, at the moment we stoppe ' - . -~
Now consider some other k-clustering €', which pa{utlonsel/}.m;(t) rrrxl o
pty sets C;, C, Cp- We must show that the spacing of €’ is
em] Gy es G
d*. ,
Since the two clusterings € and €’ are not the same, it mu,st be tha‘i}?er;fz
;s
of our clusters C, is not a subset of any of thf k sets' CSG}n Sag]};én:ec here
i i» Dj t belong to different clusters in C'—say, p; € (g
_are points p;, pj € C; tha
T i d p; belong to the same
Now consider the picture in Figure 4.15. Sm.ce p;and p; nglo lhesame
component C,, it must be that Kruskal’s Algonth.m added all the N id o
p;-p; path P brefore we stopped it. In particular, this means that eac g
P

4.8 Huffman Codes and Data Compression

Cluster C,

N '

[}
1
\ 1
1

1
1
1
i
i
1
1
i
i
1
t
1
]
t
1
1
1
i
!
1
1
[}

Cluster C; =~~~

Cluster C; ! \
Sz Il

AT S

Figure 4.15 An illustration of the proof of (4.26), showing that the spacing of any
other clustering can be no larger than that of the clustering found by the single-linkage
algorithm.

P has length at most d*. Now, we know that p; e C; but p; ¢ C;; so let p’ be
the first node on P that does not belong to C, and let p be the node on P that
comes just before p’. We have just argued that d(p, p’) < d*, since the edge
(. p') was added by Kruskal’s Algorithm. But p and p’ belong to different sets
in the clustering @, and hence the spacing of €’ is at most d(p, p’) <d*. This
completes the proof. =

4.8 Huffman Codes and Data Compression

In the Shortest-Path and Minimum Spanning Tree Problems, we’ve seen how
greedy algorithms can be used to commit to certain parts of a solution (edges
in a graph, in these cases), based entirely on relatively short-sighted consid-
erations. We now consider a problem in which this style of “committing” is
carried out in an even looser sense: a greedy rule is used, essentially, to shrink
the size of the problem instance, so that an equivalent smaller problem can
then be solved by recursion. The greedy operation here is proved to be “safe,”
in the sense that solving the smaller instance still leads to an optimal solu-
tion for the original instance, but the global consequences of the initial greedy
decision do not become fully apparent until the full recursion is complete.

The problem itself is one of the basic questions in the area of data com-
pression, an area that forms part of the foundations for digital communication.

N

161

162

Chapter 4 Greedy Algorithms

/= The Problem
Encoding Symbols Using Bits Since computers ultimately operate on se-
quences of bits (i.e., sequences consisting only of the symbols 0 and 1), one
needs encoding schemes that take text written in richer alphabets (such as the
alphabets underpinning human languages) and converts this text into long
strings of bits.
The simplest way to do this wonld be to use a fixed number of bits for
each symbol in the alphabet, and then just concatenate the bit strings for
each symbol to form the text. To take a basic example, suppose we wanted to
encode the 26 letters of English, plus the space (to separate words) and five
punctuation characters: comma, period, question mark, exclamation point,
and apostrophe. This would give us 32 symbols in total to be encoded.
Now, you can form ob different sequences out of b bits, and so if we use 5
bits per symbol, then we can encode 2° = 32 symbols—just enough for our
purposes. So, for example, we could let the bit string 00000 represent a, the
bit string 00001 represent b, and so forth up to 11111, which could represent the
apostrophe. Note that the mapping of bit strings to symbols is arbitrary; the’
point is simply that five bits per symbol is sufficient. In fact, encoding schemes
like ASCII work precisely this way, except that they use a larger number of
bits per symbol so as to handle larger character sets, including capital letters,
parentheses, and all those other special symbols you see on a typewriter or
computer keyboard. ;

Let’s think about our bare-bones example with just 32 symbols. Is there
anything more we could ask for from an encoding scheme? We couldn’t ask
to encode each symbol using just four bits, since 2* is only 16—not enough
for the number of symbols we have. Nevertheless, it’s not clear that over large
stretches of text, we really need to be spending an average of five bits per
symbol. If we think about it, the letters in most huran alphabets do not
get used equally frequently. In English, for example, the letters e, t,a,o,i,
and n get used much more frequently than g, j, X, and z (by more than an
order of magnitude). So it’s really a tremendous waste to translate them all
into the same number of bits; instead we could use a small number of bits for
the frequent letters, and a larger number of bits for the less frequent ones, and
hope to end up using fewer than five bits per letter when we average over a
long string of typical text.

