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Abstract The previous decade has brought a remarkable increase of the interest
in applications that deal with querying and mining of time series data. Many of
the research efforts in this context have focused on introducing new representation
methods for dimensionality reduction or novel similarity measures for the underly-
ing data. In the vast majority of cases, each individual work introducing a particular
method has made specific claims and, aside from the occasional theoretical justifica-
tions, provided quantitative experimental observations. However, for the most part,
the comparative aspects of these experiments were too narrowly focused on demon-
strating the benefits of the proposed methods over some of the previously introduced
ones. In order to provide a comprehensive validation, we conducted an extensive
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experimental study re-implementing eight different time series representations and
nine similarity measures and their variants, and testing their effectiveness on 38 time
series data sets from a wide variety of application domains. In this article, we give
an overview of these different techniques and present our comparative experimental
findings regarding their effectiveness. In addition to providing a unified validation of
some of the existing achievements, our experiments also indicate that, in some cases,
certain claims in the literature may be unduly optimistic.

Keywords Time series - Representation - Distance measure -
Experimental comparison

1 Introduction

Time series data are being generated at an unprecedented scale and rate from almost
every application domain, e.g., daily fluctuations of stock market, traces of dynamic
processes and scientific experiments, medical and biological experimental observa-
tions, various readings obtained from sensor networks, position updates of moving
objects in location-based services, etc. As a consequence, in the last decade there has
been a dramatically increasing amount of interest in querying and mining such data
which, in turn, resulted in a large amount of work introducing new methodologies for
indexing, classification, clustering and approximation of time series (Faloutsos et al.
1994; Han and Kamber 2005; Keogh 2006).

Two main goals of managing time series data are the effectiveness and the efficiency,
and the two key aspects towards achieving them are: (1) representation methods, and
(2) similarity measures. Time series are essentially high dimensional data (Han and
Kamber 2005) and working directly with such data in its raw format is very expensive
in terms of both processing and storage cost. It is thus highly desirable to develop
representation techniques that can reduce the dimensionality of time series, while still
preserving the fundamental characteristics of a particular data set. In addition, unlike
canonical data types, e.g., nominal/categorical or ordinal variables (Olofsson 2005),
where the distance definition between two values is usually fairly straightforward,
the distance between time series needs to be carefully defined in order to properly
capture the semantics and reflect the underlying (dis)similarity of such data. This is
particularly desirable for similarity-based retrieval, classification, clustering and other
querying and mining tasks over time series data (Han and Kamber 2005).

Many techniques have been proposed for representing time series with reduced
dimensionality, for example: Discrete Fourier Transformation (DFT) (Faloutsos
et al. 1994), Single Value Decomposition (SVD) (Faloutsos et al. 1994), Discrete
Cosine Transformation (DCT) (Korn et al. 1997), Discrete Wavelet Transformation
(DWT) (Chan and Fu 1999), Piecewise Aggregate Approximation (PAA) (Keogh et al.
2001b), Adaptive Piecewise Constant Approximation (APCA) (Keogh et al. 2001a),
Chebyshev polynomials (CHEB) (Cai and Ng 2004), Symbolic Aggregate approX-
imation (SAX) (Lin et al. 2007) and Indexable Piecewise Linear Approximation
(IPLA) (Chen et al. 2007a). In conjunction with these techniques, there are over a
dozen distance measures used for evaluating similarity of time series presented in
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the literature, e.g., Euclidean distance (ED) (Faloutsos et al. 1994), Dynamic Time
Warping (DTW) (Berndt and Clifford 1994; Keogh and Ratanamahatana 2005),
distance based on Longest Common Subsequence (LCSS) (Vlachos et al. 2002), Edit
Distance with Real Penalty (ERP) (Chen and Ng 2004), Edit Distance on Real sequence
(EDR) (Chen et al. 2005a), DISSIM (Frentzos et al. 2007), Sequence Weighted Align-
ment model (Swale) (Morse and Patel 2007), Spatial Assembling Distance (SpADe)
(Chen et al. 2007b) and similarity search based on Threshold Queries (TQuUEST)
(ABfalg et al. 2006). Quite a few of these works, as well as some of their extensions,
have been widely cited in the literature and applied to facilitate query processing and
data mining of time series data.

