Rappresentazione binaria

- Per informazione intendiamo tutto quello che viene manipolato da un calcolatore:
 - numeri (naturali, interi, reali, . . .)
 - caratteri
 - immagini
 - suoni
 - programmi
- ▶ La più piccola unità di informazione memorizzabile o elaborabile da un calcolatore, il bit, corrisponde allo stato di un dispositivo fisico che viene interpretato come 1 o 0.
- ▶ In un calcolatore tutte le informazioni sono rappresentate in forma binaria, come sequenze di 0 e 1.
- Per motivi tecnologici: distinguere tra due valori di una grandezza fisica è più semplice che non ad esempio tra dieci valori.

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 1
Rappresentazione informazione

Rappresentazione di numeri naturali

- ► Un numero naturale è un oggetto matematico, che può essere rappresentato mediante una sequenza di simboli di un alfabeto fissato.
- ▶ È importante distinguere tra numero e sua rappresentazione: il numerale "234" è la rappresentazione del numero 234.
- Si distinguono 2 tipi di rappresentazione:

additiva: ad es. le cifre romane

posizionale: una cifra contribuisce con un valore diverso al numero a seconda della posizione in cui si trova

▶ Noi consideriamo solo la rappresentazione posizionale.

Rappresentazione posizionale

Un numero è rappresentato da una sequenza finita di cifre di un certo alfabeto:

$$\left(c_{n-1}c_{n-2}\cdots c_1c_0=N_b\right)$$

co viene detta cifra meno significativa

 c_{n-1} viene detta cifra più significativa

- ▶ Il numero *b* di cifre diverse (dimensione dell'alfabeto) è detto base del sistema di numerazione.
- Ad ogni cifra è associato un valore compreso tra $0 \in b-1$.

Base	Alfabeto	Sistema
2	0, 1	binario
8	0,, 7	ottale
10	0,, 9	decimale
16	0,, 9, A,, F	esadecimale

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 – pag. 3 Rappresentazione informazione

▶ Il significato di una sequenza di cifre (il numero *N* che essa rappresenta) dipende dalla base *b*:

$$c_{n-1} \cdot b^{n-1} + c_{n-2} \cdot b^{n-2} + \cdots + c_1 \cdot b^1 + c_0 \cdot b^0 = \sum_{i=0}^{n-1} c_i \cdot b^i = N$$

Esempio: Il numerale 101 rappresenta numeri diversi a seconda del sistema usato:

Sistema	Base b	101 _b	$Valore_{10}$
decimale	10	$(101)_{10}$	101
binario	2	$(101)_2$	5
ottale	8	$(101)_8$	65
esadecimale	16	$(101)_{16}$	257

Intervallo di rappresentazione

▶ I numeri rappresentabili in base b con n posizioni (cifre) vanno da $b^n - 1$.

```
3 cifre in base 10 : da 0 a 999 = 10^3 - 1
8 cifre in base 2 : da 0 a 255 = 2^8 - 1
16 cifre in base 2 : da 0 a 65535 = 2^{16} - 1
32 cifre in base 2 : da 0 a 4294967296 = 2^{32} - 1
2 cifre in base 16 : da 0 a 255 = 16^2 - 1
8 cifre in base 16 : da 0 a 4294967296 = 16^8 - 1
```

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 5 Rappresentazione informazione

Conversioni di base: da base b a base 10

Usando direttamente

$$c_{n-1} \cdot b^{n-1} + c_{n-2} \cdot b^{n-2} + \cdots + c_1 \cdot b^1 + c_0 \cdot b^0 = \sum_{i=0}^{n-1} c_i \cdot b^i = N$$

esprimendo le cifre e b in base 10 (e facendo i conti in base 10)

Esercizio

(domani) Scrivere l'algoritmo di conversione da base b a base 10.

Conversioni di base: da base 10 a base b

$$N = c_0 + c_1 \cdot b^1 + c_2 \cdot b^2 + \dots + c_{k-1} \cdot b^{k-1}$$

= $c_0 + b \cdot (c_1 + b \cdot (c_2 + \dots + b \cdot c_{k-1}) \dots)$

- ▶ Vogliamo determinare le cifre $c_0, c_1, \ldots, c_{k-1}$
- Consideriamo la divisione di N per b:

$$N = R + b \cdot Q$$
 $(0 \le R < b)$
= $c_0 + b \cdot (c_1 + b \cdot (\cdots))$

 $R=c_0$ ovvero, il resto R della divisione di N per b dà c_0 (cifra meno significativa) $Q=c_1+b\cdot(\cdots)$

▶ A partire dal quoziente Q si può iterare il procedimento per ottenere le cifre successive (fino a che Q diventa 0).

