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Abstract The technologies of mobile communications
pervade our society and wireless networks sense the move-
ment of people, generating large volumes of mobility data,
such as mobile phone call records and Global Positioning
System (GPS) tracks. In this work, we illustrate the striking
analytical power of massive collections of trajectory data in
unveiling the complexity of human mobility. We present the
results of a large-scale experiment, based on the detailed tra-
jectories of tens of thousands private cars with on-board GPS
receivers, tracked during weeks of ordinary mobile activity.
We illustrate the knowledge discovery process that, based on
these data, addresses some fundamental questions of mobility
analysts: what are the frequent patterns of people’s travels?
How big attractors and extraordinary events influence mobil-
ity? How to predict areas of dense traffic in the near future?
How to characterize traffic jams and congestions? We also
describe M-Atlas, the querying and mining language and sys-
tem that makes this analytical process possible, providing the
mechanisms to master the complexity of transforming raw
GPS tracks into mobility knowledge. M-Atlas is centered
onto the concept of a trajectory, and the mobility knowledge
discovery process can be specified by M-Atlas queries that
realize data transformations, data-driven estimation of the
parameters of the mining methods, the quality assessment
of the obtained results, the quantitative and visual explora-
tion of the discovered behavioral patterns and models, the
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composition of mined patterns, models and data with further
analyses and mining, and the incremental mining strategies
to address scalability.
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1 Introduction

The analysis of movement has been fostered by the wide-
spread diffusion of wireless technologies, such as the
satellite-enabled Global Positioning System (GPS) and the
mobile phone networks. These network infrastructures, as
a by-product of their normal operations, allow for sens-
ing and collecting massive repositories of spatio-temporal
data, such as the call detail records from mobile phones
and the GPS tracks from navigation devices, which repre-
sent society-wide proxies of human mobile activities. These
big mobility data provide a new powerful social micro-
scope, which may help us understand human mobility, and
discover the hidden patterns and models that characterize
the trajectories humans follow during their daily activity.
This direction of research has recently attracted scientists
from diverse disciplines, being not only a major intellec-
tual challenge, but also given its importance in domains such
as urban planning, sustainable mobility, transportation engi-
neering, public health, and economic forecasting. The Euro-
pean project GeoPKDD (Geographic Privacy-aware Knowl-
edge Discovery and Delivery [16,18]), started in 2005, is a
precursor in mining human mobility data, which developed
various analytical and mining methods for spatio-temporal
data. On this basis, we show in this paper how to support
the complex knowledge discovery process from raw data of
individual trajectories up to high-level collective mobility
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knowledge, capable of supporting the decisions of mobil-
ity and transportation managers, thus revealing the striking
analytical power of big mobility data. It should be noted
that analysts reason about high-level concepts, such as sys-
tematic vs. occasional movement behavior, purpose of a trip,
and home-work commuting patterns. Accordingly, the main-
stream analytical tools of transportation engineering, such as
origin/destination matrices, are based on semantically rich
data collected by means of field surveys and interviews. It
is therefore not obvious that big, yet raw, mobility data can
be used to overcome the limits of surveys, namely their high
cost, infrequent periodicity, quick obsolescence, incomplete-
ness, and inaccuracy. On the other extreme, automatically
sensed mobility data are ground truth: real mobile activities,
faithfully and continuously sampled as they occur, in real
time, but clearly without any semantics annotation or context.

The first contribution of this paper is to show how the
semantic deficiency of big mobility data can be bridged by
their size and precision. To this purpose, we describe the key
results obtained on a large-scale experiment conducted with
the mobility analysts of the cities of Milan and Pisa, on the
basis of real life GPS tracks sensed from tens of thousands
private cars. We show how it is possible to find answers to
the challenging analytical questions about mobility behavior,
which are not supported by the current generation of commer-
cial systems, such as: What are the most popular itineraries
followed by people’s travels and what is the spatio-temporal
distribution of such travels? How do people behave when
approaching a key attractor, such as a big station or airport?
How do people reach and leave the site of an extraordinary
event, such as an important football match? How to predict
areas of dense traffic in the near future? How to characterize
traffic jams and congestions? More than just examples, these
questions are paradigmatic representatives of the analysts’
need to disentangle the huge diversity of individual where-
abouts and discover the subgroups of travels characterized by
some common behavior, or purpose. It is no surprise, then,
that finding answers to these questions is beyond the limits
of the current generation of commercial systems, and cannot
even be accomplished by simply applying known research
prototypes, such as the mobility data mining methods devel-
oped within GeoPKDD by the authors of this paper [17,27,
29] or by other authors [14,24,25,46]. There is a long way to
go from raw GPS data to useful representations of mobility
behaviors: we need a mobility knowledge discovery process.

The second contribution of this paper is to show how
to master the complexity of the mobility knowledge dis-
covery process by means of an integrated querying and
mining system, centered onto the concept of a trajec-
tory, i.e., a sequence of time-stamped locations, sampled
from the itinerary of a moving object. The entire analyt-
ical process able to create the answers to the high-level
questions can be specified as SQL-like queries in our sys-

tem, which supports the following: the needed data trans-
formations, the data-driven estimation of the parameters of
the mining methods adopted, the evaluation of the qual-
ity and accuracy of the obtained results, the quantitative
and visual exploration of the resulting behavioral patterns
and models, the storage of mined patterns and models, the
seamless composition of patterns, models and data with
further analyses and mining, and the incremental mining
strategies needed to overcome the scalability issues that
emerge when dealing with big data. We called our system
M-Atlas, for mobility atlas, to stress that it can be used to
create and navigate a comprehensive catalog of the mobil-
ity behaviors of a territory. Indeed, all the analyses, both
quantitative and visual, presented in this paper were entirely
realized within M-Atlas. We present the key design princi-
ples underlying M-Atlas, emphasizing its compositionality
of querying and mining, and the novel parameter estimation
and incremental mining techniques that, as a further con-
tribution, we are introducing in this paper. To this end, we
discuss how to realize in M-Atlas some known techniques
for empirical estimation of the parameter of density-based
trajectory clustering [6] and propose new analogous tech-
niques for trajectory pattern and flock mining. Finally, we
show how progressive sampling techniques can be speci-
fied, which address effectively the scalability challenges and
are essential to achieve the analyses over the GPS data sets
analyzed in this paper. To better emphasize this issue, we con-
sider not only the Milan data set, consisting of ≈17,000 cars
performing ≈200,000 travels over a week, but also a one-
order-of-magnitude larger data set about coastal Tuscany,
the region around the city of Pisa, consisting of ≈40,000
cars performing ≈1,500,000 travels over 5 weeks. From our
collaboration with a mobility agency, we learned that the
most interesting and challenging analytical questions about
mobility (that are not supported by the current generation of
commercial systems) are exactly aimed at discovering inter-
esting subgroups of vehicles and travels characterized by
some common movement behavior. To perform this kind of
analysis, a complete querying, analysis and mining system
is needed, able to support the overall knowledge discovery
process centered around the trajectory concept.

Plan of the paper follows. Section 2 presents some statis-
tics that validate the GPS data sets used in the experiments
and introduces the mobility questions that drove the analysis
through the paper. Then, Sect. 3 introduces the design prin-
ciples of the data mining query language of the M-Atlas sys-
tem. In Sect. 4, we show how the data mining query language
can be practically used to build complex knowledge discov-
ery processes on mobility data. Afterward, Sect. 5 exposes
the experiments we have carried out using M-Atlas on two
different GPS data sets that answer the mobility questions.
Section 6 illustrates the system architecture and summarizes
the performance evaluation. The essential literature review
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is reported in Sect. 7. Finally, Sect. 8 draws conclusions and
highlight the future developments.

2 GPS data as a microscope of urban mobility

We concentrate in this paper on massive real-life GPS data
sets, obtained from tens of thousands private vehicles with
on-board GPS receivers. The owners of these cars are sub-
scribers of a pay-as-you-drive car insurance contract, under
which the tracked trajectories of each vehicle are periodically
sent (through the GSM network) to a central server for anti-
fraud and anti-theft purposes. This data set has been donated
for research purposes by Octo Telematics Italia S.r.l [31], the
leader for this sector in Europe. We use two GPS data sets:
the first, Milano2007, is about ≈17,000 cars tracked during
one week (from April 1st through April 7, 2007) of ordinary
mobile activity in the urban area of the city of Milan (a 20 km
× 20 km square). The second, Pisa2010, is about ≈40,000
cars tracked during 5 weeks (from June 14th through July
18, 2011) in coastal Tuscany, a 100 km × 100 km square
centered on the city of Pisa.

The average sampling rate of the GPS receivers is 30 s.
Globally, Milano2007 consists of ≈2 Million observations
and Pisa2010 of ≈20 Million observations, each consisting
of a quadruple (id, lat, long, t), where id is the car identi-
fier, (lat, long) are the spatial coordinates, and t is the time
of the observation. The car identifiers are pseudonymized, in
order to achieve a basic level of anonymity.1 The resolution
of the spatial coordinates is at 10−6 degrees, and the error
of the positioning system is estimated at 10–20 m in normal
conditions. The temporal resolution is in seconds. All the
observations of the same car id over the entire observation
period are chained together in increasing temporal order into
a global trajectory of car id. The global trajectory is then
split into several sub-trajectories, corresponding to trips or
travels, by using a cut-off threshold of 30 min: if the time
interval between two subsequent observations of the car is
larger than 30 min, the first observation is considered as the
end of a travel and the second observation is considered as
the start of another travel; using this reconstruction proce-
dure, we obtained ≈200,000 different travels in Milano2007
and ≈1,500,000 different travels in Pisa2010.