This issue of reducing the average number of bits per letter is a funda-
mental problem in the area of data compression. When large files need to be
shipped across comimunication networks, or stored on hard disks, it’s impor-
tant to represent them as compactly as possible, subject to the requirement
that a subsequent reader of the file should be able to correctly reconstruct it.
A huge amount of research is devoted to the design of compression algorithms

4.8 Huffman Codes and Data Compression

that can take files as input a i §
nd o -
oo can p reduce their space through efficient encoding

' We now describe one of the fundamental ways of formulating this is
building up to the question of how we might construct the optimalgwa to f;}f 7
adzan;ge of Fhe ponuniform frequencies of the letters. In one sense, ys;ch aﬁ
ggtu.n_ solution is a very e'xppealin.g answer to the problem of compressing

ata: it squeezes all the available gains out of nonuniformities in the frequ
cies. At the end of the section, we will discuss how one can make f!.?rtli:;

progress in compression. takin; eatures other than 1onunifo.
ogre 3 g adva tage of fea 0
I

Variable-Length Encoding Schemes Before the Internet, before the digital
cgmguter, before the radio and telephone, there was the t,elegra h. C .

nicating ’F)y telegraph was a lot faster than the contemporary al?er'natci)\?lm U;
hand-delivering messages by railroad or on horseback. But telegraph er
only capable of transmitting pulses down a wire, and so if you wa?lte?l tz ;Veilrs

a message, you eeded a way to encode the text of your message as a sequence
3
of pUJSES.

To deal with this issue, the pioneer of telegraphic communication, Samuel
Morse, developed Morse code, translating each letter into a sequenc; of dute
(short pulses) and dashes (long pulses). For our purposes, we can thinko ;
fiots a.nd da-shes as zeros and ones, and so this is simply a m;pping of symb (I)
into bit s'trmgs, just as in ASCIL. Morse understood the point that OHZI?O 01;
commuqca}e more efficiently by encoding frequent letters with short strin];s
?rnd so this is .the approach he took. (He consulted local printing presses to ge;

eq}lency estimates for the letters in English.) Thus, Morse code maps e to 0
(a single dot), t to 1 (a single dash), a to 01 (dot-dash), and in enefal
more frequent letters to shorter bit strings. ’ ’ e

o WIn (fiac;, Morse code uses such short strings for the letters that the encoding
ords .ecomes ambignous. For example, just using what we know about
the encoding of e, t, and a, we see that the string 0101 could correspond t
a¥1§/ .of the sequences of letters eta, aa, etet, or aet. (There are othe[r) 'O
bilities as w.ell, involving other letters.) To deal with this ambiguity, ISI(;srzle—
zzde tra;;snussmns involve short pauses between letters (so the encc;ding of
somv;c();;— Iil;:itually be dot-das.h-pa}lse»dot—dash-pause). This is a reasonable
m ng very’short bit strings and then introducing panses—but it
eans that we haven’t actually encoded the letters using just 0 and 1; we’
actnally encoded it using a three-letter alphabet of 0, 1, and “pause.” 'i“hus Vip%
:: fjeally needed to encode everything using only the bits 0 and 1, there WOl’lld
ed to be some further encoding in which the panse got mapped to bits.

163

164

Chapter 4 Greedy Algorithms

Prefix Codes The ambiguity problem in Morse code arises because there exist
pairs of letters where the bit string that encodes one letter is a prefix of the bit
string that encodes another. To eliminate this problem, and hence to obtain an
encoding scheme that has a well-defined interpretation for every sequence of
bits, it is enough to map letters to bit strings in such a way that no encoding
is a prefix of any other.

we say that a prefix code for a set S of letters is a function y
that maps each letter x € S to some sequence of zeros and ones, in such a way
that for distinct x, y € S, the sequence y (x) is not a prefix of the sequence y ().

