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The Road Network

The road network is described as a weighted directed graph:

e nodes represent intersections/junctions
e edges represent roads/streets
e edge weights represent road length or expected travel time

Junction




The Routing Problem

What is the “best” route to reach
a destination from an origin?

What does “good” mean? Its subjective (i.e., max. route
dissimilarity, min. length, etc)

The “best” route for an individual is not necessarily the best
anymore when many vehicles are travelling at the same time



Shortest/Fastest route

e The default solution to routing is providing the
shortest/fastest path (Dijkstra algorithm)

function Dijkstra(Graph, source):

for each vertex v in Graph.Vertices:
dist[v] < INFINITY
prev[v] « UNDEFINED
add v to Q

dist[source] « 0

while Q is not empty:
u « vertex in Q with min dist[u]
remove u from Q

for each neighbor v of v still in Q:
alt « dist[u] + Graph.Edges(u, v)
if alt < dist[v]:

dist[v] « alt
previv] « u

return dist[], prev[]




Is the shortest enough?
In many scenarios, the shortest path is not enough:

e Example 1: navigation systems
(longer) alternative routes with desirable properties

e Example 2: humanitarian aid goods transport
distribution of vehicles on non-overlapping routes increases
the chances that goods will be delivered

e Example 3: emergencies
Alternative, safe routes in case of earthquakes, terrorist
attacks, evacuation plans



Alternative Routing Methods

Alternative Routing (AR) aims to generate
a set of k good alternative routes
between an origin and a destination



Route generation framework

.end

Input: /
e road network G

e anintk>1

e an (o, d) pair

Output:
e Kk alternative paths — Google Maps

—— alternative 1

- alternative 2



k-Shortest Paths

Naive solution: generate k-shortest paths
between an origin and a destination

Limitations:

e the k-shortest path solutions fail to
provide significant path diversification

e the routes exhibit a 99% overlap, with
minor differences (cutting a corner or
small detours)



k-Shortest Paths
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A small detour




k-Disjoint Paths

Generate k-shortest disjoint paths, i.e.,
k alternative paths with no common edges

e |n practice, we put the edge weights of the
current shortest path to infinity
e This enforces the diversity among paths

Limitations:

e routes significantly deviate from the
shortest path
o increased travel time and length

e no guarantee that k disjoint paths exists
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Alternative Routing Approaches

Several existing Alternative Routing approaches lie between the
k-shortest path and k-shortest disjoint paths:

1. Edge Weight Approaches
2. Plateau Approaches

3. Dissimilarity Approaches



Edge Weight Approaches

Compute the shortest paths iteratively:

e at each iteration, manipulate the road network’s edge weights

e edge weight manipulation involves the randomization of the
weights or a cumulative penalization of the shortest path’'s edges

C—0




Path Penalization

Until # of alternative paths < k:

e Compute the shortest path using the current edge
weights

e Apply a penalization factor € to each edge weight in the
shortest path

Ve € ps,w(e) = w(e)(1 + ¢)



Path Penalization

k=5, £=0.01 k=5, €=0.1 k=5, €=0.2

/“/\-—— 5 -

& & i

o The penalty factor € controls the degree of deviation of an
alternative path from previously generated ones

o Itinfluences the geographic distribution of alternative paths



Graph Randomization

Until # of alternative paths < k:
e Compute the shortest path using the current edge weights

e Randomize the weights of all edges in G adding a value v
drawn from a normal distribution

Ve € G,w(e) =w(e) + v

N(0,w(e)* - o?)

normal distribution



Graph Randomization

k=5, sigma=0.1 k=5, sigma=0.2 k=5, sigma=1

g G



Path Randomization

Until # of alternative paths < k:
e Compute the shortest path using the current edge weights

e Randomize the weights of the shortest path adding a value
v drawn from a normal distribution

Ve € ps,w(e) = w(e) +v

N(0,w(e)* - o?)

normal distribution



Path Randomization

k=5, sigma=0.1 N k=5, sigma=0.2 k=5, sigma-=1
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Which ones of the AR algorithms are
deterministic?

K-shortest
K-disjoint v

Path Randomization
Path Penalization
Graph Randomization

mo oW



In which AR algorithm weight can also
decrease?

A. Path Randomization
B. Path Penalization
C. Graph Randomization v



What is the range of possible path counts
between locations O and D that Path
Penalization may return after N iterations?