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 7
Rappresentazione informazione

Conversione da base 10 a base b

```
i = 0;
while (num ! = 0) {
    c[i] = num % b;
    num = num / b;
    i = i+1; }
```

N.B. Le cifre vengono determinate dalla meno significativa alla più significativa.

Esempio:
$$(25)_{10} = (???)_2 = (11001)_2$$

N : b	Q	R	cifra
25 : 2	12	1	<i>c</i> ₀
12 : 2	6	0	c_1
6:2	3	0	<i>c</i> ₂
3:2	1	1	<i>c</i> ₃
1:2	0	1	C4

N.B. servono 5 bit (con cui possiamo rappresentare i numeri da 0 a 31)

Rappresentazione di numeri interi

 Dobbiamo rappresentare anche il segno: si usa uno dei bit (quello più significativo)

Rappresentazione tramite modulo e segno

- ▶ il bit più significativo rappresenta il segno
- ▶ le altre n-1 cifre rappresentano il valore assoluto
- problemi:
 - ▶ doppia rappresentazione per lo zero $(00 \cdots 00 \text{ e } 10 \cdots 00)$
 - ▶ le operazioni aritmetiche sono complicate (analisi per casi)
 - invece della rappresentazione tramite modulo e segno si usa una rappresentazione in complemento alla base

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 9
Rappresentazione informazione

Rappresentazione in complemento alla base

In quanto segue b indica la base e n indica il numero complessivo di cifre.

- ► Con base *b* e *n* cifre, abbiamo a disposizione *b*ⁿ configurazioni distinte.
- Utilizziamo metà delle configurazioni per rappresentare numeri positivi e l'altra metà per rappresentare numeri negativi.

$$||X|| = \begin{cases} X & \text{se } X \ge 0 \\ b^n - |X| & \text{se } X < 0 \end{cases}$$

- ▶ in questo modo si rappresentano gli interi relativi nell'intervallo $[-b^n/2, b^n/2)$
 - se $X \ge 0$: ||X|| è compresa in $[0, b^n/2)$
 - se X < 0: ||X|| è compresa in $[b^n/2, b^n)$
- ▶ lo 0 ha una sola rappresentazione

Rappresentazione in complemento alla base

Ν	b = 10 e n = 1	b = 2 e n = 3
<u>-5</u>	5	
_4	6	100
-3	7	101
$\overline{-2}$	8	110
$\overline{-1}$	9	111
0	0	000
1	1	001
2	2	010
3	3	011
4	4	

- ightharpoonup se $b=2 \Longrightarrow$ rappresentazione in complemento a 2
 - rappresentazione degli interi relativi nell'intervallo $[-2^{n-1}, 2^{n-1})$
 - positivi: la cifra più significativa è 0 (rappresentati nella parte inferiore dell'intervallo)
 - negativi: la cifra più significativa è 1 (rappresentati nella parte superiore dell'intervallo)

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 11
Rappresentazione informazione

Operazione di complementazione

Vogliamo determinare un algoritmo per determinare la rappresentazione in complemento alla base di -X, data quella di X. Indipendentemente dal segno di X, abbiamo:

$$||X|| + ||-X|| = |X| + b^n - |X| = b^n$$

per cui
 $||-X|| = b^n - ||X||$

o equivalentemente
 $||-X|| = b^n - 1 - ||X|| + 1$

Operazione di complementazione

Supponiamo:

$$||X|| = \sum_{i=0}^{n-1} c_i \cdot b^i$$

e ricordiamo che la rappresentazione di $b^n - 1$ è

$$\sum_{i=0}^{n-1} (b-1) \cdot b^i$$

Otteniamo:

$$||-X|| = b^{n} - 1 - ||X|| + 1$$

$$= (\sum_{i=0}^{n-1} (b-1) \cdot b^{i}) - (\sum_{i=0}^{n-1} c_{i} \cdot b^{i}) + 1$$

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 13

Rappresentazione informazione

Operazione di complementazione

Sia ora k la prima posizione significativa di ||X||, ovvero la prima cifra (a partire da destra) diversa da 0. Abbiamo allora:

$$||-X|| = \left(\sum_{i=0}^{n-1} (b-1) \cdot b^{i}\right) - \left(\sum_{i=0}^{n-1} c_{i} \cdot b^{i}\right) + 1$$

$$= \left(\sum_{i=0}^{n-1} (b-1) \cdot b^{i}\right) - \left(\sum_{i=k}^{n-1} c_{i} \cdot b^{i}\right) + 1$$

$$= \left(\sum_{i=k+1}^{n-1} ((b-1) - c_{i}) \cdot b^{i}\right) + \left((b-1) - c_{k}\right) \cdot b^{k} + \left(\sum_{i=0}^{k-1} (b-1) \cdot b^{i}\right) + 1$$