2.1 Comparison with survey data

In order to asses the significance of this data set as a
proxy of the real mobility phenomena within a metropolitan
area of 2 million inhabitants, we compared the Milano2007
data set against the survey data (MilanoSurvey) collected

1 It is well know that de-identification with pseudonyms offers a very
weak protection of anonymity (see, e.g., [28]); for this purpose, M-Atlas
offers primitive for trajectory anonymity [1,28].

in 2005-2006 by the mobility agency of Milano municipal-
ity,2 which are used to produce a periodic mobility report
[3]. An important aspect to be considered in this compar-
ison is that both the sample population and the form of
collected data are different. First, the Milano2007 data set
covers only vehicular movements, whereas MilanoSurvey
includes public transportation and pedestrians. Second, the
automatic collection procedure applied for GPS data ensures
that all movements are correctly captured, whereas surveys
leave space to omissions or distortions. Finally, GPS data
provide no explicit semantic information about the purpose
of movements, the final destination, and profiles of the citi-
zens involved, whereas surveys explicitly collect this infor-
mation. Significant differences hold also for the mere size
of the sample: 17,000 vehicles versus 45,000 vehicles and
210,000 physical persons covered by the survey, although
the number of GPS-equipped cars is continuously increasing
(today, more than 50,000 cars are sensed on the same area
in one week). Concerning the periodicity of the sample, the
difference is striking: near real time for GPS tracks vs years
for the surveys: MilanoSurvey is conducted every 5 years.
Finally, GPS data are produced at a very low cost as a by-
product of a sensing infrastructure which is operational for
the car insurance industry, while surveys require large ad hoc
investments.

In our assessment of the Milano2007 data set, we repli-
cated a set of statistics published in MilanoSurvey; the com-
parison has been carried out by analyzing the distribution of
movements and presence of people, and the obtained results,
as discussed below, bring strong evidence to the validity and
coherence of GPS data. An important outcome of this exper-
iment is that GPS data contain detailed information about
occasional (as opposed to systematic) mobility, an impor-
tant trait of reality, which is known to be underestimated by
surveys.

Movement distribution: We measured the number of mov-
ing vehicles in every hour of the day and created a histogram
over the entire week. The result is shown in Fig. 1.

The two distributions match significantly, especially for
the days from the second to the fifth of the week, that actu-
ally represent regular working days, from Monday to Thurs-
day. Friday, April 6, is Easter Friday, which explains the
significant difference in the shape of the distribution w.r.t.
previous weekdays. Within working days, the most relevant
deviation from the survey data is a higher volume of move-
ments between the two peaks in the rush hours and (to a
minor extent) the later part of the day. Actually, the assess-
ment with the Mobility Agency revealed not only that the
results are coherent, but also that the survey distribution is
known to underestimate the movements where the mismatch

2 AMA—http://www.ama-mi.it/english.
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Fig. 1 Movement distribution by hour: representative weekday in MilanoSurvey (left) and entire week in Milano2007 (right)

Fig. 2 Presence distribution
between 11am and noon, survey
(left), GPS data (right); frequent
locations plotted in red, less
frequent locations plotted in
green, infrequent locations in
violet-blue

occurs. The explanation of this phenomenon is that GPS data
also capture nonsystematic movements, while survey data do
not, as interviewed people tend not to report their occasional
mobility, such as going to the dentist or visiting a friend.
Also, GPS data contain mobile activity of people that do not
live in the greater metropolitan area, while the survey focuses
on Milano residents.

Presence distribution: We measured the number of people
present and stationary (not moving) at the various locations at
every hour of the day, as reported in Fig. 2(left) for a specific
time slot. A similar estimate was obtained on Milano2007 by
(i) partitioning the space into a regular grid and (ii) counting
for each cell the number of vehicles that were stationary in
the cell for each time interval. Such values were averaged
over all (regular) working days available. Fig. 2(right) shows
the results.

The two distributions match well in most locations, includ-
ing some particular areas along main streets and suburban
residential areas, confirming again the coherence of results
obtained with survey and mobility data. The main deviation
occurs in the inner city center, where a high-density spot
found by surveys is significantly lower in Milano2007: this
is explained by the strong access restrictions to private cars
in the city center, as well as by the limited capacity of roads
and traffic, which causes an underrepresentation in the GPS

data of the people that reach their workplaces in the center
with public transportation.

2.2 Basic statistics

We measured some basic quantities describing the travels
represented in the trajectory data sets: the length of a trip,
the duration of a trip, the correlation of length and speed of
trips, the radius of gyration of a vehicle (the average distance
of a vehicle from its most likely location), and the density of
(moving and stationary) vehicles in space and time.

Trip length and duration: Figure 3(left) shows the dis-
tribution of trip length (in km), where the length l(T ) of
a trip T = 〈(x0, y0, t0), . . . , (xn, yn, tn)〉 is estimated by
the formula

∑
i=1,n δ((xi−1, yi−1), (xi , yi )); here, δ denotes

Euclidean distance. The heavy-tailed distribution of trip
length highlights how there are many short trips of a few
kilometers, and few, but non negligible very long trips of
tens or even hundreds of kilometers; a similar consideration
applies to the distribution of trip duration (i.e., tn −t0), shown
in Fig. 3(right). The lesson learned here confirms how mobil-
ity is a complex phenomenon that cannot be characterized by
any simple notion of average behavior. The skewed distri-
butions indicate a huge variability and heterogeneity of trips,
spanning over 3-4 orders of magnitude of duration and length:
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Fig. 3 Trip length cumulative distribution in log–log scale (left), trip duration cumulative distribution in log–log scale (right). Red lines for
Milano2007 and green lines for Pisa2010

novel analytic methods are needed to disentangle such com-
plexity.

Correlation of length and speed of trips: Figure 4 shows the
correlation plots of average trip length (in km) and speed (in
km/h) for both the data sets. Each plot, for each speed value s,
reports the average distance traveled by all trips with average
speed (in s). In the Milan2007 data set, the plot shows how
the distance traveled grows linearly with speed, as expected,
only up to 80 km/h, while it decreases for higher speed. In
the Pisa2010 data set, the distance traveled grows linearly up
to 110 km/h, with a low slope between 20 and 40 km/h. The
plots show also the number of trips for each speed value:
the high diversity of lengths for speeds beyond 130 km/h
(the highest speed limit in Italy) is due to the low number
of travels with that velocity and can be considered as noise,
coherently with the intuition that very fast trips take place in
particular situation of light traffic, typically at night.

Radius of gyration: Figure 5(left) shows how the move-
ments of a typical trajectory insist over a preferred location,
most likely the home place or the work place of the vehicle’s
owner. The radius of gyration of each vehicle can be hence
computed as its average distance from the preferred location,
or center of mass.

Given the entire trajectory T = 〈(x0, y0, t0), . . . , (xn, yn,

tn)〉 of a specific vehicle, its center of mass is defined
as cm(T ) = ( 1

n

∑
i=0,n xi ,

1
n

∑
i=0,n yi ) and its radius

of gyration is rg(T ) =
√

1
n

∑
i=0,n δ((xi , yi ) − cm(T ))2.

Figure 5(right) has been created computing the radius of
gyration of each vehicle and represents the general law of
the power of attraction of the most likely location on each
individual, confirming the results obtained in [19].

Spatio-temporal analysis of density: Figure 6 illustrates
the distribution of vehicles in the urban area in three dif-
ferent time slots; space has been discretized into rectangular
grids and time into regular intervals. Not surprisingly, density
increases in rush hours.

Penetration of GPS-enabled vehicles: Figure 7 shows the
correlation between the resident population and the number
of tracked cars in Milano2007 and Pisa2010. The number
of resident people in both the regions has been provided
by the Italian Institute for Statistics (ISTAT) census data.
The GPS-enabled vehicles have been partitioned into res-
idential, i.e., belonging to people who spend regularly the
night in their preferred location within the areas covered by
the two data sets and visitors. We observe an evident correla-
tion between residential tracked cars and general population.
Also, we get an experimental confirmation that GPS-enabled
cars are about 1% of population in Pisa2010 and 0.25% in
Milan2007. Considering only the registered cars, Pisa2010
represents the 2% and Milano2007 the 0.5%.

2.3 Analysis of movement behavior

Besides convincing ourselves that the Milano2007 data are a
valuable proxy of real mobility at the urban scale, we learned
two lessons from our basic analytical explorations. First, all
statistics confirmed that there is a huge complexity repre-
sented in the data, a wide variability of individual mobil-
ity behaviors that cannot be fully understood in its diversity
by looking only at macroscopic, global measures and laws.
Second, we realized that the basic spatio-temporal statistics
are not well suited to support the discovery and analysis of
movement patterns, because the very nature of a trajectory—
a time-stamped sequence of spatial locations—is factored out
by the basic statistics.

Collaborating with the analysts of the Milano mobility
agency, we learned that the most interesting and challeng-
ing analytical questions about mobility (that are not sup-
ported by the current generation of commercial systems) are
exactly aimed at discovering interesting subgroups of vehi-
cles and travels characterized by some common movement
behavior. Five paradigmatic questions of this kind are the
following.
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Fig. 4 Correlation plot of length and average speed of trips and number of trips per speed for the Milan2007 (left) and Pisa2010 (right)

Fig. 5 The complete weekly trajectory of a single vehicle; its most likely location emerges clearly (left); plot over a regular grid of the probability
of finding a user in a location, normalized in each vehicles intrinsic reference system (right)

Fig. 6 Aggregated density moving vehicles from midnight to 2 am (left); from 6 am to 8 am (center); from 6 pm to 8 pm (right)

1. What are the most popular itineraries followed from the
origin to the destination of people’s travels? What routes,
what timing, what volume for each such itinerary? How
do people leave the city toward suburban areas (or vice-
versa)? What is the spatio-temporal distribution of such
trips?