Now suppose we have a text consisting of a sequence of letters xpxpX3 - -
Xp. We can convert this to a sequence of bits by simply encoding each letter as
a bit sequence using y and then concatenating all these bit sequences together:
YDy) - v (). 1f we then hand this messagetoa recipient who knows the
function y, they will be able to reconstruct the text according to the following

rule.

Concretely,

o Scan the bit sequence from left to right.

o As soon as you've seen enough bits to match the encoding of some letter,
output this as the first letter of the text. This must be the correct first letter,
since no shorter or longer prefix of the bit sequence could encode any
other letter.

o Now delete thi
and iterate.

e corresponding set of bits from the front of the message

In this way, the recipient can produce the correct set of letters without our
having to resort to artificial devices like pauses to separate the letters.

For example, suppose we are trying to encode the set of five letters

$=1{a,b,c,d,e}. The encoding y; specified by

n@=1
) =01
1i(©) = 001
y1(d) =10
y1(e) =000

since we can check that no encoding is a prefix of any other.
b would be encoded as 0010000011101 A

would begin reading from left to right.

is a prefix code,
Now, for example, the string ceca
recipient of this message, knowing y1,
Neither 0 nor 00 encodes a letter, but 0
the first letter is c. This is a safe de
beginning with 001 could encode a di

01 does, so the recipient concludes that
cision, since no longer sequence of bits
fferent letter. The recipient now iterates

4.8 Huffman Codes and Data Compression

on the rest of the message, 00000 .
3 11101; i
letter is e, encoded as 000. next they will conclude that the second

Optimal Prefi. > i
m}(z)re ﬁequgi’thggii We vde been doing all this because some letters are
ers, and we want to take adwv.
T antage of the fact that m
: s;qvugrzi lztters can have shorter encodings. To make this objective precise C;fe
introduce some notation to express the frequencies of letters. T

S
e sfpc;sf that ff)r each letter x € S, there is a frequency f,, representing the
et 0 1etters in the text that are equal to x. In other words assu;linv
are n letters total, nf, of these letter: ’ :
i s S are e i
frequencies sum to 1; thatis, Y, o f, =1 Aual 0 % T notice that the

Now. i .
1engthoZ\;, ;f u\la_vi Itfsdeiinprze?; .co.de y to encode the given text, what is the total
g? This is simply the sum, over all lette
! ! 5 1S X € S,
;lu[l‘?l?er of times x occurs times the length of the bit string y (x) used to er: tge
- Using [y (x)| to denote the length y (x), we can write this as o

encoding length = Z nfyly®|=n Z fely ol

xe$ xeS

}goppmg the leading coefficient of n from the final expression gives us
O fxly(x)|, the average number of bits required per letter. We d i
e ey . We denote this
To continue the earlier exam
B ple, suppose we have a text with
S={a,b,c,d, e}, and their frequencies are as follows: e leter

fa=32, fy=.25 f.=20, f;=.18, f,=.05.

Then the average number of bi
t . .
ot s per letter using the prefix code y; defined

32-2+4.25-24.20-3+.18-24+.05-3=2.25.

3 et encoding. (ot ot e o P eleruing
. . -length e ing i i

e g of b e et oo
iiie]rittnra;hf‘fsr aLl ﬁ.xed-length encoding, sin‘clee t:gerbsi’tgv foﬁl?iuloiﬂ?zjlzg?fzﬁ
Savmg.s o 25,p :rl(lgn ttlhe code y; reduces the bits per letter from 3 to 2.25, a

d, in fac Y1 not the best we 0 in this exar 1ple. Consider the
> 3
An n t 18 can d S 1

165

166

Chapter 4 Greedy Algorithms

y(a)=11
ya(b) =10
ya(c) =01
ya(d) = 001
¥2(e) =000

The average number of bits per letter using v 18

32.2425-2+.20-2+.18-3+ 05-3=2.23.

i i i et
So now it is natural to state the underlying quesgon. Gwercl1 an aiphraebﬁx
and a set of frequencies for the letters, we woulq like t?[h prto gc;ngs o
code that is as efficient as possible—namely, a prefix code o : Wnﬂnlnc mizes e
average number of bits per letter ABL(Y) = Y yes ¥ (1. 1
prefix code optimal.

e e e i - it includes all possible
JThe search space for this problem is fairly comphcated,. 1t.1nc ude! s
ways of mapping letters to bit strings, subject to the defining én'og? 1 eytte r.f e
codes. For alphabets consisting of an extremely .small‘ number ! infea,sible'
feasibie to search this space by brute force, but this rapidly become: . .