Given the multitude of competitive techniques, we believe that there is a strong
need for a comprehensive comparison which, in addition to providing a foundation
for benchmarks, may also reveal certain omissions in the comparative observations
reported in the individual works. In the common case, every newly-introduced repre-
sentation method or distance measure has claimed a particular superiority over some
of the existing results. However, it has been demonstrated that some empirical eval-
uations may have been inadequate (Keogh and Kasetty 2003) and, worse yet, some
of the results may be contradictory. For example, one paper shows the result that
“wavelets outperform the DFT” (Popivanov and Miller 2002), another suggests that
“DFT filtering performance is superior to DWT” (Kawagoe and Ueda 2002) and yet
another shows the result: “DFT-based and DWT-based techniques yield comparable
results” (Wu et al. 2000). Clearly, not all of these experimental results can general-
ize simultaneously. An important consequence of this observation is that there is a
risk that such (or similar) results may not only cause a confusion to newcomers and
practitioners in the field, but also cause a waste of time and research efforts due to
assumptions based on results that do not generalize.

Motivated by these observations, we have conducted the most extensive set of time
series experiments to-date, re-evaluating the state-of-the-art representation methods
and similarity measures for time series that appeared in high quality conferences and
journals. Specifically, as the main contributions of this work, we have:

— Re-implemented 8 different representation methods for time series, and compared
their pruning power over various time series data sets.

— Re-implemented 9 different similarity measures and their variants, and compared
their effectiveness using 38 real world data sets from highly diverse application
domains.

— Provided certain analysis and conclusions based on the experimental observations.

We note that all of our source code implementations and the data sets are publicly
available on our website (http://www.ece.northwestern.edu/~hdil17/tsim.htm).

The rest of this paper is organized as follows. Section 2 reviews the concept of time
series, and gives an overview of the definitions of different representation techniques
and similarity measures investigated in this work. Sections 3 and 4 present the main
contribution of this work—the results of the extensive experimental evaluations of
different representation methods and similarity measures, respectively. In Sect. 5, we
summarize some of the myths and possible misunderstandings about DTW. Section 6
concludes the paper and discusses possible future extensions of the work.
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2 Preliminaries

Typically, most of the existing works on time series assume that time is discrete.
For simplicity and without any loss of generality, we make the same assumption here.
Formally, a time series datais defined as asequence of pairs T = [(p1, t1), (P2, 12), - - -,
(pisti)y o, (Pust)l(t] <t < --- <t; <--- <t,), where each p; is a data point in
a d-dimensional data space, and each #; is the time stamp at which the corresponding
pi occurs.! If the sampling rates of two time series are the same, one can omit the time
stamps and consider them as sequences of d-dimensional data points. Such a sequence
is called the raw representation of the time series. In reality however, sampling rates
of time series may be different. Furthermore, some data points of time series may be
dampened by noise or even completely missing, which poses additional challenges
to the processing of such data. For a given time series, its number of data points 7 is
called its length. The portion of a time series between two points p; and p; (inclusive)
is called a segment and is denoted as s;;. In particular, the segment s;(;11) between
two consecutive points is called a line segment.

In the following subsections, we briefly review the representation methods and
similarity measures studied in this work. We note that this is not intended to be a com-
plete survey of the available techniques and is only intended to provide the necessary
background for following and understanding our experimental evaluations.

2.1 Representation methods for time series

There is a plethora of time series representation methods, each of them proposed for
the purpose of supporting similarity search and data mining tasks.

A classification of the major techniques, organized in a hierarchical manner, is
shown in Fig. 1.

As illustrated, there are two basic categories:

— Data Adaptive representations: in this category, a common representation will be
chosen for all items in the database that minimizes the global reconstruction error.