2. How to understand the accessibility to key mobility
attractors, such as large facilities, railway stations or
airports? How do people behave when approaching an
attractor?

3. How to detect an extraordinary event and understand the
associated mobility behavior? How and when do people

reach and leave the event’s location? What is the spatio-
temporal distribution of such (portion of) trips?

4. What will be the areas with highest traffic volume in the
next hour(s)? To what extent are our predictions accu-
rate?

5. How to characterize a traffic jam? How to detect where
and when traffic jams occur?

To answer these questions, a complete querying, analy-
sis and mining system is needed, able to support the overall
knowledge discovery process centered around the trajectory
concept. Such a system is expected to master all the phases
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Fig. 7 Correlation of GPS-enabled vehicles with resident population in Milan2007 (left) and Pisa2010 (right)

Object
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Spatial Object
Temporal 

Object
Moving Object

T-Reachability T-Clustering T-PTreeT-ODMatrix T-Pattern T-ClusterT-Flow T-Flock

set of

set of

aggregation of

Fig. 8 The M-Atlas type hierarchy. M-Model, M-Pattern and Data are the basic types of data. We can notice the relationship between M-Models
and M-Patterns. For example, T-Clustering model is represented by a set of T-Cluster patterns, while T-PTree model is an aggregation of T-Patterns

of such process, to the aim of supporting interactive, iterative
visual exploration of the analytical results, thus enabling the
analyst to combine different forms of knowledge and drive
the analysis toward the discovery of interesting movement
patterns.

This ambitious goal is precisely what we pursue with
M-Atlas, initially designed and developed within the Geo-
PKDD project [18,39,40] and continuously expanded with
new mobility mining features. In fact, all the analyses pre-
sented so far were entirely performed using M-Atlas; in
Sect. 5, we will show how M-Atlas is able to provide answers
to the questions above, using the ideas and methods of mobil-
ity data mining and their integration into a logically coherent
querying and mining framework—but, before that, we need
to describe the design principles of M-Atlas and their reali-
zation into a usable and robust system.

3 Design principles of M-Atlas

M-Atlas3 is a mobility data mining query language, i.e.,
a querying and mining system centered onto the concept
of trajectory. Besides the mechanisms for storing and que-
rying trajectory data, M-Atlas has mechanisms for mining
trajectory patterns and models that, in turn, can be stored and
queried. The basic design choice is compositionality, i.e.,
querying and mining of trajectory data, patterns and models
may be freely combined, in order to provide the expres-
sive power needed to master the complexity of the mobil-
ity knowledge discovery process. The formal compositional
framework underlying M-Atlas has been defined in [33,40]
and is referred to as the Two-Worlds model. This model views

3 Available for download at the URL: http://m-atlas.eu.
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the knowledge discovery process as the interaction between
two worlds: the data world and the model world. The former
is a database of entities, trajectories in our case; the latter is a
database of models and patterns extracted from the data, rep-
resenting the result of mining tasks. Two kinds of operators
connect the two worlds: the mining operators and the entail-
ment operators. Mining operators map data into models or
patterns, while entailment operators map models, patterns,
and data into the data that satisfy the property expressed in
the given models or patterns. This view supports composi-
tionality, in that data can be mapped onto models and vice
versa, and is coherent with inductive databases [22]. Another
design choice in the Two-Worlds model is that all entities are
represented in the object-relational data model, which is more
suitable to tackle the structural complexity of spatio-temporal
data wrt. tabular data.

Architecturally, M-Atlas has three high-level components:
(i) a persistent store for trajectory data, models, and pat-
terns, (ii) a spatio-temporal query language for trajectory
data, models, and patterns, and (iii) a repertoire of construc-
tors of spatio-temporal models and patterns.

3.1 Data, models, and patterns

M-Atlas adopts state-of-the-art moving object database
design principles for its trajectory store, extended with mech-
anisms for managing and querying models and patterns.
There are three main object types in M-Atlas: Data, M-model,
and M-pattern depicted in Fig. 8. We distinguish between
models and patterns: a pattern is a representation of a local
property that holds over a sub-group of mobility data, e.g.,
a flock of trajectories; on the other hand, a model is a repre-
sentation of a global property that holds over an entire data
set: accordingly, a model is either a global aggregate (e.g.,
speed distribution in a trajectory data set) or a collection of
patterns (e.g., the clustering that partitions an entire data set
into separate clusters).

Practically, the system adds new object-relational types
to the database in order to represent the new types of data,
patterns, and models. The advantage of having an object-
relational representation is threefold: (i) it allows the def-
inition of complex data such as lists and trees, (ii) yields a
compact representation of the data, and (iii) makes it possible
to use classical indexing techniques already in the database
on complex objects.

3.1.1 Data types

M-Atlas supports three types of data: purely spatial data,
purely temporal data, and moving points or trajectories.

Spatial objects have a geometric shape and a position in
space and are represented as S = (t ype,< p1, . . . , pn >)

where t ype ∈ {point, line, polygon} defines the meaning
of the list of points < p1, . . . , pn >: if t ype = point ,
then the list is composed by only one point with its coordi-
nates; if t ype = line, then the list represents a broken line;
if t ype = polygon, then the list represents the contour of
the polygon.

Temporal objects are represented as T = (t, d) where t is
an absolute temporal value (w.r.t. a time reference system)
and d is a duration expressed in seconds. When t is equal to
the special value null, then the temporal object represents a
relative time period. An interval object is a pair of temporal
objects I = (Tmin, Tmax ).

Moving objects are the spatio-temporal evolution of the
position of a spatial object. There are three different types
of moving objects: moving point, moving line, and moving
polygon. In this paper, we concentrate on moving points,
which represent trajectories. A moving point is defined as
Mo =< p1, t1 >, . . . , < pn, tn >, where p j is a spatial
object representing a point, t j is a temporal object represent-
ing an absolute time point, and ti < t j for 1 ≤ i < j ≤ n.
To the purpose of this paper, the terms trajectory and moving
point are synonyms.

Data Constructors can be associated with each data type,
allowing, e.g., to construct data objects by acquiring and pre-
processing raw data. As an example, the following construc-
tion query builds a table Travels of reconstructed travels from
the raw observations contained in the table RawData. By set-
ting a maximum space gap (in km) and time gap (in seconds)
between any two consecutive observations in a trajectory, we
can specify the end of a travel and the beginning of a new
one.

CREATE DATA Travels BUILDING MOVING_POINTS
FROM (SELECT userid,lon,lat,datetime FROM RawData

ORDER BY userid,datetime)
SET MOVING_POINT.MAX_SPACE_GAP = 0.2 AND
MOVING_POINT.MAX_TIME_GAP = 1800

3.1.2 M-Pattern Types

A mobility pattern, M-Pattern in short, represents the com-
mon behavior of a (sub-)group of trajectories, obtained as a
result of a data mining algorithm. The types of M-Patterns
currently supported by M-Atlas are shown in Fig. 9.

T-Cluster: A T-Cluster (Fig. 9a) is defined as a set S =
{(τ1, l), (τ2, l), . . .} of labeled trajectories, which share the
same membership tag l. The trajectories of a T-Cluster are
grouped on the basis of their similarity according to a speci-
fied similarity function, chosen from a repertoire of possible
choices.

T-Pattern: it is represented as tp = (R, T, s) where R =<

r0, . . . , rk > is a sequence of regions, T =< t1, . . . , tk > is a
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Fig. 9 M-Pattern types: a T-Cluster, b T-Pattern, c T-Flock, d T-Flow

Fig. 10 M-Models types: a Reachability plot, b T-PTree and c T-ODMatrix

sequence of relative time intervals t j = [t s
j , te

j ] associated to
each region, and s is the support of tp, i.e., the number of tra-
jectories that are compatible with tp in space and time. Infor-

mally, a T-Pattern can be represented as r0
t1→ r1 · · · tk→ rk .

Originally introduced in [17], a T-Pattern (Fig. 9b) is a con-
cise description of frequent behaviors, in terms of both space
(i.e., the regions of space visited during movements) and time
(i.e., the duration of movements).

T-Flock: A T-Flock f = (I, r, b) represents a spatio-
temporal coincidence of a group of moving points, where
I = [tmin, tmax ] is the time interval of the coincidence,
b is the base moving point, and r is the spatial buffer
around b which is used to determine the coincidence. This
spatio-temporal coincidence defines a common behavior of
the people which move together for a certain time interval
(Fig. 9c).

T-Flow: The T-Flow t f =< R1, R2, w > represents a flow
of w ≥ 0 trajectories which move from region R1 to region
R2 (Fig. 9d).

3.1.3 M-Model Types

Mobility models, M-Models in short, are the global models
extracted by a data mining algorithm, where the adjective
global indicates the fact that each such model describes
the entire input data set. Figure 10 illustrates some of the
available M-models in M-Atlas; other M-Models are simply

the entire collection of T-Patterns, T-Clusters, and T-Flocks
mined over a trajectory data set.

Reachability plot: is a histogram of distances between tra-
jectories, obtained considering a specific distance function
(Fig. 10a). More precisely, it is a sequence of pairs Rp =
< (t1, d1) . . . (tn, dn)) > where t j is a trajectory and d j is
the distance between t j and t j+1, where t j+1 is the nearest
neighbor of t j which does not occur in {t1, . . . , t j }. Using a
threshold ε for distance, the reachability plot identifies a set
of T-Clusters representing the partition of the whole data set
into labeled groups of similar trajectories.