We now describe a greedy method to construct an Opmglaiegr;ﬁ;(a ;s Oe%
ici i it i ful to develop a tree-ba
efficiently. As a first step, it 1s use : s ¢
Zeegesenting pieﬁx codes that exposes their structure more clearly than simply
the lists of function values we used in our previous examples.

ee
Representing Prefix Codes Usinf lenﬂ?lzl ::E;Sm(?;pt?:;i I\1;\11;2 dtril: :V reog;;dstjm
T in which each node that is not a lea ; all s
i at the number of leaves is equ,
zi;r: f)fa t?llen:lrghzgzt z?raigrvi:ﬂg;eilch leaf with a distinct letter in S.
Such a labeled binary tree T naturally describes a prefucmcoﬁeea,falz1 lf)(;lll;)gv;:
For each letter x € S, we follow the paﬂ} from thfz root to .tz feaf labe ami
each time the path goes from a node to }ts l'eft ch]l.d, we Wri e down @ 1 nd
each time the path goes from a node to its rlght child, we wri !
take the resulting string of bits as the encoding of x.

Now we observe

(4.2”7k)” Theencodmgof VS constmcted from T zs a prefzx cc{c?i

. . the
Proof. In order for the encoding of xtobea pre'ﬁx of the e_né:locflrlnﬁ1 (ﬁl)ez,rom
path from the root fo x would have to be a prefix of the path fro

4.8 Huffman Codes and Data Compression

to y. But this is the same as saying that x would lie on the path from the
root to y, which isn’t possible if x is a leaf. =

This relationship between binary trees and prefix codes works in the other
direction as well. Given a prefix code y, we can build a binary tree recursively
as follows. We start with a root; all letters x € S whose encodings begin with
a 0 will be leaves in the left subtree of the root, and all letters y €S whose
encodings begin with a 1 will be leaves in the right subtree of the root, We
now build these two subtrees recursively using this rule.

For example, the labeled tree in Figure 4.16(a) corresponds to the prefix
code y, specified by

vo(@) =1

vo(b) =011
Yo(c) =010
Yo(d) = 001
vo(e) = 000

To see this, note that the leaf labeled a is obtained by simply taking the right-
hand edge out of the root (resulting in an encoding of 1); the leaf labeled e is
obtained by taking three successive left-hand edges starting from the root; and
analogous explanations apply for b, ¢, and d. By similar reasoning, one can
see that the labeled tree in Figure 4.16(b) corresponds to the prefix code y,
defined earlier, and the labeled tree in Figure 4.16(c) corresponds to the prefix
code y, defined earlier. Note also that the binary trees for the two prefix codes
v1 and y, are identical in structure; only the labeling of the leaves is different.
The tree for y;, on the other hand, has a different structure.

Thus the search for an optimal prefix code can be viewed as the search for
a binary tree T, together with a labeling of the leaves of T, that minimizes the
average number of bits per letter. Moreover, this average quantity has a natural
interpretation in the terms of the structure of T: the length of the encoding of
a letter x € S is simply the length of the path from the root to the leaf labeled
x. We will refer to the length of this path as the depth of the leaf, and we will
denote the depth of a leaf vin T simply by depth(v). (As two bits of notational
convenience, we will drop the subscript T when it is clear from context, and
we will often use a letter x € S to also denote the leaf that is labeled by it.)
Thus we are seeking the labeled tree that minimizes the weighted average
of the depths of all leaves, where the average is weighted by the frequencies

of the letters that label the leaves: > xes fx - depthy(x). We will use ABL(T) to
denote this quantity.

