
Preprocessing 
Mobility Data



Content of this lesson

● Preprocessing trajectories
○ trajectory filtering

○ point map matching

○ route reconstruction

○ trajectory compression

○ Semantic enrichment

■ stop detection / trajectory segmentation

■ home location detection (GPS & MobPhones)

■ activity recognition (POI-based)



Trajectory filtering

● Data points are sometimes affected by errors
● Errors can have huge effects on results

What is the real length of this trip?

● Two families of approaches:
○ Context-based filtering
○ Movement-based filtering



● Single points might contain errors of various kinds

Context-based filtering



● Single points might contain errors of various kinds
● Map-based detection: cars on the water or out of roads are noise

○ Caution: do you trust 100% your map?

noise

noise

noise ?

Context-based filtering

Always inspect 
your data !



Movement-based filtering
● No context is used, just the geometry / dynamics of movement

● Speed-based noise filtering approach:
− The first point of the trajectory is set as valid
− Scan all remaining points “p” of the trajectory (time order)

− Compute “v” = average straight-line speed between point “p” and the 
previous valid one

− If “v” is huge (e.g. larger than 400 km/h) 
=> remove “p” from trajectory     (“p” will not be used next to estimate speeds…)

  else 
=> set “p” as valid

X X
X



Movement-based filtering
Exercise
● What happens in this situation?   (Multiple noisy points)

○ Assume constant sampling rate 1 minute
○ Speed threshold = 240 km/h  ( = 4 km/minute)

start

4 km



Point map matching

● Points can be aligned to the road network
○ Objective 1: improve accuracy of position
○ Objective 2: remove extreme cases  (ref. filtering)
○ Objective 3: translate trajectories to sequences of 

road IDs

● Idea: project the point to the close location in the network
○ Usually there is a maximum threshold
○ Points farther than the threshold from 

any road are removed as noise



Point map matching

● Point projection
○ Requires to compare each point to each 

road segment

● Refresher on point-to-segment distance 
computation



Point map matching

● In some contexts there can be multiple 
choices at reasonable distance
○ Simply taking the closest one is “risky”



Point map matching

● Matching points separately can lead to inconsistent results
○ Mainly road-dense areas with position accuracy comparable to road 

separation
● Need a trajectory-level matching

○ Linked to route reconstruction



Route reconstruction

● Sometimes the space/time gap between consecutive points is significant

What happens in 
the middle?



Route reconstruction

● Typical solutions:
− Free movement => straight line, uniform speed

Reconstructed 
points



Route reconstruction

● Typical solutions:
− Constrained movement => shortest path Reconstructed 

points



Route reconstruction

Shortest paths can be replaced by alternative “optimal paths” 

● Based on a notion of path cost
● Typical ones: path length, path duration (requires to know typical traversal times of roads)
● Alternative ones: fuel consumption, EV battery consumption, CO2 emissions, mixed costs

Algorithms applied are standard graph path optimization methods:

● Dijkstra's algorithm  → efficient, requires that costs are non-negative
● Bellman-Ford algorithm  →  less efficient, can work with negative weights (but no cycles)

See  method  parameter 
of   shortest_path 
function of NetworkX

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.shortest_path.html#networkx.algorithms.shortest_paths.generic.shortest_path


Refresher: Dijkstra’s minimum cost algorithm

Cost Best cost to reach destination so far

● Simple and efficient: O( M + N log N ) time complexity     (M = |edges|,   N = |nodes|)



Trajectory Map Matching

● Assigns points to road segments
● Reconstructs the movement between consecutive points
● Ensures coherence of the overall process

● Two sample approaches:
○ Based on shortest path
○ Based on probabilities



Shortest path-based Map Matching
Used by MappyMatch

● Similar ideas as trajectory simplification
○ Match first and last point
○ Compute shortest path on the network
○ Find farthest point from shortest path
○ If distance > threshold ⇒ 