T-PTree. A T-Pattern Tree, T-PTree in short, is a compact
representation of a set of T-Patterns (Fig. 10b). It is a prefix
tree PT = {root, N , E}, where N is the set of nodes of the
tree, E is the set of edges, and root is the root of the tree.
Each node ni = {r, supp} contains a spatial region r and a
support value supp; each edge ei, j = {tmin, tmax } connects
the nodes i and j specifying a relative time interval. The
support label on the nodes represents the maximum support
value of the T-Patterns which have the path root, . . . , ni as
prefix. The formal definition of prefix of a T-Pattern is in [27];
intuitively, a T-pattern tp1 is prefix of another T-Pattern tp2

if every region and interval of the first pattern are included in
the region and interval of the second, in the specified order.

T-O/DMatrix: A T-O/DMatrix (Fig. 10c) is defined as a
labeled graph odm = {O, D, E} where O = {o1 . . . on}
are the nodes which identify the origins, D = {d1 . . . dk}
are the nodes which identify the destinations, and E are the
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Fig. 11 M-Atlas spatio-temporal primitives

edges which connect an origin node with a destination node.
Each node (both origins and destinations) contains a spatial
region and the label on the edges represent the number of
movements which start in the origin region and end in des-
tination node. This model results from the composition of
a set of T-Flows, each representing the trajectories from the
origin to the destination region.

Model and Pattern constructors: A generic constructor for
M-Models (and M-Patterns) is defined as a function Td →
(Tm, Tp) where Td is a data table, Tm is a model table (con-
taining a single M-Model object), and Tp is a table containing
a set of M-Patterns objects. This operator realizes the con-
struction of M-Models and M-Patterns through the execution
of a data mining method with a specified parameter setting.
M-Atlas provides a mining constructor for each method in
its data mining library, presented in Sect. 3.3. An example
of mining constructor query is the following, which gener-
ates a step of density-based trajectory clusters under specific
parameters:

CREATE MODEL ClusteringTable MINE AS T-CLUSTERING
FROM (Select t.id, t.trajobj from TrajectoryTable t)
SET T-CLUSTERING.FUNCTION = ROUTE_SIMILARITY AND
T-CLUSTERING.EPS = 100 AND
T-CLUSTERING.MIN_PTS = 20

3.2 Spatio-temporal query primitives

The querying primitives over data, models, and patterns
are summarized in Fig. 11; the upper left square contains
the data × data primitives, corresponding to the classi-
cal spatio-temporal primitives defined in [21]. All the other
primitives have been specifically designed for M-Atlas, in
that they involve models and patterns (data × model/pattern,
model/pattern × data, or model/pattern × model/pattern).

Each primitive is defined as a function r(T1, T2) →
(Trel), where T1 and T2 are two sets of objects and Trel =
{〈o1, o2〉|o1 ∈ T1 ∧ o2 ∈ T2 ∧ rel(o1, o2)}. Here, rel is a
predicate defined between the types of objects in T1 and T2,
which specifies the relation that should hold over the pairs of
objects that are kept in the resulting table Trel .
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Albeit there are apparently only a few kinds of spatio-
temporal primitives (contains, intersects, equals), a large
variety comes from the different combinations of types of
objects to which such primitives are applied, as illustrated in
Fig. 11. Each combination depends on the semantics of move-
ment represented by the types of the involved objects; for
instance, the definition of intersects between a T-pattern and
a Moving Point is completely different from that between a T-
Flock and a Moving point. The expressive power of M-Atlas
derives exactly from the comprehensive repertoire of spatio-
temporal primitives over all combinations of data, patterns,
and models; the entire repertoire is reported in [39].

A pattern × pattern primitive is the contains relation
between two T-Patterns tp1 = (R1, T 1, s1) and tp2 =
(R2, T 2, s2), defined as follows:

contains(tp1, tp2) ≡ ∃k > 0 | contains(R1
k , R2

k ) ∧
· · · ∧ contains(R1

k+n, R2
k+n)∧ contains(T 1

k , T 2
k ) ∧ · · · ∧

contains(T 1
k+n, T 2

k+n), n = |R2|
where the contains operator between regions and temporal
intervals (data × data) is defined as in [21]. To construct the
table of pairs of objects that satisfy a generic relation, we use
the query syntax CREATE RELATION, as in the following
example, where a table of pairs of T-patterns (tp1, tp2) is
created, such that tp1 contains tp2:

CREATE RELATION TPatternContains USING CONTAINS
FROM (SELECT t1.id, t1.tpattern, t2.id, t2.tpattern

FROM TPatternTable t1, TPatternTable t2
WHERE t1.id <> t2.id)

A distinctive pattern × data primitive is the entails rela-
tion. entails(p, o) holds if the data object o is an instance
of pattern p. The definition of entails is specific for each
M-Pattern, and the details are given in Sect. 3.3. An example
of query is the following, which creates a table containing
the trajectories belonging to a specific T-Cluster:

CREATE RELATION TrajectoriesInCluster USING ENTAILS
FROM (SELECT t.id, t.traj, c.id, c.cluster

FROM TrajectoryTable t, ClustersTable c)

Transformation primitives: Transformations are a class of
primitives which uses external methods to perform complex
data pre-processing and model/pattern post-processing oper-
ations in the knowledge discovery process.

CREATE TRANSFORMATION TransformedData USING
TRANSFORMATION_ALGORITHM
FROM (SELECT t.id, t.trajobj FROM TrajectoryTable t)
SET PARAM.K = N

3.3 M-Models and M-Patterns constructors

The models and patterns of M-Atlas are constructed by a
CREATE MODEL query, which refers to a specific method

available in the spatio-temporal data mining library. The main
such methods are sketched below.

T-Pattern

Input: D, a set of trajectories; R, a set of spatial objects denot-
ing regions of interest; smin , a minimum support threshold;
τ , a time tolerance threshold.

Output: the set of all T-Patterns T P = r0
[t s

1 ,te
1 ]−→ r1 · · · [t s

n ,te
n ]−→

rn such that T P entails at least a fraction smin of the input
trajectories in D, where each ri is a region from R and each
[t s

j , te
j ] is a temporal annotation specifying the minimum

and maximum duration of the transition from region ri−1

to region ri .

Entailment: A T-Pattern T P entails a trajectory T if the
latter contains an instance of the former, i.e., a sequence of
points that are contained in the regions that compose the
T-Pattern, and such that their time gaps are contained in the
corresponding transition time intervals of the T-Pattern with
tolerance τ . In formula, there exists a subsequence T ′ of
T, T ′ = 〈(x ′

0, y′
0, t ′0), . . . , (x ′

n, y′
n, t ′n)〉 such that:

1. ∀0≤ j≤n . (x ′
j , y′

j ) ∈ R j , and
2. ∀1≤ j≤n .(t ′j − t ′j−1 ± τ) ∈ [t s

j , te
j ]

Complexity: The algorithm for T-Pattern mining (see [17])
has both space and time complexity linear on the number
of input trajectories, while complexity grows exponentially
with the average length of the input trajectories.

T-Clustering

Input: D, a set of trajectories; d(T1, T2), a distance func-
tion between trajectories, selected from a repertoire, which
includes the following instances:

− Common destination: dd(T1, T2) is given by the Euclid-
ean distance δ(p1, p2) between the last point p1 of T1

and the last point p2 of T2

− Common origin: do(T1, T2) is given by the Euclidean
distance between the first point of T1 and the first point
of T2

− Common origin and destination: dod(T1, T2) =
do(T1, T2) + dd(T1, T2)

− Route similarity: This considers the entire spatial path
of the two trajectories T1 and T2 and assigns the average
Euclidean distance between any two points of T1 and T2

within a spatial neighborhood [4]
− Colocation Similarity: synchronized spatio-temporal

distance

dst (T1, T2) =
∑

t∈I

δ(T1(t), T2(t))/|I |
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where Ti (t) denotes the (interpolated) position of trajec-
tory Ti at time t ; the distance at each time is averaged
over the length of the considered time interval

Eps, a distance threshold; minPts, the minimum number of
points contained in a neighborhood of radius Eps.

Output: Reachability plot, a high-level description of the
clustering structure of the input trajectories, obtained using
the density-based trajectory clustering method of [29]. A
reachability plot, given a distance threshold ε, generates
a partition of the input data set into a set of T-clusters.
The adopted algorithm is a variant of the well-known
OPTICS [6] method. We remark that, while M-Atlas also
includes different other clustering methods (and new ones
can be easily integrated into the system), our experience
suggests that density-based clustering best suits trajectory
data, due to the abundance of noise and irregularly shaped
clusters.

Entailment: A T-Cluster C , obtained from a reachability
plot, entails a trajectory T simply if T ∈ C .

Complexity: T-Clustering has a space complexity O(m),
where m is the number of input trajectories, and a time com-
plexity O(mK ), if the computational cost of a single neigh-
borhood query is O(K ). In the case that the execution of
neighborhood query can be optimized using an index with
a query time of O(logm), then T-clustering is O(mlogm);
otherwise, the whole complexity is O(m2).

T-Flock

Input: D, a set of trajectories; τ , re-sampling time period; m,
minimum number of objects in a flock; k, minimum duration
of a flock (time unit is τ ); r , maximum radius of a flock.

Output: The set of (m, k, r)− f locks [8,20,42] discovered
in D. An (m, k, r) − f lock is defined as a group of at least
m trajectories that fall within a disk of radius r for a time
interval I of duration |I | ≥ k. Before flock extraction, the
original trajectories are re-sampled with constant rate τ . The
heuristics applied to extract flocks [42] is based on a bottom-
up, time slice merging procedure that starts from single-point
flocks and is iterated to build flocks of longer duration. This
approach differs from others in literature, for instance [20],
that follows an earliest/longest occurrence-first policy, and
[8], that is based on approximated range queries over all can-
didate time intervals of sufficient duration.