167

168

Chapter 4 Greedy Algorithms

Figure 4.16 Parts (a), (b), and (c) of the figure depict three different prefix codes for

the alphabet S={a, b, c,d, e}

As a first step in considering algorithms for this problem, let’s note a si;nlil:
i i d a definition: we say tha
bout the optimal tree. For this fact, we nee .
{jifxtaiy ?(ree is full if each node that is not a leaf has two children. (Inb?;her
words, there are no nodes with exactly one child.) Note that all three binary

trees in Figure 4.16 are full.
(4.28) The binary tree corresponding to the optimal prefix code s full.

rove using an exchange argument. Let T denote the

Proof. This is easy to D and suppose it contains

binary tree corresponding to the optimal prefix code,

4.8 Huffman Codes and Data Compression

a node u with exactly one child v. Now convert T into a tree T by replacing
node u with v.

To be precise, we need to distinguish two cases. If uz was the root of the
tree, we simply delete node u and use v as the root. If u is not the root, let w
be the parent of u in T. Now we delete node u and make v be a child of w
in place of u. This change decreases the number of bits needed to encode any
leaf in the subtree rooted at node u, and it does not affect other leaves. So the
prefix code corresponding to T’ has a smaller average number of bits per letter
than the prefix code for T, contradicting the optimality of T. m

A First Attempt: The Top-Down Approach Intuitively, our goal is to produce
a labeled binary tree in which the leaves are as close to the root as possible.
This is what will give us a small average leaf depth.

A natural way to do this would be to try building a tree from the top down
by “packing” the leaves as tightly as possible. So suppose we try to split the
alphabet § into two sets Sy and S,, such that the total frequency of the letters
in each set is exactly % If such a perfect split is not possible, then we can try
for a split that is as nearly balanced as possible. We then recursively construct
prefix codes for S, and S, independently, and make these the two subtrees of
the root. (In terms of bit strings, this would mean sticking a 0 in front of the
encodings we produce for S;, and sticking a 1 in front of the encodings we
produce for S,.)

It is not entirely clear how we should concretely define this “nearly
balanced” split of the alphabet, but there are ways to make this precise.
The resulting encoding schemes are called Shannon-Fano codes, named after
Claude Shannon and Robert Fano, two of the major early figures in the area
of information theory, which deals with representing and encoding digital
information. These types of prefix codes can be fairly good in practice, but
for our present purposes they represent a kind of dead end: no version of this
top-down splitting strategy is guaranteed to always produce an optimal prefix
code. Consider again our example with the five-letter alphabet S = {a, b, ¢, d, e}
and frequencies

fa=232, fo=25, f;=20, f3=18, f.=.05.

There is a unique way to split the alphabet into two sets of equal frequency:
{a,d} and {b,c,e}. For {a,d}, we can use a single bit to encode each. For
{b,c, e}, we need to continue recursively, and again there is a unique way
to split the set into two subsets of equal frequency. The resulting code corre-
sponds to the code y;, given by the labeled tree in Figure 4.16(b); and we’ve
already seen that y; is not as efficient as the prefix code y, corresponding to
the labeled tree in Figure 4.16(c).

169

P s

170

Chapter 4 Greedy Algorithms

Shannon and Fano knew that their approach did not always_yield tge

optimal prefix code but they didn’t see how to compute the lopurlrjlaIDa:o _z
: Ived a few years later by Davl
ithout brute-force search. The problem was so yDa

rglffman at the time a graduate student who learned about the gquestion in a
class taught by Fano.

We now describe the ideas leading up to the greedy approach that Huffman
discovered for producing optimal prefix codes.

What If We Knew the Tree Structure of the Optimal aﬁ’reff'x hﬁf'det? azzstf;l:
i i i hing for an efficient algorithm is to assume,
nique that is often helpful in searc : S
i knows something partial abou D
as a thought experiment, that one : e o e
i Id make use of this parti owledg
lution, and then to see how one wou : .
?1(: Ending the complete solution. (Later, in Chapter 6, we will se.e in fact tha}tl
this technique is a main underpinning of the dynamic programming approac
to designing algorithms.) 4 ‘
For the current problem, it is useful to ask: What if someone gthla gsge
binary tree T* that corresponded to an optimal prefix codg, bu;1 not ethoemawehlicﬁ
i uld need to figurt
of the leaves? To complete the solution, we wo ! et
letter should label which leaf of T%, and then we’d have our code. How
is this? . .
In fact, this is quite easy. We begin by formulating the following basic fact.