Minimum:
e 0 pathsif O and D are not connected.
e 1 path if only the fastest path is found.

Maximum:
e N paths if a new path is discovered at each
of the N iterations.



Plateau Approaches

Build two shortest-path trees, one from the source and one from the
destination:

e identify their common branches (plateaus)
e select top-k plateaus by length
e append the shortest paths from the source to the plateau’s first

edge and from the last edge to the target

Fastestpath - .......



Dissimilarity Approaches

Dissimilarity approaches generate k alternative paths that satisfy a
dissimilarity constraint and a desired property

e k-Shortest Paths with Limited Overlap
e k-Dissimilar Paths with Minimum Collective Length
e k-Most Diverse Near Shortest Paths



k-Most Diverse Near Shortest Paths (KMD)

e KMD generates k routes with the highest dissimilarity while still
adhering to a user-defined cost threshold ¢
e |tis NP-Hard: we need a heuristic

Given an origin o and a destination d:

1. Define a cost threshold ¢ - (1+¢) for a path to be Near Shortest (NSP)
2. Until no more near-shortest paths can be found, repeat:
o generate a new NSP p and adds it to the set of NSPs S.
m Use path penalization algorithm
o generate all possible subsets of S with k elements containing p
and identifies Sdiv as the most diverse one (based on jaccard).
If it is the most diverse found up to this point Pkmd = Sdiv.
3. Return the subset of k paths with the highest diversity, i.e., Pkmd.



k-Most Diverse Near Shortest Paths (KMD)

k=5, =0.1 iy k=5, ¢=0.3 A k=5, ¢=0.5



Traffic Assignment Problem (TA)

Given a demand, assign each trip with a route



Traffic Assignment Problem (TA)

Given a demand, assign each trip with a route

/

collection of origin-destination pairs asingle origin-destination pair sequence of road edges




AON vsITA

All or Nothing (AON): assign the fastest path to each trip

e It creates concentration of the traffic on a few routes

Incremental Traffic Assignment (ITA): extends AON incorporating the
dynamic travel time changes within a road edge

e create n splits of the demand (typically n = 4 with 40%, 30%, ... 10%)
e Split 1: trips are assigned using AON; each edge’s travel time is updated
using the BPR function (Bureau of Public Roads)

e Split 2: trips are assigned using AON, considering the updated travel time
e |terate



METIS

Algorithm 1: METIS

Input :road network G, mobility demand D, penalization

factor p, slow factor s

Output:sequence of assigned routes R

// Initialization Phase

K& K« KRoadEstimation(G, D);

road ’ " road

2 R 0;

// Perform the Traffic Assignment (TA)
3 foreach j = (0,d,t) € D do

/1 Apply the Forward-Looking Edge Penalization (FLEP)
H « FLEP(G,R,D, (p,s),1);

/! Generate a set of k candidates on the penalized road network

P « kMDNSP(H, o,d);

// Select the route that minimizes the score function

r « RouteSelection(P, K*, K“);
road road

// Update the assigned routes set
R« RU{r}

s return R;
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METIS

For each trip request (trips are time-sorted):

Forward-Looking Edge Penalization (FLEP)

O

discourage selection of congested edges

Algorithm 1: METIS

Input :road network G, mobility demand D, penalization

factor p, slow factor s

Output:sequence of assigned routes R

// Initialization Phase

K& K« KRoadEstimation(G, D);

road ’ " road

2 R 0;

// Perform the Traffic Assignment (TA)
3 foreach j = (0,d,t) € D do

/1 Apply the Forward-Looking Edge Penalization (FLEP)
H « FLEP(G,R, D, (p,$), 1);

/! Generate a set of k candidates on the penalized road network

P « kMDNSP(H, o,d);

// Select the route that minimizes the score function

r « RouteSelection(P, K*, K“);
road road

// Update the assigned routes set
R« RU{r}

s return R;
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METIS

For each trip request (trips are time-sorted): Algorithm 1: METIS

Input :road network G, mobility demand D, penalization
factor p, slow factor s
Output: sequence of assigned routes R

e Forward-Looking Edge Penalization (FLEP) T T i

o discourage selection of congested edges 1 K9 K< KRoadEstimation(G, D);
2 R 0;

// Perform the Traffic Assignment (TA)
. . 3 foreach j = (0,d,t) € D do
¢ Alternatlve ROUtI ng /1 Apply the Forward-Looking Edge Penalization (FLEP)

o generate routed candidates ¢ | HHEAGR D)