— Non-Data Adaptive representations: in contrast, these methods consider local prop-
erties of the data, and construct an approximate representation accordingly.

For example, Adaptive Piecewise Constant Approximation (APCA, an adaptive
technique) transforms each time series by a set of constant value segments of varying
lengths such that their individual reconstruction errors are minimal. On the other hand,
Piecewise Aggregate Approximation (PAA, a non-adaptive technique), approximates
a time series by dividing it into equal-length segments and recording the mean value
of the datapoints that fall within the segment. This representation does not adapt to
each individual data item thus is less efficient than the adaptive representation.

The representations annotated with an asterisk («) in Fig. 1 have the very desirable
property of allowing lower bounding. This property, essentially, allows one to define a

1 We do not differentiate between the fime of occurrence and the time of detection of a particular event in
this work (Bennet and Galton 2004) or, to phrase it in a different context—we do not distinguish the valid
time from the transaction time (Tansel et al. 1993).
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¢ Data Adaptive
oPiecewise Polynomials
= Interpolation*
= Regression
o Adaptive Piecewise Constant Approximation (APCA) *
o Singular Value Decomposition (SVD) *
o Symbolic
* Natural Language
= Strings
* Non-Lower Bounding
* Symbolic Aggregate approXimation (SAX)
¢ Clipped Data*

*

oTrees
* Non-Data Adaptive

o Wavelets*

o Random Mappings

o Spectral
= Discrete Fourier Transformation (DFT) *
= Discrete Cosine Transformation (DCT) *
= Chebyshev Polynomials (CHEB) *

o Piecewise Aggregate Approximation (PAA) *

Fig. 1 A hierarchy of representation methods

distance measure that can be applied to the reduced-size (i.e., compressed) representa-
tions of the corresponding time series, that is guaranteed to be less than or equal to the
true distance which is measured on the raw data. The main benefit of the lower bound-
ing property is that it allows using the respective reduced-size representations to index
the data, with a guarantee of no false negatives (Faloutsos et al. 1994). The list of rep-
resentations considered in this study includes (in approximate order of introduction)
DFT, DCT, DWT, PAA, APCA, SAX, CHEB and IPLA. The only lower bounding
omissions from our experiments below are the eigenvalue analysis techniques such as
SVD and PCA (Korn et al. 1997). While such techniques give optimal linear dimen-
sionality reduction, we believe they are untenable for large data sets. For example,
while (Steinbach et al. 2003) notes that they can transform 70000 time series in under
10min, the assumption is that the data is memory resident. However, transforming
out-of-core (disk resident) data sets using these methods becomes unfeasible. Note
that the available literature seems to agree with us on this point. For (at least) DFT,
DWT and PAA, there are more than a dozen projects that use these representations
to index over 100,000 objects for query-by-humming (Zhu and Shasha 2003; Karydis
et al. 2005), Mo-Cap indexing (Cardle 2004), etc. At the time of writing this article,
however, we are unaware of any projects of a similar scale that use SVD.

2.2 Similarity measures for time series

We now give an overview of the 9 similarity measures evaluated in this work which,
for convenience, are summarized in Fig. 2.

Given two time series 77 and 7>, a similarity function Dist calculates the distance
between the two time series, denoted by Dist (T, T2). In the following we will refer
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e Lock-step Measure
o Ly-norms
=  L4-norm (Manhattan Distance)
= L,-norm (Euclidean Distance)
= Li,-norm
o DISSIM
e Elastic Measure
o  Dynamic Time Warping (DTW)
o Edit distance based measure
=  Longest Common SubSequence (LCSS)
= Edit Sequence on Real Sequence (EDR)
= Swale
=  Edit Distance with Real Penalty (ERP)
e  Threshold-based Measure
o  Threshold query based similarity search (TQUEST)
e  Pattern-based Measure
o  Spatial Assembling Distance (SpADe)