• Osserviamo ora che $\left(\sum\limits_{i=0}^{k-1}(b-1)\cdot b^i\right)+1=b^k.$

Operazione di complementazione

Sia ora k la prima posizione significativa di ||X||, ovvero la prima cifra (a partire da destra) diversa da 0. Abbiamo allora:

$$||-X|| = (\sum_{i=0}^{n-1} (b-1) \cdot b^{i}) - (\sum_{i=0}^{n-1} c_{i} \cdot b^{i}) + 1$$

$$= (\sum_{i=0}^{n-1} (b-1) \cdot b^{i}) - (\sum_{i=k}^{n-1} c_{i} \cdot b^{i}) + 1$$

$$= (\sum_{i=k+1}^{n-1} ((b-1) - c_{i}) \cdot b^{i}) + ((b-1) - c_{k}) \cdot b^{k} + b^{k}$$

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 15

Rappresentazione informazione

Operazione di complementazione

$$||-X|| = (\sum_{i=k+1}^{n-1} ((b-1)-c_i) \cdot b^i) + ((b-1)-c_k) \cdot b^k + b^k$$

$$= (\sum_{i=k+1}^{n-1} ((b-1)-c_i) \cdot b^i) + (b-c_k) \cdot b^k$$

- L'ultimo addendo è 0, poichè $c_i = 0$, per ogni $i = 0, \ldots, k 1$.
- Come possiamo leggere quanto ottenuto?

La rappresentazione di -X si ottiene da quella di X:

- 1. ricopiando gli zeri meno significativi
- 2. complementando alla base la prima cifra significativa
- 3. complementando alla base meno uno le rimanenti cifre

Operazione di complementazione

$$||-X|| = (\sum_{i=k+1}^{n-1} ((b-1)-c_i) \cdot b^i) + ((b-1)-c_k) \cdot b^k + b^k$$

$$= (\sum_{i=k+1}^{n-1} ((b-1)-c_i) \cdot b^i) + (b-c_k) \cdot b^k + (\sum_{i=0}^{k-1} c_i \cdot b^i)$$

- L'ultimo addendo è 0, poichè $c_i = 0$, per ogni $i = 0, \dots, k 1$.
- Come possiamo leggere quanto ottenuto?

La rappresentazione di -X si ottiene da quella di X:

- 1. ricopiando gli zeri meno significativi
- 2. complementando alla base la prima cifra significativa
- 3. complementando alla base meno uno le rimanenti cifre

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 17

Rappresentazione informazione

Operazione di complementazione

Esempio:
$$b = 3$$
, $n = 4$, $||X|| = 0210$ (dunque $X = (21)_{10}$)
$$||-X|| = 2020$$

Verifichiamo:

- \triangleright 2020 = (60)₁₀
- \rightarrow 3⁴ 60 = 81 60 = 21 = |-X|

Nel caso del complemento a 2 abbiamo più semplicemente:

- ▶ si lasciano inalterate tutte le cifre fino al primo 1 compreso
- ▶ si invertono le rimanenti cifre

Complemento a 2

Esempio: Rappresentazione di -298 in complemento a 2:

- di quante cifre minimo abbiamo bisogno per rappresentare 298 ?
- $-2^{10-1} < 298 < 2^{10-1}$: 10 cifre
- ightharpoonup 298 = 256 + 32 + 8 + 2, ||298|| in base 2 = 100101010
- ► ||298|| in complemento a 2 con 10 cifre= 0100101010
- ▶ ||-298|| in complemento a 2 con 10 cifre = 1011010110
- ► ||298|| in complemento a 2 con 11 cifre= 00100101010
- ▶ ||-298|| in complemento a 2 con 11 cifre= 11011010110

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 19

Rappresentazione informazione

Operazioni su interi relativi in complemento a 2

Somma di due numeri

- si effettua bit a bit
- non è necessario preoccuparsi dei segni
- ▶ il risultato sarà corretto (in complemento a 2 se negativo)
- può verificarsi trabocco (overflow) => il risultato non è corretto Si verifica quando il numero di bit a disposizione non è sufficiente per rappresentare il risultato.