/! Generate a set of k candidates on the penalized road network

5 | | P« kMDNSP(H,0,d);

// Select the route that minimizes the score function

6 r « RouteSelection(P, K*, K“);
road road

// Update the assigned routes set

7 R« RU{r};

s return R;
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METIS

For each trip request (trips are time-sorted): Algorithm 1: METIS

Input :road network G, mobility demand D, penalization
factor p, slow factor s
Output: sequence of assigned routes R

e Forward-Looking Edge Penalization (FLEP) T T i

o discourage selection of congested edges 1 K&d K9 KRoadEstimation(G, D);
2 R 0;
// Perform the Traffic Assignment (TA)

. R 3 foreach j = (0,d,t) € D do
¢ Alternatlve ROUtI ng /1 Apply the Forward-Looking Edge Penalization (FLEP)

o generate routed candidates ¢ | HIEAGR D)0
/! Generate a set of k candidates on the penalized road network

5 | P« kMDNSP(H,o,d);

. // Select the route that minimizes the score function
® Route Scorlng 6 | |r < RouteSelection(P, K&, K& ):;
o rank routes based on popularity and P ‘f‘;‘f) ‘*{‘:}"f“‘g“““ e
capacity s return R;
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Forward-Looking Edge Penalization (FLEP)

e Penalizing road edges weight reflects Alganthm 1 MEAD
. . . Input :road network G, mobility demand D, penalization
dynamic changes in travel time due to factor p, slow factor s

Output: sequence of assigned routes R

traffic volume // Initialization Phase

1 K& K9« KRoadEstimation(G, D);
road road

2 R 0;
© EXIStI ng methOdS pena I 1Z€ the // Perform the Traffic Assignment (TA)

entire routes assigned to vehicles * foreachj = (pid.f) € Ddo
/1 Apply the Forward-Looking Edge Penalization (FLEP)

1+ | |H « FLEP(G,R D, (p,s),1);

o) F LE P esti mates ve h i C | e curre nt /! Generate a set of k candidates on the penalized road network
. . . 5 P «— kMDNSP(H, o,d);
pOSItIOﬂ da pplyl ng pena |t|es to the // Select the route that minimizes the score function

6 r « RouteSelection(P, K*, K“);
road road

un-visited edges only

// Update the assigned routes set
7 R« RU{r};

s return R;




Forward-Looking Edge Penalization (FLEP)



Forward-Looking Edge Penalization (FLEP)

The position of
already departed
vehicles is estimated.




Forward-Looking Edge Penalization (FLEP)

The position of
already departed
vehicles is estimated.

O O

For each vehicle we penalize the edges
projected to be visited by that vehicle



Forward-Looking Edge Penalization (FLEP)

The position of
already departed
vehicles is estimated.

The penalized road X1

network at the
current time

x2
x1



Alternative Routing

After the FLEP phase:

e Apply kMD [1] on the penalized road network to
obtain k (=3) alternative routes

[1] Christian Hacker, Panagiotis Bouros, Theodoros Chondrogiannis, and Ernst Althaus.
2021. Most Diverse Near-Shortest Paths. In ACM SIGSPATIAL GIS. 229-239

Algorithm 1: METIS

Input :road network G, mobility demand D, penalization

factor p, slow factor s

Output: sequence of assigned routes R

// Initialization Phase

1 K& K9« KRoadEstimation(G, D);
road road

2 R 0;

// Perform the Traffic Assignment (TA)
3 foreach j = (0,d,t) € D do

/1 Apply the Forward-Looking Edge Penalization (FLEP)
H « FLEP(G,R, D, (p,s), 1);

/! Generate a set of k candidates on the penalized road network

P « kMDNSP(H, o,d);

// Select the route that minimizes the score function

r « RouteSelection(P, K*, K“);
road road

// Update the assigned routes set

R« RU{r};

s return R;
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Route Scoring

After the route generation:

1. Compute a score for each route (based on K-Road [2])
that favours high-capacity roads and disfavour popular
ones

2. Select the route with the minimum score

KRs - KRy

C

Algorithm 1: METIS

Input :road network G, mobility demand D, penalization
factor p, slow factor s

Output: sequence of assigned routes R

// Initialization Phase
1 K& K9« KRoadEstimation(G, D);

road ’ " 'road

2 R 0;

// Perform the Traffic Assignment (TA)
3 foreach j = (0,d,t) € D do
/1 Apply the Forward-Looking Edge Penalization (FLEP)
1 | H e FLEP(G,R, D, (p,s),1);