(4.29) Suppose that iz and v are leaves of T*, such tf.mt depth(u) < deft};g;z).c
Fu-rther suppose that in a labeling of T* correspondmg to an optima. p> ;
code léaf u is labeled with y € S and leaf v is labeled with z € S. Then fy, = fz.

Proof. This has a quick proof using an exchange argument. If fyd< fz;ltrallelg
consider the code obtained by exchanging the lab‘els atAthe no e;L(T*) d
v. In the expression for the average numb.er of bits p‘etlh letteuriﬁAlier On;
3 es fx depth(x), the effect of this exchange is as follpvs{s. em ! freases b;
inéfeases (from depth(u) to depth(v)), and the multiplier on f;, de
the same amount (from depth(v) to depth(u)).
Thus the change to the overall sum is (dePﬂ.l(v) — depth(u)?j(fy —t; Igz;htI;
f, <f, this changeisa negative number, contradicting the supposed op
) cff the prefix code that we had before the exchange. =&

We can see the idea behind (4.29) in Figure 4.16(b?: a quick way to see tk‘lat
the code here is not optimal is to notice that it can be improved by exchanglillg
the positions of the labels ¢ and d. Having a Iower—frquency ¥etter ata stzz 93)1
smaller depth than some other higher-frequency letter is precisely what {4.
rules out for an optimal solution.

4.8 Huffman Codes and Data Compression

Statement (4.29) gives us the following intuitively natural, and optimal,
way to label the tree T* if someone should give it to us. We first take all leaves
of depth 1 (if there are any) and label them with the highest-frequency letters
in any order. We then take all leaves of depth 2 (if there are any) and label them
with the next-highest-frequency letters in any order. We continue through the
leaves in order of increasing depth, assigning letters in order of decreasing
frequency. The point is that this can’t lead to a suboptimal labeling of T*,
since any supposedly better labeling would be susceptible to the exchange in
(4.29). It is also crucial to note that, among the labels we assign to a block of
leaves all at the same depth, it doesn’t matter which label we assign to which
leaf. Since the depths are all the same, the corresponding multipliers in the
expression 3, .o f.ly (x)| are the same, and so the choice of assignment among
leaves of the same depth doesn’t affect the average number of bits per letter.

But how is all this helping us? We don’t have the structure of the optimal
tree T*, and since there are exponentially many possible trees (in the size of

the alphabet), we aren’t going to be able to perform a brute-force search over
all of them.

In fact, our reasoning about T* becomes very useful if we think not about
the very beginning of this labeling process, with the leaves of minimum depth,
but about the very end, with the leaves of maximum depth—the ones that
receive the letters with lowest frequency. Specifically, consider a leaf v in T*
whose depth is as large as possible. Leaf v has a parent u, and by (4.28) T* is
a full binary tree, so u has another child w. We refer to v and w as siblings,
since they have a common parent. Now, we have

(4.30) wis a leaf of T*.

Proof. If w were not a leaf, there would be some leaf w’ in the subtree below
it. But then w’ would have a depth greater than that of v, contradicting our
assumption that v is a leaf of maximum depth in T*. =&

So v and w are sibling leaves that are as deep as possible in T*. Thus our
level-by-level process of labeling T*, as justified by (4.29), will get to the level
containing v and w last. The leaves at this level will get the lowest-frequency
letters. Since we have already argued that the order in which we assign these
letters to the leaves within this level doesn’t matter, there is an optimal labeling
in which v and w get the two lowest-frequency letters of all.

We sum this up in the following claim.

(4.31) There is an optimal prefix code, with corresponding tree T*, in which
the two lowest-frequency letters are assigned to leaves that are siblings in T*.

171

172

Chapter 4 Greedy Algorithms

[

New merged letter
with sum of frequencies
I3 \

! \
(‘ \\
O O e{ﬂvo lowest-frequency letters

There is an optimal solution in which the two lowest-frequency letters

i 4.17 ! 1 e
f’c:%:lr:ib]jng leaves; deleting them and labeling their parent with a new letter having the

combined frequency yields an instance with a smaller alphabet.