Operazioni su interi relativi in complemento a 2

Esempio: n = 5, $\pm 9 \pm 3$, $\pm 9 \pm 8$

intervallo di rappresentazione: da -2^4 a $2^4 - 1$ (da -16 a 15)

rip.	00011		11001		00111		11111
+9	01001	+9	01001	-9	10111	-9	10111
+3	00011	-3	11101	+3	00011	-3	11101
+12	01100	+6	00110	-6	11010	-12	10100

In questi casi non si ha trabocco.

rip.	01 000		10 000
+9	01001	-9	10111
+8	01000	-8	11000
-15	10001	+15	01111
(e no	n+17)	(e no	on -17)

Si ha trabocco quando il riporto sul bit di segno è diverso dall'ultimo riporto.

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 21 Rappresentazione informazione

Operazioni su interi relativi in complemento a 2

Differenza tra due numeri: si somma al primo il complemento del secondo

Esempio: n = 5, intervallo di rappresentazione: da -16 a 15

Numeri frazionari

▶ Numeri reali compresi tra 0 e 1: si rappresentano comunemente come

$$N = 0.c_{-1}c_{-2}...c_{-n}$$

Il peso delle cifre dipende, al solito, dalla loro posizione e dalla base prescelta

$$N_b = c_{-1} \cdot b^{-1} + c_{-2} \cdot b^{-2} + \dots + c_{-n} \cdot b^{-n} = \sum_{i=-n}^{-1} c_i \cdot b^i$$

Esempio: Consideriamo b = 10 ed il numero 0.587

$$0.587_{10} = 5 \cdot 10^{-1} + 8 \cdot 10^{-2} + 7 \cdot 10^{-3}$$

Dott. R. Gori, Dott. A. Rama

INFORMATICA 242AA a.a. 2011/12 - pag. 23

Rappresentazione informazione

Rappresentazione dell'informazione (cenni)

Numeri frazionari

$$N_b = \sum_{i=-n}^{-1} c_i \cdot b^i \qquad (\bullet)$$

Nel caso di un numero frazionario in binario, possiamo usare la (●) per convertirlo in base 10

Esempio: Convertiamo in base 10 il numero frazionario binario 0.1011_2

$$0.1011_2 = 1 \cdot 2^{-1} + 1 \cdot 2^{-3} + 1 \cdot 2^{-4} = 0.6875_{10}$$

- La rappresentazione dei numeri frazionari può introdurre approssimazioni dovute alla limitatezza delle cifre dopo la virgola.
- L'approssimazione è comunque inferiore a b^{-n} dove n è il numero di cifre utilizzate.

Conversione di un numero frazionario da base 10 a base 2

- ▶ Il metodo più semplice consiste nell'effettuare una sequenza di moltiplicazioni per 2 prendendo ad ogni passo la parte intera del risultato come cifra binaria della rappresentazione
- ► Esempio: Convertiamo 0.125 in base 2

In questo caso abbiamo una rappresentazione esatta su 3 cifre (0.125 = 1/8)

$$0.125_{10} = 0.001_2$$

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 25

Rappresentazione informazione

Conversione di un numero frazionario da base 10 a base 2

► Esempio: Convertiamo 0.587₁₀ in base 2

- ▶ Quindi la rappresentazione di 0.587₁₀ in base 2 è:
 - \triangleright 0.1001₂ con 4 cifre (approssimazione accurata entro 2^{-4})
 - ▶ 0.100101_2 con 6 cifre (approssimazione accurata entro 2^{-6})

L'aritmetica reale

L'insieme dei reali (e dei razionali) è infinito ⇒ non è possibile rapprentarlo tutto

Rappresentazione in virgola fissa

Si rappresentano separatamente, usando un numero fissato di cifre

- parte intera e,
- parte frazionaria

(si usa una virgola per separare le due parti)

$$N_b = c_{n-1} c_{n-2} \cdots c_1 c_0, c_{-1} c_{-2} \cdots c_{-m}$$

rappresenta il numero

$$N = c_{n-1} \cdot b^{n-1} + \dots + c_0 \cdot b^0 + c_{-1} \cdot b^{-1} + \dots + c_{-m} \cdot b^{-m}$$

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 27
Rappresentazione informazione

L'aritmetica reale

- Limitazioni della rappresentazione:
 - k bit per la parte intera $\Longrightarrow (-2^k, 2^k)$
 - ▶ m bit per la parte frazionaria \Longrightarrow precisione $\leq 2^{-m}$

Rappresentazione in virgola mobile (floating point)