■ split into two parts
■ run recursively the process on both

Reference: Zhu, honda & Gonder. A Trajectory Segmentation Map 
Matching Approach for Large-Scale, High-Resolution GPS Data. TRB 2017.

https://github.com/NREL/mappymatch/
https://www.researchgate.net/publication/314207447_A_Trajectory_Segmentation_Map-Matching_Approach_for_Large-Scale_High-Resolution_GPS_Data
https://www.researchgate.net/publication/314207447_A_Trajectory_Segmentation_Map-Matching_Approach_for_Large-Scale_High-Resolution_GPS_Data


Probability-based Map Matching
Used by pyTrack

● Consider possible point-to-road assignments, with probabilities
● Compute most likely path that visits all points in the correct sequence

Reference: Newson & Krumm. Hidden Markov Map Matching
Through Noise and Sparseness. ACM GIS‘09.

https://pytrack-lib.readthedocs.io/en/latest/index.html
https://www.ismll.uni-hildesheim.de/lehre/semSpatial-10s/script/6.pdf
https://www.ismll.uni-hildesheim.de/lehre/semSpatial-10s/script/6.pdf


INTERVALLO

Who’s Dijkstra

● 1930 - 2002
● Dutch computer scientist, programmer, 

software engineer, systems scientist, and 
science essayist

● 1972 Turing Award for “fundamental 
contributions to developing programming 
languages”



INTERVALLO

Dijkstra is famous for…

● Dijkstra’s algorithm, of course
● Contributions to “self-stabilization of 

program computation”
○ Won him the “ACM PODC Influential 

Paper Award”, later renamed “Dijkstra 
Prize”

● Hundreds of papers on computational and 
science philosophy issues



INTERVALLO

Dijkstra is famous for…
● His habit of writing everything with paper 

& fountain pen
● Hundreds of papers, many unpublished

○ E. W. Dijkstra Archive
● Counting should start 

from 0, not 1…



INTERVALLO

Dijkstra the teacher
● Chalk & blackboard, no projectors
● No textbooks
● Improvisation & long pauses
● No references in papers

"For the absence of a bibliography I offer neither 
explanation nor apology."

● Long exams
○ Each student was examined in Dijkstra's office or 

home, and an exam lasted several hours



Trajectory compression / simplification

● Many algorithms for trajectories are expensive
○ Their complexity depends on the number of points
○ Sometimes trajectories have more points than needed

● Objective of compression / simplification
○ Reduce the number of points…
○ … without affecting the quality of results



● A trajectory is a temporal sequence of time-stamped locations
● Most methods focus on the spatial component

Trajectory data



● Typical cases where points might be removed

                 Straight line movement Negligible movement

Trajectory compression / simplification



Compression/simplification methods

Some standard methods for simplifying polygonal curves:

• Ramer–Douglas–Peucker, 1973

• Driemel–HarPeled–Wenk, 2010

• Imai–Iri, 1988



Ramer-Douglas-Peucker
1972 by Urs Ramer and 1973 by David Douglas and Thomas Peucker

● Mostly known as Douglas-Peucker (DP) algorithm

The most successful simplification algorithm. Used in GIS, geography, computer vision, pattern 
recognition…

Very easy to implement and works well in practice.

p



Input polygonal path P = 〈p1,…,pn〉 and threshold ε

Initially i=1 and j=n

Algorithm DP(P,i,j)
     Find the vertex vf between pi and pj farthest from pipj.
     dist := the distance between vf and pipj.

     if dist > ε then
DP(P, vi , vf)
DP(P, vf , vj)

     else
Output(vivj)

pjpi

Ramer-Douglas-Peucker



Input polygonal path P = 〈p1,…,pn〉 and threshold ε

Initially i=1 and j=n

Algorithm DP(P,i,j)
     Find the vertex pf between pi and pj farthest from pipj.
     dist := the distance between pf and pipj.

     if dist > ε then
DP(P, pi , pf)
DP(P, pf , pj)

     else
Output(pipj)

pjpi

Ramer-Douglas-Peucker

dist



Ramer-Douglas-Peucker

https://cartography-playground.gitlab.io/playgrounds/douglas-peucker-algorithm/

1

2

3

4

5

6



Ramer-Douglas-Peucker

Time complexity?