An Algorithm to Construct an Optimal Prefix Code S\.}ppgse that y* and_z*
are the two lowest-frequency letters in S. (We can bfeak ties in the fretqw_xer;cmst
arbitrarily.) Statement (4.31) is important because it tel.ls.us somet‘l‘nngkathm;n
where y* and z* go in the optimal solution; it says that it is safe to Iofj eas
together” in thinking about the solution, because.we know they en ?pﬁke
sibling leaves below a common parent. In effect, this commc?n pareilt acds l
a “meta-letter” whose frequency is the sum of the frequencies of y* and z*.

This direcﬂy suggests an algorithm: we replace y* and z* Wiﬂ'l this I.ne;a-
letter, obtaining an alphabet that is one letter smaller. Y\/E recursively ﬁ;} lzi
prefix code for the smaller alphabet, and then "‘open up the meta—_let(;er . acd
into y* and z* to obtain a prefix code for S. This recursive strategy is . epicte
in Figure 4.17.

A concrete description of the algorithm is as follows.

To construct a prefix code for an alphabet S, with given frequencies:
If S has two letters then -

Encode one letter using 0 and the other letter using 1
Else

Let y* and z* be the two lowest—frequency letters

Form a new alphabet S’ by deleting y* and z* and

replacing them with a new letter w of frequency fy=+ [z
: s
Recursively comstruct a prefix code y' for §, with tree T
Define a prefix code for S as follows:

Start with T’

4.8 Huffman Codes and Data Compression

Take the leaf labeled w and add two children below it
labeled y* and z*
Endif

We refer to this as Huffman’s Algorithm, and the prefix code that it
produces for a given alphabet is accordingly referred to as a Huffman code.
In general, it is clear that this algorithm always terminates, since it simply
invokes a recursive call on an alphabet that is one letter smaller. Moreover,
using (4.31), it will not be difficult to prove that the algorithm in fact produces
an optimal prefix code. Before doing this, however, we pause to note some
further observations about the algorithm.

First let’s consider the behavior of the algorithm on our sample instance
with S={a, b, ¢, d, e} and frequencies

fo=32, fy=25 f;=20, fy=18, f,=.05.

The algorithm would first merge d and e into a single letter—let’s denote it
(de)—of frequency .18 + .05=.23. We now have an instance of the problem
on the four letters ' = {a, b, ¢, (de)}. The two lowest-frequency letters in &’ are
¢ and (de), so in the next step we merge these into the single letter (cde) of
frequency .20 + .23 = 43. This gives us the three-letter alphabet {a, b, (cde)}.
Next we merge a and b, and this gives us a two-letter alphabet, at which point
we invoke the base case of the recursion. If we unfold the result back through
the recursive calls, we get the tree pictured in Figure 4.16(c).

It is interesting to note how the greedy rule underlying Huffman’s
Algorithm—the merging of the two lowest-frequency letters—fits into the
structure of the algorithm as a whole. Essentially, at the time we merge these
two letters, we don’t know exactly how they will fit into the overall code.
Rather, we simply commit to having them be children of the same parent, and
this is enough to produce a new, equivalent problem with one less letter.

Moreover, the algorithm forms a natural contrast with the earlier approach
that led to suboptimal Shannon-Fano codes. That approach was based on a
top-down strategy that worried first and foremost about the top-level split in
the binary tree—namely, the two subtrees directly below the root. Huffman’s
Algorithm, on the other hand, follows a bottom-up approach: it focuses on
the leaves representing the two lowest-frequency letters; and then continues
by recursion.

A~ Analyzing the Algorithm

The Optimality of the Algorithm We first prove the optimality of Huffman’s
Algorithm. Since the algorithm operates recursively, invoking itself on smaller
and smaller alphabets, it is natural to try establishing optimality by induction

173

174

Chapter 4 Greedy Algorithms

on the size of the alphabet. Clearly it is optimal for all tvwo-lette'r glphapezsl
(since it nuses only one bit per letter). So suppose by in.ductlon that 1.t Is opu;n
for all alphabets of size k — 1, and consider an input instance consisting of an
alphabet S of size k. o

Let’s quickly recap the behavior of the algorithm on t.“tns ms.t.ance.1 The
algorithm merges the two lowest-frequency letters y*,Z.* €S 1.nto a:mgle ;atter
w, calls itself recursively on the smaller alphabet §’ ‘(m Whlcl‘{ y* and z a;-/e
replaced by), and by induction produces an opnmal' p'reﬁx code fc;r S,
represented by a labeled binary tree T’. It then extends this mt_o a t,ree TI gr B
by attaching leaves labeled y* and z* as children of the node in T’ labeled w.