Entailment: A T-Flock (I, r, b) entails a trajectory T if the
positions of T at the time instants in interval I fall within
distance r from the base trajectory b of the T-Flock.

Complexity: T-Flock discovery has a O(n2l) computational
cost and O(nl) space complexity, where n = |D| is the data
set size and l is the average length of input trajectories.

T-O/DMatrix

Input: D, a set of trajectories; RO , a set of origin regions;
RD , a set of destination regions (RO and RD may overlap).

Output: A T-O/D Matrix, an M-Model representing the ori-
gin/destination matrix M for the trajectories in D, where
Mi, j = n if there are n trajectories T ∈ D such that T starts
in the origin region Ri ∈ RO and T ends in the destination
region R j ∈ RD . In other words, M(i, j) is the flow from Ri

to R j .

Complexity: The space complexity of T-O/D Matrix is
O(mn), where m and n are the cardinality of the two region
data sets. The computational cost is O(l), where l is the
number of input trajectories. M-Atlas provides other model
constructors, including the T-PTree (see Fig. 10b), a struc-
ture designed to support the next-location prediction method
in [27].

4 Mastering the knowledge discovery process

Each visual interaction of the analyst with the M-Atlas inter-
face is compiled into a sequence of M-Atlas queries. Alter-
natively, an expert data miner can directly submit queries
to the M-Atlas engine, to exploit its full expressiveness. In
either cases, an analytical process is created by combining
data and model constructors with spatio-temporal primitives
within the querying and mining language.

One of the key objectives of M-Atlas is to enable the
mobility data analyst to master the complexity of the knowl-
edge discovery process even in its more critical issues, such
as the definition of complex interactive and iterative analysis,
the estimation of algorithm parameters, and the validation of
models. The rest of this section is dedicated to highlight how
M-Atlas supports the subtleties of the KDD process, also pro-
viding a fertile ground to create and realize novel analytical
methods.

4.1 Clustering by sample

A clustering-based analytical process requires several user
interactions, aimed at refining and adjusting the parameters
while a better insight into the extracted models is reached.
Therefore, the system reaction time during such iterative
process is crucial to allow the user to actively interact. To
this aim, in [5], an interactive clustering method is proposed,
based on the idea that firstly, a clustering partition is com-
puted over a sampled data set and secondly, such partition is
used as a classifier over the entire data set. More precisely, the
method is composed by the following steps: (1) a sampling
of the entire data set is computed, and a clustering analysis is
performed over the sampled data until a satisfactory cluster-
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Fig. 12 Classification of new trajectories using a set of specimens from
WednesdaySpecimens. Left, blue lines represent the trajectories of
a single cluster of Wednesday, April 4, and the red lines are the speci-
mens learned for the selected cluster. Right, green lines are the trajec-

tories of the entire week classified by the same set of specimens. Visual
inspection confirms that cluster shape is preserved, albeit the size of
the second data set is 7 times larger. Quantitative measures of cluster
quality, such as silhouette coefficients, can be easily computed

ing partition is reached; (2) one or more representatives for
each cluster are computed; and (3) such representatives are
used to classify the data of the entire data set by assigning
each data its best fitting representative.

Such complex analytical process, based on the interleav-
ing of a unsupervised method with a supervised one, may
be entirely expressed in M-Atlas by combining query and
mining primitives as follows. The first query focuses on the
trajectories of a single day (other sampling approaches may
be used as well):

CREATE TABLE WednesdayTrajectories AS
SELECT * from TrajectoryTable
WHERE day = ’04/04/2007’;

The second query performs the clustering analysis on the
selected trajectories using Route Similarity as distance func-
tions, 750 meters as distance threshold, and 5 trajectories as
the density threshold (parameter setting can be assisted by
the estimation method illustrated in Sect. 4.4):

CREATE MODEL ClustersWednesday AS MINE T-CLUSTERING
FROM (SELECT t.id, t.trajectory FROM
WednesdayTrajectories t)

SET T-CLUSTERING.FUNCTION = ROUTE_SIMILARITY AND
T-CLUSTERING.EPS = 750 AND
T-CLUSTERING.MIN_PTS = 5

In the third step, the trajectories entailed by the newly
extracted T-Clusters are selected and then used to compute
the set of representatives, named specimens, for each cluster:

CREATE RELATION WedTrajectoriesToClusters USING ENTAIL
FROM(SELECT t.id, t.trajectory, c.id AS cid

FROM WednesdayTrajectories t, ClustersWednesday c)

CREATE MODEL WednesdaySpecimens AS MINE SPECIMENS
FROM (SELECT id, trajectory, cid FROM
WedTrajectoriesToClusters)

SET SPECIMENS.MAX_DISTANCE = 750 AND

SPECIMENS.METHOD = ROUTE_SIMILARITY

SPECIMENS is a new mining primitive that creates, for each
original cluster, a set of specimens, i.e., a condensed rep-
resentation of a set of trajectories according to a selected
distance function.

The final step is the classification of every new (unseen)
trajectory T , by assigning T either to one of the clusters or
to noise. To this aim, we check for each trajectory T , its
closest specimen S, and assign T to the cluster of S. This
is a complex algorithm that is specified as a transformation
primitive, which takes as input a set of specimens, a set of
trajectories, and a distance function and constructs a table
where each trajectory is tagged with its assigned cluster/set
of specimens.

CREATE TRANSFORMATION ClassifiedTrajectories USING
SPECIMENS_CLASSIFIER
FROM (SELECT id, trajectory FROM TrajectoryTable)
SET SPECIMENS_CLASSIFIER.SPECIMENS = (SELECT *
FROM WednesdaySpecimens) AND
SPECIMENS_CLASSIFIER.METHOD = ROUTE_SIMILARITY

Figure 12 shows the result of classifying the trajectories of
the entire week using the set of specimens found inWednes-
daySpecimens.

4.2 Temporal analysis of T-Patterns

An important task is to study the stability of a set of extracted
T-Patterns over time. We show a method to accomplish this
task, using the trajectories of the Pisa2010 data set, parti-
tioned into five consecutive weeks of data. We extract a set
of 274 T-Patterns from the first week, and we want to ana-
lyze the variation of the support of these T-Patterns in the four
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Fig. 13 Stability of support of 274 T-Patterns mined in week 1 of
Pisa2010 over the remaining 4 weeks of Pisa2010. Each point (x, y) in
the scatter plot is associated with a specific T-Pattern T P , where x is
the (relative) support of T P in week 1 and y is the support of T P in
one of the weeks from 2 to 5 (four different points are plotted for each
of the 274 T-Patterns)

subsequent weeks. To this purpose, we count the trajectories
that entail each T-Pattern in weeks 2 through 5 (see query
below for week 2).

CREATE RELATION tp_on_2week USING ENTAIL
FROM (Select p.id, p.tpattern, t.id, t.traj
FROM TPTable p, Traj2Week t)

SELECT pid, count(*) FROM tp_on_2week group by pid.

Figure 13 compares the original support values found in
week 1 with the support in weeks 2–5, highlighting that
almost all the T-patterns maintain a similar support over the
observation period.

4.3 T-Pattern parameter estimation

The basic step of the T-Pattern algorithm is the detection
of frequent regions in the area under analysis. Therefore, the

support threshold is the most influent parameter for the whole
process. We present a heuristics data-driven method to esti-
mate the value for this threshold. The cumulative frequency
distribution of trajectories in the spatial grid cells is shown
in Fig. 14(left). We claim that the points of significant slope
change in this distribution are the best candidates for the sup-
port threshold, because these points separate groups of grid
cells that have a rather uniform frequency internally but the
frequency between the different groups is very different. Our
heuristic detects this slope-changing points as candidates for
the support threshold of T-Pattern algorithm.

Another crucial parameter for the extraction of T-Pattern
is the time tolerance τ . In Fig. 14(right), we plot all the time
distances for every possible pair of points in each trajec-
tory. These represent all the possible transition time candi-
dates in the T-Pattern mining algorithm. The sharp steps in
the zoomed inset are the artifact of the average sampling
rate, ≈33 s. This is the minimum admissible value for the τ

parameter. We note that with a high value of τ , the T-pattern
computation aggressively merges the transition times. For
instance, with a 130 s the 10% of transition times are merged.
An adequate candidate for the τ parameter is around the 50th
percentile (14 min) and, in any case, between the 10th and
the 90th percentiles (2–45 min).