/! Generate a set of k candidates on the penalized road network

5 | P« kMDNSP(H,o,d);

// Select the route that minimizes the score function

6 r « RouteSelection(P, K*, K“);
road road

// Update the assigned routes set

7 R« RU{r};

s return R;

Wang, P. et al. Understanding Road Usage Patterns in Urban Areas. Scientific Reports 2, 1001 (2012)



Route Scoring

(source)(e ) — 9

road

end) (e ) -1

road

K(source) (62) =1

road

K (e3) = 1

road

K(source) (63) — 9

road

end) (e ) -1

road

Wang, P. et al. Understanding Road Usage Patterns in Urban Areas.

Route Popularity

A
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Route capacity

Scientific Reports 2, 1001 (2012)
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Evaluation Metrics

We can characterize the paths generate by the TA algorithms with
several metrics.

For example:

Road Coverage
Redundancy
Time Redundancy
CO2 emissions



Road Coverage (RC)

length of edge
e Given a set of routes R, and their edges /
D _eesy L(€)
S

Sk = U{eep} RC(R) = CCOR - 100

pPER L(E)

RC characterizes road infrastructure usage: \‘
L(E) =) I(e)

- A higher road coverage indicates a larger e€ B

proportion of the G being utilized



Redundancy

e Given a set of routes R, and their edges

se=teert  Red(R) = ngR“p |
peER R

If Red(R) = 1, there is no overlap among the routes in R, while
Red(R) = |R| when all routes are identical
e average utilization of edges that appear in at least one route



Time Redundancy (RED)

e Given a set of routes R, their edges, and a time window t

Sk=|J{eep} RED(R,t) = ZRED it)

peER

RED(Ri,) is the Red of trips in R departed within time interval

li,i + 7).

e Low RED(R, t) indicates that routes close in time are better
distributed across edges



Characterization Metrics
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SUMO

Florence b) Milan C) Rome

I 2501
1

2004 150+

GRA
PR

a L B S T A
2 Efg ¢ IR I RO IR EE
< < o v >4 o v >4 .

o &
veris I
A 1/
Z 1
D
) 3
vers



ragerno
Cinisello BT Baraggia
b ‘ Cusano £
Aresé Milanino 3 Brugherio
Bollate CohaKs

Bresso

Novate Milanese '( ¢hlogno
¢ lanzese Cernt
\}\ ( Na
&t\“ 0 Astoh "
A &
\
i \
Piolty
N >
A
TRENNO O Pegtate
Settimo
Milanese
Cesano Bévom
Peschiera
A Borromeo
7 Buccinascq
rezzagd sul ’
aviglio
Trigin!

RC=16.4%
RED =1.84

Ronchetto

delie Rane

San Giuliano
Milanese

ragvrno

5 s Cusano
Milanino

Bollate
Com\a/n:}
4 Bresso

jovate Milanese

B)

Settimo
Milanese e
’
. A
NS Do
W ezy g
X
Cesano Boscone 3 l
e
\
- =
Buccinasc
'Tr/ez - X
io
™

nchetto

1/ |
RC=22.4%|

RED =1.48

Cinisello Bacaoie
- Brugherio
logno
o Monzese Cerni
\A | Na
\ * Vimodrone
g
s Piolty
Segrate
T
i
f
. TICA
’
o
Maniue
¢
2
)/_J e Peschiera
Borromeo
{ ) !
Bolgiano -
Makconago
Trigin
San Giuliano
Sesto Ulteriano ‘Mila

48



INTERVALLO

Satellite Navigation Services:
What Impact?
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Homeworks

e Given the path penalization algorithm, how does the geographic
distribution of paths if we apply the logarithmic function on all
edge weights?

e (reate your own alternative routing algorithm combining
concepts seen during the lesson.



to study for the exam

Shortest-Path Diversification through Network Penalization: A Washington
DC Area Case Study

Material

One-Shot Traffic Assignment with Forward-Looking Penalization

Comparing Alternative Route Planning Techniques: A Comparative User
Study on Melbourne, Dhaka and Copenhagen Road Networks
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