Utilizza la notazione esponenziale. Si esprime il numero come prodotto di due parti

$$X = m \cdot b^e$$

Esempio:

$$1150 = 1.15 \times 10^3$$

ma anche

$$1150 = 0.115 \times 10^4$$

Rappresentazione in virgola mobile

Rappresentazione in forma normalizzata in base b

$$X = m \cdot b^e$$

- è la caratteristica in base b di X: intero relativo
- ▶ m è la mantissa in base b di X: numero frazionario tale che $1/b \le |m| < 1$
- **Esempio:**

$$1150 = 0.115 \times 10^4$$
 mantissa caratteristica

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 29

Rappresentazione informazione

Rappresentazione in virgola mobile

Se la caratteristica è rappresentata dalla sequenza di cifre

$$c_1$$
 c_2 c_3 ····

allora rappresenta il valore

$$c_1 \cdot b^{-1} + c_2 b^{-2} + \cdots$$

Esempio: $X = (5)_{10} = (101)_2$ che normalizzato diventa:

$$m = |m| = (0.101 \cdots 0000)_2$$

 $e = (11)_2$

Rappresentazione in virgola mobile

- ► Fissati:
 - k bit per mantissa
 - h bit per caratteristica
 - ▶ 1 bit per il segno

l'insieme di reali rappresentabili è fissato (e limitato)

(0.1)
$$1/2 \le |m| \le \sum_{i=1}^{k} 2^{-i}$$
 (0.11...1) $|e| \le 2^{h-1} - 1$

- Questo fissa anche massimo e minimo (in valore assoluto) numero rappresentabile.
- ► Assunzione realistica: reali rappresentati con 32 bit:
 - 24 bit per la mantissa
 - 7 bit per la caratteristica (in complemento)
 - ▶ 1 bit per il segno della mantissa (0 positivó, 1 negativo)

Dott. R. Gori, Dott. A. Rama – Rappresentazione dell'informazione (cenni)

INFORMATICA 242AA a.a. 2011/12 - pag. 31 Rappresentazione informazione

Rappresentazione in virgola mobile

Insieme \mathcal{F} dei numeri rappresentabili in virgola mobile

- sottoinsieme finito dei numeri razionali rappresentabili
- simmetrico rispetto allo 0
- ▶ gli elementi non sono uniformemente distribuiti sull'asse reale
 - densi intorno allo 0

$$m_1 = 0.10, m_2 = 0.11, e_1 = -5$$

 $X_1 = 0.10 \times 10^5 = 0.0000010$
 $X_2 = 0.11 \times 10^5 = 0.0000011$

radi intorno al massimo rappresentabile

$$m_1 = 0.10, m_2 = 0.11, e_2 = 5$$

 $X_1 = 0.10 \times 10^5 = 10000$
 $X_2 = 0.11 \times 10^5 = 11000$

- ▶ molti razionali non appartengono ad \mathcal{F} (ed es. 1/3, 1/5, ...)
- non è chiuso rispetto ad addizioni e moltiplicazioni
- ightharpoonup per rappresentare un reale X si sceglie l'elemento di \mathcal{F} più vicino ad X
- ▶ la funzione che associa ad un reale X l'elemento di F più vicino ad X
 è detta funzione di arrotondamento

Limitazioni aritmetiche

Dovute al fatto che il numero di bit usati per rappresentare un numero è limitato

- perdita di precisione
- arrotondamento: mantissa non sufficiente a rappresentare tutte le cifre significative del numero
- errore di overflow: caratteristica non sufficiente (numero troppo grande)
- errore di underflow: numero troppo piccolo viene rappresentato come

Formati standard proposti da IEEE (Institute of Electrical and Electronics Engineers)

singola precisione: 32 bit

▶ doppia precisione: 64 bit

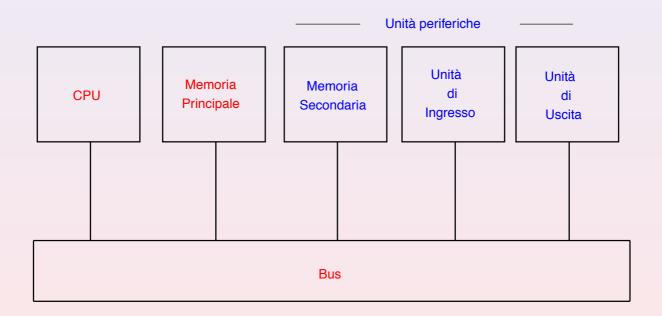
▶ quadrupla precisione: 128 bit

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 33
Architettura del calcolatore

Architettura di Von Neumann

- L'architettura è ancora quella classica sviluppata da Von Neumann nel 1947.
- L'architettura di Von Neumann riflette le funzionalità richieste da un elaboratore:
 - ▶ memorizzare i dati e i programmi ⇒ memoria principale
 - ▶ i dati devono essere elaborati ⇒ unità di elaborazione (CPU)

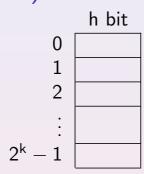
 - ► le componenti del sistema devono scambiarsi informazioni ⇒ bus di sistema



Tra le periferiche evidenziamo la memoria secondaria.