4.4 Density parameter estimation

A recurrent parameter type required by the mining algo-
rithms of M-Atlas is the density threshold. For example,
T-Clustering uses a density threshold to separate noise
(sparse groups of trajectories) from the clusters (highly dense
groups). In T-Flock mining, the density threshold is used to
prune the search space for the candidate generation of possi-
ble flock extensions. In general, the density of the neighbor-

Fig. 14 Cumulative frequency distribution of trajectories in space: the
system proposes a ranked list of three candidate values for the T-Pattern
support threshold (13, 24, 82) based on detected points of significant

slope variation (left) Cumulative distribution of transition times between
each pair of points in each trajectory (right)
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Fig. 15 The kth nearest neighbor distance for different objects: left distribution of distances for trajectories in the Milan2007 data set using the
Route similarity distance function and different values of k; right distribution of the second nearest neighbor (k = 2) distances for points in the
Pisa2010 data set

hood of an object is determined by counting the number of
distinct objects within a given radius. For the T-Flock algo-
rithm, the radius depends on both space and time. In the
T-Clustering, the semantics of distance, and hence of radius,
depends on the distance function selected by the analyst. In
general, both methods use a radius threshold r and a min-
imum number of point k, which jointly define the density
threshold. Setting r and k with no prior knowledge is dif-
ficult, but the analyst can be assisted by a heuristic meth-
odology that, given a choice for k, suggests the empirically
best value for r . This estimation method, proposed originally
by [13] for density-based clustering, is extended here also
for T-Flock mining and can be fully supported by M-Atlas
queries and basic statistics. Given a candidate value for k
freely guessed by the analyst (the rule of thumb from [13]
is to pick a small value around 4-10), the radius parame-
ter r can be estimated as follows. We measure the distance
between each trajectory T in the data set and the k-th near-
est neighbor of T , and plot all such distances in increas-
ing order. The distribution of such distances can give us a
meaningful overview of how to separate trajectories with
a dense neighborhood from those with a sparse neighbor-
hood. In particular, if the plot has a point of sharp increase
in the derivative (slope change), then the distance value at
that point is a suitable candidate to separate “dense” trajec-
tories and noise. Such process is supported by means of an ad
hoc transformation, namedDENSITY_ANALYSIS. The fol-
lowing query supports the density analysis for the Milan2007
data set with k = 10 and the similarity function set to Route
Similarity):

CREATE TRANSFORMATION density_analysis_route
USING DENSITY_ANALYSIS
FROM (SELECT * FROM TrajectoryTable)
SET REACHABILITY_ANALYSIS.MIN_PTS = 10 AND

REACHABILITY_ANALYSIS.METHOD = ROUTE

Figure 15(left) shows the density distribution as obtained
from the previous query using distinct values for k (i.e., k = 3,

k = 4, k = 10). It is clear from the plot that a suitable value
for the radius r is 3,000 m for k = 3 and 4,000 m for k = 10.
In the case of T-Flocks, the plot reported in Fig. 15(right)
shows the distances of the second point (k = 2) for the
Pisa2010 data set. In the given figure, a clear knee of the
curve occurs at around 1,600 m, which can be set as can-
didate r . This high value also indicates that the data set is
quite sparse and thus requires a large radius value to find
density-based clusters.

5 Discovery of mobility behavior with M-Atlas

We now address the questions of Sect. 2.3 with analytical
processes supported by M-Atlas.

5.1 Most popular itineraries from the city center to
suburban areas

To characterize the main flows from the city center toward the
suburbs, we start by considering the administrative borders
of Milan and its adjacent municipalities (see Fig. 16(left)).
Such regions are used as input for the T-O/D Matrix model
constructor, obtaining a high-level description of the flows
between each pair of regions. The visual interface enables the
analyst to interact with the model (see Fig. 16(right)). In our
analysis, we focus on the T-Flows leaving the city of Milan
toward the north-east suburbs (the NE satellite municipalities
of Monza, Sesto San Giovanni, Cinisello Balsamo, Cologno
Monzese, and Brugherio). We select the trips entailed by the
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Fig. 16 The resulting T-O/D Matrix model for Milano2007 on a spe-
cific weekday (Wednesday, April 3). Left The regions used as input the
model: the center region (in orange) contains the administrative borders
of Milan; the purple cells represent the adjacent cities. Right The visual
interface to browse the O/D Matrix: each region is represented with a
node, nodes are displayed in a circular layout. The arc connecting two

nodes represents the flow, i.e., the number of trips from the origin to
the destination node; the arc width is proportional to the flow. The ana-
lyst browses visually the O/D Matrix either selecting some specified
origins and/or destinations, or highlighting the main flows by setting a
minimum support threshold

Fig. 17 The result of T-Clustering from the trajectories moving from
the center to the North-East area. Left The input data set for the cluster-
ing algorithm: the trajectories moving from the center to the North-East
area. Right The resulting clusters using the Route Similarity distance
function. The cluster are visualized using a themed color, where the
trajectories in the same cluster are visualized with the same color. The

analyst can browse the different clusters. In this example, the three
largest clusters are visualized: cluster 2 (green) shows the most popular
route, which heads east toward the outer ring and then north; cluster 0
(red) is the second most popular route, north and then east; cluster 3
(purple) heads straight toward north-east

selected T-Flows. The M-Atlas queries that realize this tasks,
automatically generated as a product of the visual interaction
with the analysts, are the following:

CREATE MODEL MilanODMatrix AS MINE ODMATRIX
FROM (SELECT t.id, t.trajectory FROM TrajectoryTable t),
(SELECT orig.id, orig.area FROM MunicipalityTable orig),
(SELECT dest.id, dest.area FROM MunicipalityTable dest)

CREATE RELATION CenterToNESuburbTrajectories USING ENTAIL
FROM (SELECT t.id, t.trajectory FROM TrajectoryTable t,
MilanODMatrix m
WHERE m.origin = Milan AND
m.destination IN (Monza,...,Brugherio))

The resulting trajectories are presented to the analyst as in
Fig. 17(left). Despite all these trips originate in the city center
and end in the NE suburbs, a broad diversity is still evident. To
discover the most popular itineraries followed by the selected
travels, we use the T-Clustering model constructor with the
Route Similarity distance function, and parameters Eps and
MinPts estimated with the method of Sect. 4.4. Behind the
scenes, M-Atlas generates and executes the model construc-
tor query:

CREATE MODEL ClusteringTable AS MINE T-CLUSTERING
FROM (Select t.id, t.trajectory from
CenterToNESuburbTrajectories t)
SET T-CLUSTERING.FUNCTION = ROUTE_SIMILARITY AND
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Fig. 18 Distribution of estimated cardinality of three main clusters
0 (red), 2 (green), 3 (purple), and number of all travels from the city
center to NE suburbs (blue) over the week April 1st (Sat)–7th (Sun).
Clusters 0 (red) and 3 (purple) are essentially constant with a small
decrease during the weekend (days 1 and 7), while cluster 2 (green) has
a shape similar to the general flow, with a significant decrease during
the weekend

T-CLUSTERING.EPS = 400 AND
T-CLUSTERING.MIN_PTS = 5

As a result, the analyst obtains a list of T-Clusters, each
of which can be visualized by means of an underlying entail
query that selects the trajectories belonging to the T-Cluster.
Figure 17(right) shows how the most popular clusters high-
light the main routes used by drivers to leave the center toward
NE.

In order to assess the validity of the discovered clusters,
we need to check if they reflect episodic events of the spe-
cific weekday analyzed, or whether the clusters systemati-
cally repeat during the observation period. To this aim, we
need to measure how the population of the clusters distrib-
utes on the days of the week, and this task can be accom-
plished using the clustering-by-sampling process illustrated
in Sec. 4.1. For each day from Sunday, April 1st through
Saturday, April 7, we classified each trajectory as either a
member of one of the discovered clusters or noise accord-

ing to its distance from a cluster prototype. Figure 18 shows
how the distribution of the estimated population of the three
clusters varies during the week. The figure highlights that
clusters 0 and 3 are stable over the entire week, while the
most popular cluster 2 (green) is stable over weekdays only,
suggesting that it is composed mainly by outbound commut-
ers who travel during working days.

The next question is to determine if the commuters of clus-
ter 2 travel from home to work or vice versa. The answer is
obtained by analyzing the temporal distribution of the trips of
the cluster over the hours of a weekday (see Fig. 19(center)).

5.2 Accessibility to key mobility attractors

To understand how users access big mobility attractors, we
focus on the travels ending in the most crowded parking lots
of the city. A T-O/D Matrix between the entire city as origin
and the individual parking lots as destinations can be con-
structed, to the purpose of selecting the highest flux toward
the top accessed parking lot with its associated trajectories.
The following queries perform this task, yielding the visual-
ization of Fig. 20(left).

CREATE MODEL ParkODMatrix AS MINE ODMATRIX
FROM (SELECT t.id, t.trajectory FROM
TrajectoryTable t),
(SELECT orig.id, orig.area FROM
MunicipalityTable orig
WHERE orig.id = Milan),

(SELECT dest.id, dest.area FROM
ParkingLotTable dest)

CREATE RELATION TopParkTrajectories USING ENTAIL
FROM (SELECT t.id, t.trajectory FROM
TrajectoryTable t,

ParkODMatrix m
WHERE m.weight = MAX(m.weight))

The Linate airport parking lot emerges as the top destina-
tion. Figure 20 shows the set of trajectories that start in Milan
and end in the airport parking lot. It is evident that vehicles
start from a broad diversity of locations, but converge toward
the parking lot. Our goal is to characterize the typical behav-

Fig. 19 Temporal distribution of the trajectories in the clusters of
Fig. 17(right) on the hours of weekdays. Cluster 0 and Cluster 3 (left,
right) do not exhibit significant peaks, while cluster 2 (center) has a
peak in the morning and one in the afternoon. The temporal profile of

Cluster 2 captures two commuting behaviors: a group leaving the city
in the morning (commuters going to work outside), and a larger group
leaving the city in the late afternoon (commuters coming back home in
the suburbs after work)
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Fig. 20 Accessibility to parking lots. Left Asymmetric T-O/D Matrix
from Milan (origin) toward parking lots (destinations). The highest
fluxes to parking lots are highlighted by adjusting the frequency thresh-
old slide bar (bottom left). The biggest attractor is parking lot 317 (Linate

airport). Right Travels (red) from Milan to the Linate airport parking
lot, and summary of associated T-Patterns (blue), characterizing how
the travels approach the final destination

Fig. 21 Most significant T-Patterns for traffic directed to Linate airport: from the city center (left), from north ring (center), from south ring (right)
Transition times are reported in the insets

iors of vehicles when approaching the attractor, a task that
cannot be directly addressed by T-Clustering, due to fact that
travels follow similar routes only in their final parts (whose
length is not known a priori). An effective way to detect
frequent segments of trips that are followed by a significant
volume of vehicles is T-Pattern mining. The following model
constructor query realizes this task, generating the T-Patterns
supported by at least 5% of the travels to Linate (parameters
are chosen following the methodology of Sect. 4.3).