Testing a shortcut between pi and pj takes O(j-i) time.

Worst-case recursion?

Algorithm DP(P,i,j)
     Find the vertex vf farthest from pipj.
     dist := the distance between vf and pipj.

     if dist > ε then
DP(P, vi , vf)
DP(P, vf , vj)

     else
Output(vivj)

DP(P, vi , vi+1)
DP(P, vi+1 , vj)

Time complexity
 T(n) = O(n) + T(n-1) = O(n2) 



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’ ε



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’ ε



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’

ε



Driemel et al.

Simple simplification(P = 〈p1,…,pn〉, ε)
 
P’:= 〈p1〉
i:=1
while i<n do 
    q := pi

pi := first vertex pi in 〈q,…,pn〉 s.t. |q-pi|> ε
if no such vertex then set i:=n
add pi to P’

end
return P’



Impact on speed
● What about time and speeds?

○ Time-stamps were never considered in the algorithms
○ They considered on impact on space / geometry of trajectories
○ What impact on time-related aspects, e.g. speed?

● Typically, simplification reduces average speed estimates:

t1

t2

t3

t4

t5

t6

t7

t8
s1 s2

s3

s4

s5 s6
s7

t1

t8

Avg speed = (s1+ … + s7) / (t8-t1) Avg speed = s / (t8-t1)

s

>



Impact on speed

time

X

time

speed

time

X

time

speed

● Flattening effect



INTERVALLO

How fast is a cow?



INTERVALLO

How fast is a cow?
● Trajectory compression / simplification changes the scale of the analysis

○ Simplified data → macroscopic analysis
○ Detailed data → microscopic analysis

● Several movement characteristics can be affected



INTERVALLO

How fast is a cow?
How fast is a cow? Cross-Scale Analysis of Movement Data
Laube P, Purves RS (2011)

Understanding the impact of temporal scale on human 
movement analytics
Su, R., Dodge, S. & Goulias, K.G (2022)

https://doi.org/10.1111/j.1467-9671.2011.01256.x
https://doi.org/10.1007/s10109-021-00370-6


INTERVALLO

How fast is a cow?
How fast is a cow? Cross-Scale Analysis of Movement Data
Laube P, Purves RS (2011)

Understanding the impact of temporal scale on human 
movement analytics
Su, R., Dodge, S. & Goulias, K.G (2022)

Cow ID

https://doi.org/10.1111/j.1467-9671.2011.01256.x
https://doi.org/10.1007/s10109-021-00370-6


Stop detection & Trajectory segmentation

tim
e

● Raw data forms a continuous stream of points
● Typical unit of analysis: the trip
● How to segment?

● Basic idea: identify stops

24-hour period



Stop detection & Trajectory segmentation

● General criteria based on speed
− If it moves very little (threshold ThS) 

over a significant time interval 
(threshold ThT)

=>   it is practically a stop

− Trajectory (trip) = contiguous sequence 
of points between two stops

● Typical values:
○ ThS within [50, 250] meters
○ ThT within [1, 20] minutes



Stop detection & Trajectory segmentation

● Different time thresholds yield different semantics

● Which one is the best for you?
● Application dependent



Stop detection & Trajectory segmentation
● Special cases, easier to treat

− Stop explicitly in the data: e.g. engine status on/off
● Simply “cut” trajectories on status transitions

− Device is off during stops: 
● Typical of cars data
● A stop results in a time gap in the data
● Exceptions: short stops might remain undetected

time

Data points Data points Data points

Gap Gap

time

off off off off off



Generalization: transportation means segmentation

Number of points within radius R

Katarzyna Siła-Nowicka, Jan Vandrol, Taylor Oshan, Jed A. Long, Urška Demšar & A. Stewart Fotheringham (2016) Analysis of human mobility 
patterns from GPS trajectories and contextual information, International Journal of Geographical Information Science, 30:5, 881-906

stop ?
bike ?

walk ?

train ?