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 35 Architettura del calcolatore

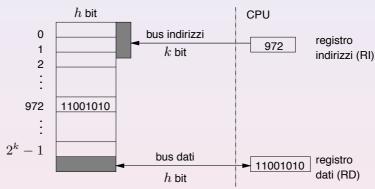
Memoria centrale (o RAM)



- è una sequenza di celle di memoria (dette parole), tutte della stessa dimensione
- ogni cella è costituita da una sequenza di bit
- ▶ il numero h di bit di una cella di memoria (dimensione) dipende dall'elaboratore, ed è un multiplo di 8: 8, 16, 32, 64
- ogni cella di memoria è identificata in modo univoco dal suo indirizzo
- ▶ il numero k di bit necessari per l'indirizzo dipende dal numero di celle di memoria

 $k \text{ bit} \Longrightarrow 2^k \text{ celle}$

Memoria centrale



Operazione di lettura:

- 1. CPU scrive l'indirizzo della cella di memoria da cui leggere nel registro indirizzi (RI)
- 2. esegue l'operazione ("apre i circuiti")
- 3. il valore della cella indirizzata viene trasferito nel registro dati (RD)

Operazione di scrittura: al contrario

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione

INFORMATICA 242AA a.a. 2011/12 - pag. 37
Architettura del calcolatore

Memoria centrale

Caratteristiche principali

- È una memoria ad accesso casuale, ossia il tempo di accesso ad una cella di memoria è indipendente dalla posizione della cella ⇒ viene chiamata RAM (random access memory)
- può essere sia letta che scritta
 scrittura distruttiva lettura non distruttiva
- ▶ alta velocità di accesso
- è volatile (si perde il contenuto quando si spegne il calcolatore)

Dimensione della memoria: misurata in byte (1 byte=8 bit)

Kilobyte $= 2^{10}$ $\sim 10^3$ byte $= 2^{20}$ Megabyte $\sim 10^6$ byte $= 2^{30}$ Gigabyte $\sim 10^9$ byte 2^{40} Terabyte 10^{12} byte

Memoria secondaria

- non volatile
- capacità maggiore della memoria centrale (decine di GB)
- ▶ tempo di accesso lento rispetto alla memoria centrale
- accesso sequenziale e non casuale
- tipi di memoria secondaria: dischi rigidi, floppy, CDROM, CDRW, DVD, nastri, . . .

Bus di sistema suddiviso in tre parti:

bus indirizzi: k bit

bus dati: h bit

bus comandi: trasferisce i comandi tra le varie unità

⇒ parallelismo (attualmente si arriva a 128 bit)

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 39

Architettura del calcolatore

CPU (Central Processing Unit)

- coordina le attività di tutte le componenti del calcolatore
- interpreta ed esegue le istruzioni del programma
- 3 componenti principali:

unità logico-aritmetica (ALU): effettua i calcoli unità di controllo: coordinamento di tutte le operazioni registri: celle di memoria ad accesso molto veloce

- registro istruzione corrente (IR): contiene l'istruzione in corso di esecuzione
- contatore di programma (PC): contiene l'indirizzo della prossima istruzione da eseguire
- accumulatori: utilizzati dalla ALU per gli operandi ed il risultato
- registro dei flag: memorizza alcune informazioni sul risultato dell'ultima operazione (carry, zero, segno, overflow, . . .)
- registro interruzioni: utilizzato per la comunicazione con le periferiche
- ▶ registro indirizzi (RI) e registro dati (RD) per il trasferimento da e verso la memoria centrale

CPU

Ciclo dell'unità di controllo

- ► Tutte le attività interne alla CPU sono regolate da un orologio (clock) che genera impulsi regolari ad una certa frequenza (ad es. 800 MHz, 1 GHz, 2 GHz, . . .).
- ▶ Il programma è memorizzato in celle di memoria consecutive, sulle quali l'unità di controllo lavora eseguendo il ciclo di

```
prelievo — decodifica — esecuzione
```

```
while macchina in funzione do
preleva dalla memoria l'istruzione indirizzata da PC
e caricala in IR
   (aggiorna PC in modo che indirizzi la prossima istruzione)
decodifica l'istruzione in IR
esegui l'istruzione
endwhile
```

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 41
Architettura del calcolatore