CREATE MODEL LinateTPatterns AS MINE T-PATTERN
FROM (SELECT t.id, t.trajectory FROM
TopParkTrajectories t)

SET T-PATTERN.side = 50 AND T-PATTERN.time = 900
AND T-PATTERN.support = 0.05

Figure 20(right) is a visual summary of the discovered
T-Patterns, which allow us to characterize the three main
routes to approach the attractor, together with the different
travel times. Figure 21 focuses on the three most frequent
T-Patterns. Observe how the T-Patterns approaching the air-

port from north are longer than those from south, highlighting
that the northern travels tend to concentrate on the outer ring
earlier than the southern travels, which instead use a small
segment of the ring. This behavior suggests the presence of
more alternative routes to get in the proximity of the airport
from south and city center than from north.

5.3 Extraordinary events

Extraordinary events have large impact on mobility. Big ren-
dezvous, such as concerts and sport competitions, set the
destination of many individual trips toward a small area (the
event location), where many people concentrate for the event
duration. At the end of the event, the same area is the origin of
many return trips. Even if not known a priori, big events can
be easily detected by localizing exceptionally high concen-
trations of presence in specific areas at specific time intervals.
Density maps for stationary cars, analogous to the maps of
Fig. 6 for density of moving cars, can be used for visual
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Fig. 22 Distribution of presence on Tuesday, April 3rd, in three con-
tiguous time slots of 2 h: (left) from 6 pm to 8 pm, (center) from 8 pm
to 10 pm, (right) from 10 pm to midnight. An evident hot (red) spot

emerges between 8 pm and 10 pm, and disappears afterwards. The loca-
tion (immediate west of city center) is that of Stadio Meazza, the main
soccer arena

exploratory analysis of abnormal concentration of presence.
The following query creates the presence density maps for
the intervals and spatial cells defined by the tables Interval-
Table and GridTable. In our analysis, we use a 0.5 km ×
0.5 km grid and compute, for each grid cell and for every
interval of two hours of each day, the number of cars that are
stationary in the cell.

CREATE RELATION PresenceTable Map USING INTERSECT
FROM (SELECT stop.id, stop.trajectory FROM
PresenceTable stop),
(SELECT i.id AS iid, i.interval FROM
IntervalTable i)

(SELECT g.id AS gid, g.area FROM
GridTable g)

CREATE TABLE PresenceMap AS
SELECT pt.iid, pt.gid, count(*)
FROM PresenceTable pt
GROUP BY pt.iid,pt.gid

The result obtained from Milano2007 is shown in Fig. 22.
The location of the hot spot—the main soccer arena and
surrounding parking areas—suggests that a big sport event
occurred in such location. It’s easy to check that a quarter-
final match of the UEFA Champions League took place in
the exact location and time, attended by ≈77,700 specta-
tors.4 The same result is obtained automatically, by a query
that selects every cell C and time interval h (8–10 pm in our
case) such that the population of cell C during h is above the
90th percentile in the distribution of the population of (C, h)

over the entire observation period.
The next step is the analysis of the trips associated with

the detected event, i.e., when and how attendees reached and
left the event location. First, the arrival and departure time
of the each car v parked in the arena area during the day is
approximated considering, respectively, the ending point of
the incoming trajectory and the starting point of the outgo-
ing trajectory of v. The distribution of arrivals and departures

4 Milan A.C. versus Bayern Munich, source http://en.wikipedia.org/
wiki/UEFA_Champions_League_2006-2007.

during the day is depicted in Fig. 23(left). We further analyze
the return travels of the attendees after the match, in order to
detect the main escape routes. We apply T-Clustering to the
trajectories leaving the arena area between 10pm and 00am,
obtaining the T-Clusters shown in Fig. 23. The detected
escape routes are relevant information for a mobility manager
to enact countermeasures to prevent possible congestion.

5.4 Mobility prediction

The prediction of traffic congestions represent a challeng-
ing task for urban mobility managers. The following exper-
iments are aimed at showing how to exploit M-Atlas to pre-
dict future areas of dense traffic, which may lead to traf-
fic congestions. The T-PTree tool has been used to predict
the location of areas particularly dense of trajectories. We
run this experiment on the Pisa2010 data set which covers
a larger area and a longer temporal interval compared with
Milan2007 data set. This is particularly useful in prediction
tasks since the training and test phases use a richer data set.
In fact, the longer temporal duration allows to use a coarse
granularity for the prediction (e.g., the training set include
several days and can be tested on a larger temporal inter-
val). Here, we selected a subset of the entire Pisa2010 data
set which includes trajectories from 5 working days (from
Monday July 5th to Friday July 9) restricted to the morn-
ing peak hours (8–10 am). This selection resulted in about
10,000 trajectories for the training set. Then, we selected, as
test set, the trajectories of Monday July 12th (in the same
temporal interval) leading to a total of around 4,000 trajec-
tories. From them, the algorithm was able to predict the next
location of about 3,000 trajectories focused on 29 regions.
Five of them contain more than 150 trajectories. Scaled
to the global number of circulating vehicles (see Sect. 2),
this corresponds to about 7,500 vehicles predicted to con-
verge to these areas in the two-hours interval. The M-Atlas
query is:
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Fig. 23 Top-left Temporal distribution of arrivals to and bottom-left
departures from the arena area: arrivals peak from 5 pm to 8 pm, and
departures peak from 10 pm to midnight. Arrivals are spread over sev-
eral hours, while departures occur soon after the end of the match.

Right Clusters of trips leaving the arena after the football match. The
largest clusters perform short range trips (blue) or take the road ring,
either NE (green) or SE (red)

Fig. 24 Distribution of
presence: with predicted
trajectories (left), with the real
trajectories (right). As an overall
overview, we note that the
locations of darker areas
reasonably correspond in both
pictures. However, we can
observe that the ground truth
areas appear larger then the
predicted and this is due to the
way the T-PTree uses the
regions extracted by means of
T-Pattern algorithm

CREATE TRANSFORMATION PredictionsTable USING PREDICTOR
FROM (Select t.id, t.object from TrajectoryTable t)
SET PREDICTOR.T-PATTERN_TABLE = TpatternTable AND

PREDICTOR.TH_S = 10 AND
PREDICTOR.TH_T = 3600 AND
PREDICTOR.TOLERANCE = 1000

Figure 24 reports the results of the prediction compared
with the ground truth obtained by computing the density map
of the trajectories moving during the predicted period.

It is worth pointing out that the interpretation of the pre-
dicted zones suggests further deeper analysis. Indeed, the
dense regions does not necessarily indicate traffic problems
in that areas. These regions represent dense movement of
cars, which can hint the possibility of traffic jams or conges-
tions. Further analysis, focussed on these specific areas, are
needed to have a more precise indication of possible traffic
problems.

5.5 Traffic jams detection

This experiment is aimed at finding the possible traffic jams
that occurred in the monitored area. We considered as traf-
fic jam a group of cars moving close together slowly for a
certain amount of time. We experimented the use of T-Flock
to find cars moving together thus detecting possible traffic
jams selecting the slow flocks. Similar to the previous experi-
ment, we use the Pisa2010 data set which is richer in terms of
number of trajectories and larger in the spatial and temporal
extent.

We run the T-Flock algorithm on M-Atlas using the fol-
lowing query:

CREATE MODEL flock_table AS MINE FLOCK
FROM (SELECT t.id, t.object FROM TrajectoryTable t)

SET FLOCK.TIME_GRANULARITY = 60 AND
FLOCK.RADIUS = 500 AND
FLOCK.MIN_POINTS = 3 ANS
FLOCK.MIN_TIME_SLICES = 4
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Fig. 25 The results of T-Flock
from Pisa2010 data set. 13
Flocks found in a highway near
the city of Pontedera, the
average speed of each flock
ranges from 15 to 37 km/h and
the temporal duration of each
flock ranges from 3 to 10 min
(left). 4 flocks found at the
tollhouse of the highway close
to the city of Pisa, the average
speed of flocks vary from 16 to
24 km/h with a duration of
3 min (right)
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Fig. 26 M-Atlas system architecture. A query is submitted through
the graphical interface to the Controller module, which coordinates the
tasks performed by all other modules. The Language Parser analyzes
the input query. Standard SQL queries are directly sent to the Data-
base Manager and executed by the Object-Relational DBMS. All other
M-Atlas queries are translated by the Language Parser into an execu-

tion plan, which combines both DB queries and calls to the methods
provided by the Algorithm Manager. The results of a query is stored
into the ORDBMS and possibly displayed, through the Controller, by
the Graphical User Interface. The pins represent the modules which
can be extended by the plug-in system

We found several flocks, some of them are depicted in
Fig. 25. Most of the found flocks have three members. How-
ever, we have to recall that the number of trajectories belong-
ing to a flock should be reported to a global scale (see Sect. 2)
to have a measure of the real size of the car group. For exam-
ple, a flock of three vehicles can be estimated as a group of
about 150 cars at the global scale.

These results suggest that some traffic jams occurred in
these areas, since the average velocity of the flocks is much
less the normal speed in the roads where the flocks are located
(highways, in this specific case). When several flocks are
found in the same location, as in the case of the Pontedera
area, this may indicate that these locations are usually inter-
ested by traffic congestions.