● Speed / density-based approach
● Idea: faster means less of my points around me



User’s Mobility History

● What do we get after segmentation?
● Several trajectories associated to the 

same subject
● Enables individual-level analyses

● E.g. explore user’s habits, find deviations 
from usual, etc.



Inferring Home / Work locations
● Take all trips of a vehicle / user
● Build a “Individual Mobility Network” 

○ Graph abstraction of the overall mobility based on locations (nodes) and movements (edges).



Individual Mobility Network
● Focus on start and stop points

○ Dense areas represent important places



Individual Mobility Network
● Cluster points to identify locations



Individual Mobility Network
● Each location is characterized by its frequency



Individual Mobility Network
● Trips between points area aggregated as edges between nodes/locations



Inferring Home / Work locations
● Basic approach is based on frequency only

○ Most frequent location (L0) := Home
○ Second most frequent location (L1) := Work

■ A minimum frequency threshold is applied

● Various alternatives & refinement are possible
○ Check time of stop & stay duration

■ Home: stop at 20-22, stay 8-10 hrs
■ Work: stop at 7-10, stay 6-9 hrs



Data gathered from mobile phone 
operator for billing purpose

User id Time start Cell start Cell end Duration 

10294595 "2014-02-20 14:24:58" "PI010U2" "PI010U1" 48

10294595 "2014-02-20 18:50:22" "PI002G1" "PI010U2" 78

10294595 "2014-02-21 09:19:51" "PI080G1" "PI016G1" 357

Inferring Home / Work locations with Phone Data
Tha case of GSM traces



● “Personal Anchor Points”: high-frequency visited 
places of a user
○ Select top 2 cells with max number of days with 

calls
○ Determine home and work through time 

constraints: 
■ Based on average start time (AST) of calls 

and its deviation (std)
■ IF AST<17:00 & std<0.175  ⇒  WORK
■ ELSE HOME

Inferring Home / Work locations with Phone Data
Tha case of GSM traces - 1



● “Personal Anchor Points”

AHAS, R., SILM, S., JARV, O., SALUVEER, E., AND TIRU, M. 2010. Using mobile positioning data to model
locations meaningful to users of mobile phones. Journal of Urban Technology 17, 1, 3–27.

Inferring Home / Work locations with Phone Data
Tha case of GSM traces - 1



● Estimating users' residence through night activity
○ Home = region with highest frequency of calls 

during nighttime
○ More suitable for larger scales

■ E.g. region = municipality

Pierre Deville et al. 
Dynamic population mapping using mobile phone data.
PNAS vol. 111 no. 45, pp. 15888–15893, doi: 10.1073/pnas.1408439111

Inferring Home / Work locations with Phone Data
Tha case of GSM traces - 2



● Sample results on national level (France)
○ estimate resident density (⍴) vs. real one (σ)

A = GSM data estimates         B = Environment/Infrastructures-based estimates

Inferring Home / Work locations with Phone Data
Tha case of GSM traces - 2



Activity labelling / recognition

Objective: adding information to points / locations

Two main ways:

● Assign a single activity 
● Assign a distribution of POIs / activity types



Given a dataset of GPS tracks of private vehicles, annotate trajectories 
with the most probable activities performed by the user. 

Associates the list of possible POIs (with corresponding probabilities) 
visited by a user moving by car when he stops. 
A mapping between POIs categories and Transportation Engineering 
activities is necessary. 

● ?

● Gym  
Leisure

● Hospital  
Services 

● Restaurant  
Food

Activity labelling / recognition



● POI collection from available sources, e.g. from Google Places.
● Association POI – Activity: Each POI is associated to a ``activity". For 

example Restaurant → Eating/Food, Library →  Education, etc.
● Basic elements/characteristics:

− C(POI) = {category, opening hour, location}
− C(Trajectory) = {stop duration, stop location, time of the day}
− C(User) = {max walking distance} 

● Computation of the probability to visit a POI/ to make an activity: 
For each POI, the probability of ``being visited'' is a function of the POI, 
the trajectory and the user features.