CPU - Ciclo dell'unità di controllo

1. fase di prelievo (fetch)

l'unità di controllo acquisisce dalla memoria l'istruzione indirizzata da PC e aggiorna PC in modo che indirizzi la prossima istruzione

$$PC = PC + n$$

dove n è la lunghezza in byte dell'istruzione prelevata

- 2. fase di decodifica viene decodificato il tipo di istruzione per determinare quali sono i passi da eseguire per la sua esecuzione
- 3. fase di esecuzione vengono attivate le componenti che realizzano l'azione specificata

Istruzioni

Ogni istruzione è costituita da:

01001001 00110011 codice operativo operandi

Tipi di istruzione

- istruzioni di trasferimento dati
 - da e verso la memoria centrale
 - ingresso/uscita
- ► istruzioni logico/aritmetiche
- istruzioni di controllo
 - istruzioni di salto

Le istruzioni dettano il flusso del programma. Vengono eseguite in sequenza, a meno che non vi sia un'istruzione di controllo che altera il normale flusso (istruzione di salto).

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 43

Dal codice sorgente al codice macchina

Dal codice sorgente al codice macchina

I concetti di algoritmo e di programma permettono di astrarre dalla reale struttura del calcolatore, che comprende sequenze di 0 e 1, ovvero un linguaggio macchina.

Livelli di astrazione ai quali possiamo vedere i programmi:

- Linguaggio macchina (o codice binario): livello più basso
 - un programma è una sequenza di 0 e 1 (suddivisi in parole) che codificano le istruzioni
 - dipende dal calcolatore
- Linguaggio assemblativo: livello intermedio
 - dipende dal calcolatore e le sue istruzioni sono in corrispondenza 1-1 con le istruzioni in linguaggio macchina
 - ▶ istruzioni espresse in forma simbolica ⇒ comprensibile da un umano
- ▶ Linguaggi ad alto livello: (e.g. C, Pascal, C++, Java, Fortran, . . .)
 - si basano su costrutti non elementari, comprensibili da un umano
 - istruzioni più complesse di quelle eseguibili da un calcolatore (corrispondono a molte istruzioni in linguaggio macchina)
 - ▶ in larga misura indipendenti dallo specifico elaboratore

Per arrivare dalla formulazione di un problema all'esecuzione del codice che lo risolve, bisogna passare attraverso diversi stadi:

```
problema (specifica)

| algoritmo (pseudo-codice)
| codice sorgente (linguaggio ad alto livello)
| compilazione — [compilatore]
| codice oggetto (simile al codice macchina, ma con riferimenti simbolici)
| collegamento tra le diverse parti — [collegatore (linker)]
| codice macchina (eseguibile)
| caricamento — [caricatore (loader)]
| codice in memoria eseguito
```

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 45

Dal codice sorgente al codice macchina

Esempio: dati due interi positivi X ed Y, eseguire il loro prodotto usando solo le operazioni di somma e sottrazione

```
Input(X);
Input(Y);
somma = 0;
contatore = 0;
while (contatore < Y)
{
    somma = somma + X;
    contatore = contatore + 1;
}
Output(somma);</pre>
```

Codifica dell'algoritmo in C

```
#include <stdio.h>
void main (void) {
  int x, y;
  int cont = 0;
  int somma = 0;
  printf("Introduci due interi da moltiplicare\n");
  scanf("%d%d", &x, &y);
  while (cont < y) {
    somma = somma + x;
    cont = cont + 1;
  }
  printf("La somma di %d e %d e' pari a %d\n", x, y, somma);
}</pre>
```

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 47

Dal codice sorgente al codice macchina

Linguaggio assembler

Vediamo per comodità un esempio di linguaggio assembler: (corrisponde 1-1 al codice in linguaggio macchina, ma è più leggibile).

Caricamento dati

```
LOAD R1 X

Carica nel registro R1 (o R2) il dato memorizzato nella cella di memoria identificata dal nome simbolico X

LOAD R1 #C

Carica nel registro R1 la costante numerica C
```

Somma e Sottrazione

```
SUM R1 R2 Somma (sottrae) il contenuto di R2 al contenuto di R1 e 
SUB R1 R2 memorizza il risultato in R1
```

Memorizzazione

```
STORE R1 X Memorizza il contenuto di R1 (R2) nella cella con nome simbolico X STORE R2 X
```