6 System architecture and performance evaluation

The architecture of M-Atlas is composed of two main com-
ponents: the Graphical User Interface, supporting the visual
analytic process, and the M-Atlas Engine, providing the full
power of the data mining query language (see Fig. 26).

The architecture has been designed as a plug-in environ-
ment, where new models and patterns can be easily added,
together with their mining algorithms. Extending the sys-
tem requires four steps: (i) the new model/pattern type is
introduced in the DB; (ii) the Translation Library of the DB
Manager is extended with the access methods for the new
type; (iii) the mining method associated with the new type
is added to the Constructor Library; and (iv) the spatio-tem-
poral primitives associated with the new type are added to
the Relation Library. M-Atlas is being continuously extended
with new functionalities; examples of system extensions are
presented in [39]. A basic requirement for the architecture is
minimizing memory usage during query execution. To this
purpose, query results are managed, as far as possible, by
reference in streaming fashion, i.e., by processing iteratively
one set of rows of fixed size at a time, both during load-
ing and storing. However, the system adapts to the memory
policy of the various mining algorithms. Therefore, the mem-
ory consumption of most M-Atlas queries is constant, with
the remarkable exception of the mining algorithms, which
require multiple passes over data. While time complexity
of the various mining methods is reported in Sect. 3.3, we
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Fig. 27 Total execution time (in seconds) of model constructor que-
ries for T-Patterns, T-Clustering, T-Flocks and T-O/D Matrix. Different
colors of each bar indicate the fraction of time taken by: data retrieval

and preparation (blue), mining algorithm execution (red), model storage
(green), and post-processing for visualization (purple)

report here an empirical evaluation of the performance of sys-
tem, to assess the real scalability of the execution time of the
various model constructor queries. Figure 27 shows the run-
time for each model constructor query execution (in seconds).
Each chart is obtained as the average of 10 experiments, each
repeated on 13 input trajectory data sets of increasing size
and equal average trajectory length. In every case, perfor-
mance scales in accordance with the theoretical complexity,
indicating that the overhead introduced by the system is not
predominant. This is confirmed by the observation that most
of time is taken by the execution of the mining algorithm.

7 Related literature review

The theoretical model at the basis of M-Atlas is called Two-
Worlds [40], and it has been inspired by the inductive data-
base vision proposed by Mannila in [12]. Here, the main idea
is that the results of the mining process, the models or pat-
terns, are materialized in the database for further analysis.
The Two-Worlds model is also inspired by the Three-Worlds
model proposed in [23]. In this model, the Data World
(representing the data to be mined) and the Models
World (representing the extracted patterns) are linked by
relations which connect Data to Patterns (representing the
mining process) and Patterns to Data (representing the data
belonging to the extracted model). The common aspect of
these approaches is that there is a need to model the min-
ing results at the same level as data objects to manipulate
them further. The Two-Worlds theoretical framework and
the associated query language are detailed in [40]. Based

on this theoretical framework, M-Atlas is the result of the
extension and the proper integration of several components
presented separately in other works. The core of the M-Atlas
architecture has its ancestor in Daedalus [33], evolved in
the GeoPKDD system [30] along the duration of the Geo-
PKDD project. Daedalus was a first prototype of a system
based on the Two-Worlds model for progressive querying
and mining trajectory data; GeoPKDD system was an engi-
neered version where we ran preliminary experiments on
mobility data. However, the present work enhances previ-
ous prototypes considerably in several aspects. First of all,
in M-Atlas a new language grammar has been defined and
implemented, thus giving more expressive power in defining
the mining queries. Moreover, an enhanced architecture has
been designed with the objective of improving efficiency in
the queries computation. Furthermore, Daedalus and Geo-
PKDD were built on top of the Hermes moving object data-
base [34], while M-Atlas is based on PostGIS [38], extended
with functions to manipulate trajectories. Another improve-
ment is in the number of both data mining algorithms that
are now plugged into the system and new ad hoc tools for
trajectory statistics (such as the T-O/DMatrix tool). Finally,
M-Atlas provides an improved graphical user interface where
the query language is hidden to the user who may interact
with the system by using visual metaphors. Other systems
have been proposed in the literature to support the knowl-
edge discovery process. Among them, it is worth mention-
ing the ATLaS system proposed by Zaniolo et al. in [44].
This system introduced a new programming language as a
Turing-complete extension of SQL for mining operations.
However, the two systems differ in several aspects. First of
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all, M-Atlas is specialized for trajectory data, while ATLaS
is targeted to relational case. Secondly, ATLaS requires that
mining algorithms are programmed directly using the inter-
nal language—thus, it is likely they become extremely com-
plex, whereas M-Atlas allows an easy plug-in of mining
algorithms and a query language to call them. An environ-
ment that shares with M-Atlas the objective of supporting
the knowledge discovery form trajectory data is MoveMine
introduced in [26] where authors realized a system that con-
nects different trajectory mining algorithms. The main added
value of M-Atlas respect to MoveMine is that M-Atlas is
not only a platform for connecting different mining tools,
but it is based on a theoretical framework where data and
models mined from different algorithms may be manipu-
lated and combined together. Furthermore, M-Atlas offers a
data mining query language where progressive and interac-
tive knowledge discovery processes can be defined. Another
recent and interesting project related to mobility data mining
is GeoLife [15]. It aims at building a sort of location-based
social network considering the typical mobility experiences
of the users. The construction of the social network is based
on efficient retrieval of similar trajectories [10], on spatio-
temporal data mining algorithms [46] and a recommender
system [35]. The framework thus is more oriented to a direct
interaction between the GeoLife systems and the end-user
who may query directly his mobile devices. Moreover, the
GeoLife tools do not furnish an advance methodology for
traffic analysis, as M-Atlas. Instead, GeoLife techniques are
mainly focussed to a mobile user that may query the pro-
vided system for directions or suggestions. In fact, the envis-
aged scenario for GeoLife is to provide a set of services
accessible through the mobile user portable device. On the
contrary, M-Atlas provides a platform and a methodology
for movement analysis more addressed to a traffic analyst.
A complementary research direction, related to the analysis
of huge quantity of movement data, comes from the field of
networks science. The main difference between the network
science methods and the data mining relies in the fact that
complex networks mainly analysis data from a global point
of view, trying to find some general law that represent the
movement. On the other hand, the data mining community
is interested in finding local behaviors and patterns extracted
from the data. The first proxy of human mobility used in this
area was the data from a popular banknote tracking web site
[9]. Later, large data sets of mobile phone call records were
analyzed, to the purpose of discovering and validating the
macro-level laws of human mobility, such as the law gov-
erning the distribution of traveled distances [19,36]. Appli-
cations of these findings concern the spreading patterns of
phone viruses [45] and the analysis of the entropy and pre-
dictability of human mobility [37]. Compared with the work
reported in this paper, network scientists did not address so
far the problem of finding mobility patterns, or clusters, con-

cerning subgroups of people or travels that exhibit specific
behavior or deviate from typical behavior. Also, the GPS data
sets studied in our paper, albeit smaller than typical phone
call record data sets, is unique in its ability to represent trav-
els, at the urban scale, with extremely fine spatio-temporal
resolution.

8 Conclusions

We shared, in this paper, the lesson learned in our multi-year
project on mobility data mining. In a nutshell, massive data
sets of human trajectories are indeed a powerful basis for
understanding mobility patterns at society-wide scale, pro-
vided that the complex analytical process needed to trans-
form such raw data into high-level knowledge is adequately
supported. We designed our querying and mining language
and system M-Atlas precisely as the platform for the mobil-
ity knowledge discovery process and showed in this paper
how it enables to answer challenging questions posed by the
analysts of movement behavior.

Other important facets of M-Atlas have not been discussed
in this paper, including (i) the privacy-preserving data pub-
lishing and mining techniques designed to transform trajec-
tory data sets into anonymous forms in such a way that
strong privacy-protection guarantees can coexist with high
data utility [1,2,28]; (ii) the semantic annotation and inter-
pretation of trajectory data and patterns with reference to
domain ontologies specifying the background knowledge in
particular contexts [7]; (iii) the analysis of different forms
of mobility data, such as mobile phone call records, char-
acterized by complementary weaknesses and strengths with
respect to GPS trajectories [32].

Finally, many fascinating directions remain open for
further research. One is the neverending quest for richer
semantics in mobility data, sustained by the enhanced sens-
ing capabilities of smart phones and next-generation mobile
devices. Novel mining models and techniques are needed
for semantic trajectories and associated background infor-
mation, such as the underlying road network where move-
ments take place. A second aspect is the emergence of data
capturing not only movement but also the social relations
between people, such as the mobile phone call records that
allow to reconstruct, besides trajectories, also the “who-
calls-whom” social network. Another example are the partic-
ipatory location-based social networks, such as Gowalla and
Foursquare. These data allow to begin studying the inter-
play between mobility patterns and the structure of social
ties (see, e.g., [43]), and call for challenging extensions of
our mining and querying framework. A third aspect is sim-
ulation: once the mobility patterns and profiles of a whole
population have been learned (see, e.g., [41]), it is natural
to investigate how to build on this basis large-scale simu-
lations, capable of predicting realistic evolutions of com-
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plex social phenomena. As a final direction, we observe that
mobility data are huge and come in a streaming fashion, so it
is urgent to scale M-Atlas accordingly, overcoming the limi-
tations of current spatio-temporal database systems. We need
to create the equivalent of the trajectory database underlying
M-Atlas in the cloud, with appropriate map-reduce primitives
for mobility data mining.
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