● Annotated trajectory: The list of possible activities is then associated 
to a Stop based on the corresponding probability of visiting POIs

Activity labelling / recognition



● Lat; Lon
● TimeStamp: Sun 10:55 – 12:05 

Wd = 500 m

● Bank: Mon – Fri [8:00 – 15:30]

● Dentist: Mon – Sat [9:00 – 13:00] [15:30 – 
18:00]

● Church: Mon – Sat [18:00 – 19:00] 
●               Sun [11:00 – 12:00]

● Primary School: Mon – Sat [8:00 – 
13:00] 

Activity labelling / recognition

Filter POIs based on time 
constraints

POI assignment



● Wd = 500 m

Church / Services [80%]
Bar / Food [20%]

Pastry / Food 
[100%]

Activity labelling / recognition
What if multiple POIs match

● Select closest one

● Assign a distribution of probability:



INTERVALLO

Reading social media to find POIs
An Irish experiment on Twitter

The points of each trajectory taken separately were grouped into spatial clusters of maximal radius 150m. For groups with 
at least 5 points, convex hulls have been built and spatial buffers of small width (5m) around them.
1,461,582 points belong to the clusters (89% of 1,637,346); 24,935 personal places have been extracted. 

Examples of extracted places

Statistical distribution of the number of 
places per person



INTERVALLO

Reading social media to find POIs
Topics have been assigned to 208,391 messages (14.3% of the 1,461,582 points belonging to the personal places) 

...

1) Some places did not get topic summaries (about 20% of the 
places)

2) In many places the topics are very much mixed
3) The topics are not necessarily representative of the place type 

(e.g., topics near a supermarket: family, education, work, cafe, 
shopping, services, health care, friends, game, private event, 
food, sweets, coffee)



INTERVALLO

In the meanwhile, in Seattle…

G. Andrienko et al. Thematic Patterns in Georeferenced Tweets through 
Space-Time Visual Analytics. Computing in Science & Engineering, 2013.



Fundamental concepts

Homeworks



Homework 4.1

How fast are users?

Choose one of the datasets seen at lesson (taxis, Geolife, etc.), select 
at least 10 users/vehicles and compute distributions of lengths. 
Remove 10% of points in each trajectory and repeat the distribution. 
Do the same for 20%, 30%, … 90%. How does length distribution 
change?

● Prepare a (well commented) python notebook



Homework 4.2

Implement a “speed-aware” trajectory compression method, that 
preserves speed, and test it on a dataset of your choice, e.g. a subset 
of taxis or Geolife users.

● Show the effects of simplification on some sample 
trajectories 

● Study how the lengths of trajectories are affected

● Prepare a (well commented) python notebook



Homework 4.3

Inferring Home locations is often used to estimate the resident 
population of geographical areas. What are the existing approaches 
to face the problem?

● Make a research on Internet on the methods, including big 
data-based ones (GPS, GSM data, maybe satellite data or 
others) but also any other approach – e.g. coming from 
statistics/demography, sociology, etc. 

● Prepare a blog (basically a survey) summarizing your 
discoveries.



Homework 4.4

Estimating GPS errors. Choose a bounding rectangle covering SF city. 
Download the road network/graph of that area. Select the GPS points 
of taxis in the same area. Assign each point P to its closest road 
segment R. Define pseudo-error(P) as the distance dist(P,R).

● Analyze the overall distribution of the pseudo-errors. Is it 
coherent with GPS.gov estimates of errors?

● Are pseudo-errors the same downtown vs. out of city?
● Prepare a (well commented) python notebook



Homework 4.5

The typical filtering algorithm relies on the individual. Define this new 
algorithm: label the points which have less than X neighbohrs in the 
set of points of all trips within an y radius as outliers, and discard 
them.

● Test it on SF taxi data
● Prepare a (well commented) python notebook