Linguaggio assembler

Controllo

JUMP A La prossima istruzione da eseguire è quella con etichetta A

JUMPZ A Se il contenuto di R1 è uguale a 0, la prossima istruzione da

eseguire è quella con etichetta A

STOP Ferma l'esecuzione del programma

Lettura/Scrittura

READ X Legge un dato e lo memorizza nella cella di nome simbolico X

WRITE X Scrive il valore contenuto nella cella di nome simbolico X

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 49

Dal codice sorgente al codice macchina

Programma per il prodotto in linguaggio assembler

	Etic.	Istr. assembler	Istruzione C	Significato	
0		READ X	scanf	Leggi valore e mettilo nella cella X	
1		READ Y	scanf	Leggi valore e mettilo nella cella Y	
2		LOAD R1 #0	cont = 0	Inizializzazione di <i>cont</i> ; metti 0 in <i>R</i> 1	
3		STORE R1 CONT		Metti il valore di R1 in CONT	
4		LOAD R1 #0	somma = 0	Inizializzazione di SOMMA; metti 0 in	
5		STORE R1 SOMMA		Metti il valore di R1 in SOMMA	
6	INIZ	LOAD R1 CONT	while $(cont < y)$	Esecuzione del test:	
7		LOAD R2 Y		Metti in R1 (R2) il valore di CONT (Y	
8		SUB R1 R2	(se cont=y,	Sottrai R2 (ossia Y) da R1	
9		JUMPZ FINE	vai a FINE)	Se $R1 = 0$ (quindi CONT=Y) vai a FIN	
10		LOAD R1 SOMMA	somma =	Metti in R1 il valore di SOMMA	
11		LOAD R2 X	somma + x	Metti in R2 il valore di X	
12		SUM R1 R2		Metti in R1 la somma tra R1 ed R2	
13		STORE R1 SOMMA		Metti il valore di R1 in SOMMA	
14		LOAD R1 #1	cont =	Incremento contatore; metti 1 in R1	
15		LOAD R2 CONT	cont + 1	Metti in R2 il valore di CONT	
16		SUM R1 R2		Metti in R1 la somma tra R1 ed R2	
17		STORE R1 CONT		Metti il valore di R1 in CONT	
18		JUMP INIZ		Salta a <i>INIZ</i>	
19	FINE	WRITE SOMMA	printf	Scrive il contenuto di SOMMA	
20		STOP		Fine dell'esecuzione	

Osservazioni sul codice assembler

 ad una istruzione C corrispondono in genere più istruzioni assembler (e quindi linguaggio macchina)

Esempio: somma = somma + x

- \implies 1. carica il valore di X in un registro
 - 2. carica il valore di SOMMA in un altro registro
 - 3. effettua la somma tra i due registri
 - 4. memorizza il risultato nella locazione di memoria di SOMMA
- ▶ JUMP e JUMPZ interrompono la sequenzialità delle istruzioni
- In realtà il compilatore (ed il linker) genera linguaggio macchina
 - ogni istruzione è codificata come una sequenza di bit
 - ogni istruzione occupa una (o più celle di memoria)
 - ▶ istruzione costituita da 2 parti:

codice operativo operandi

Dott. R. Gori, Dott. A. Rama Sistemi di elaborazione INFORMATICA 242AA a.a. 2011/12 - pag. 51

Dal codice sorgente al codice macchina

Un esempio di linguaggio macchina

Per semplicità consideriamo istruzioni con al più un operando (un indirizzo di memoria ind)

Istruzione assembler	Codice operativo
LOAD R1 ind	0000
LOAD R2 ind	0001
STORE R1 ind	0010
STORE R2 ind	0011
SUM R1 R2	0100
SUB R1 R2	0101
JUMP ind	0110
JUMPZ ind	0111
READ ind	1000
WRITE ind	1001
STOP	1011
LOAD R1 #c	1100

	Indirizzo	Codice operativo	Indirizzo operando	lstr. assembler
0	00000	1000	10101	READ X
1	00001	1000	10110	READ Y
2	00010	1100	00000	LOAD R1 #0
3	00011	0010	11000	STORE R1 CONT
4	00100	1100	00000	LOAD R1 #0
5	00101	0010	10111	STORE R1 SOMMA
6	00110	0000	11000	LOAD R1 CONT
7	00111	0001	10110	LOAD R2 Y
8	01000	0101		SUB R1 R2
9	01001	0111	10011	JUMPZ FINE
10	01010	0000	10111	LOAD R1 SOMMA
11	01011	0001	10101	LOAD R2 X
12	01100	0100		SUM R1 R2
13	01101	0010	10111	STORE R1 SOMMA
14	01110	1100	00001	LOAD R1 #1
15	01111	0001	11000	LOAD R2 CONT
16	10000	0100		SUM R1 R2
17	10001	0010	11000	STORE R1 CONT
18	10010	0110	00110	JUMP INIZ
19	10011	1001	10111	WRITE SOMMA
20	10100	1011		STOP
21	10101			Х
22	10110			Y
23	10111			SOMMA
24	11000			CONT

Dott. R. Gori, Dott. A. Rama

INFORMATICA 242AA a.a. 2011/12 - pag. 53