There is a close relationship between ABL(T) and ABL(T"). (No?e that t%xe
former quantity is the average number of bits used to encode letters in S,‘w};Ie
the latter quantity is the average number of bits used to encode letters in §'.)

4.32) ABL(T") = ABL(T) — f,-

Proof. The depth of each lefter x other than y*, z* is the same in both T and
T’. Also, the depths of y* and z* in T are each one greater than the depth of

w in T'. Using this, plus the fact that f, = fiy» + f,+, we have

ABL(T) =) _ f, - depthr(x)

xe$

= f,- - depthp(y®) + fy- - depthr@) + D fi- depthr(®)

x#£y¥,z%
= (fe +) - (1 + depthp(e)) + > fe- depthy(x)
Xy, z*
=f, - (1+ depthp(w)) + }: f, - depth (%)
xFEy*, 20
=f, +f,-depthp(@) +) f;-depthp()

xgy*,z*

=f,+ 3 fy depthp ()

xe§’

=f,+aBL(T). =
Using this, we now prove optimality as follows.

4 33] The Huffmdh codé fdr a given alphabet achieves the minimum average
number of bits per letter of any prefix code. B

Proof. Suppose by way of contradiction that the tree T produced bY our greedy
algorithm is not optimal. This means that there is some labeled binary tree Z

4.8 Huffman Codes and Data Compression

such that ABL(Z) < ABL(T); and by (4.31), there is such a tree Z in which the
leaves representing y* and z* are siblings.

It is now easy to get a contradiction, as follows. If we delete the leaves
labeled y* and z* from Z, and label their former parent with w, we get a tree
Z’ that defines a prefix code for §'. In the same way that T is obtained from
T’, the tree Z is obtained from Z’ by adding leaves for y* and z* below w; thus
the identity in (4.32) applies to Z and Z’ as well: ABL(Z') = ABL(Z) — f,,.

But we have assumed that ABL(Z) < aBL(T); subtracting f,, from both sides
of this inequality we get ABL(Z") < ABL(T”), which contradicts the optimality
of T’ as a prefix code for §'. =

Implementation and Running Time It is clear that Huffman’s Algorithm can
be made to run in polynomial time in k, the number of letters in the alphabet.
The recursive calls of the algorithm define a sequence of k — 1 iterations over
smaller and smaller alphabets, and each iteration except the last consists
simply of identifying the two lowest-frequency letters and merging them into
a single letter that has the combined frequency. Even without being careful
about the implementation, identifying the lowest-frequency letters can be done
in a single scan of the alphabet, in time O(k), and so summing this over the
k — 1 iterations gives O(k%) time.

But in fact Huffman’s Algorithm is an ideal setting in which to use a
priority queue. Recall that a priority queue maintains a set of k elements,
each with a numerical key, and it allows for the insertion of new elements and
the extraction of the element with the minimum key. Thus we can maintain
the alphabet S in a priority queue, using each letter’s frequency as its key.
In each iteration we just extract the minimum twice (this gives us the two
lowest-frequency letters), and then we insert a new letter whose key is the
sum of these two minimum frequencies. Our priority quene now contains a
representation of the alphabet that we need for the next iteration.

Using an implementation of priority queues via heaps, as in Chapter 2, we
can make each insertion and extraction of the minimum run in time O(log k);
hence, each iteration—which performs just three of these operations—takes
time O(log k). Summing over all k iterations, we get a total running time of
O(k log k).

Extensions

The structure of optimal prefix codes, which has been our focus here, stands
as a fundamental result in the area of data compression. But it is important to
understand that this optimality result does not by any means imply that we
have found the best way to compress data under all circumstances.

175