Fig. 2 A summary of similarity measures

Fig. 3 Anillustration of a Lock
Step measure. Note the
“one-to-one” mapping of data
points. The distance measure is
proportional to the length of the
gray lines

Mantled Howler Monkey

Alouatta palliata

Lock Step
Measure

Red Howler Monkey
Alouatta seniculus seniculus

to distance measures that compare the ith point of one time series to the ith point
of another as lock-step measures (e.g., Euclidean distance and the other Lp norms),
and distance measures that allow comparison of one-to-many points (e.g., DTW) and
one-to-many/one-to-none points (e.g., LCSS) as elastic measures. Figures 3 through 6
provide illustrations of the corresponding intuitions behind the major classes of dis-
tance measures. Note that in every case, the two time series are shown shifted apart in
the y-axis for visual clarity, however they would typically be normalized and therefore
overlapping (Keogh and Kasetty 2003). Figure 3 shows the intuition behind Lock Step
measures, a class which includes the ubiquitous Euclidean distance.

The most straightforward similarity measure for time series is the Euclidean
Distance (Faloutsos et al. 1994), along with its variants based on the common
Ly-norms (Yi and Faloutsos 2000). In particular, in this work we used L;
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Fig. 4 An illustration of Elastic
measure. Note that unlike Lock
Step measures, here we allow
the possibility of “one-to-many”
mapping of the data points, but
each data point must be
matched. The distance measure
is proportional to the length of
the gray lines

Lowland Gorilla
Gorilla gorilla graueri

Elastic
Measure

Mountain Gorilla
Gorilla gorilla beringei

(Manhattan), L, (Euclidean) and L., (Maximum) norms (cf. Yi and Faloutsos 2000).
In the sequel, the terms Euclidean distance and L, norm will be used interchangeably.
In addition to being relatively straightforward for intuitive understanding, the Euclid-
ean distance and its variants have several other advantages. An important one is that
the complexity of evaluating these measures is linear to the length of the time serieses,
and they are easy to implement and indexable with any access method and, in addition,
they are parameter-free. Furthermore, as we will demonstrate, the Euclidean distance
is surprisingly competitive with the other, more complex approaches, especially if
the size of the training set/database is relatively large. However, since the mapping
between the points of two time series is fixed, these distance measures are very sensi-
tive to noise and misalignments in time, and are unable to handle local time shifting,
i.e., similar segments that are out of phase.

The DISSIM distance (Frentzos et al. 2007) aims at computing the similarity of
time series with different sampling rates. However, the original similarity function
is numerically too difficult to compute, and the authors proposed an approximated
distance with a formula for computing the error bound.

Inspired by the need to handle time warping in similarity computation, Berndt and
Clifford (Berndt and Clifford 1994) introduced DTW, a classical speech recognition
tool, to the data mining community, in order to allow a time series to be “stretched” or
“compressed” to provide a better match with another time series. Figure 4 illustrates
the intuition behind DTW and other elastic measures.

Several lower bounding measures have been introduced to speed up similarity
search using DTW (Yietal. 1998; Kim et al. 2001; Keogh 2002; Keogh and Ratanama-
hatana 2005), and it has been shown that the amortized cost for computing DTW on
large data sets is linear (Keogh 2002; Keogh and Ratanamahatana 2005). The original
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Fig. 5 An illustration of an
Editing measure. Note that,
similarly to the elastic measures,
we allow the possibility of
“one-to-many” mapping of the
data points. However in
addition, we also allow the
possibility of not matching some
(one or more) points. The
distance measure is proportional
to the length of the gray lines

Modern Human

This region will not be matched Homo sapiens

Editing
Measure

Skhul V

DTW distance is also parameter free, however, as has been reported in Keogh and
Ratanamahatana (2005), Vlachos et al. (2006) enforcing a temporal constraint § on
the warping window size of DTW not only improves its computation efficiency, but
also improves its accuracy for measuring time series similarity, as extended warping
may introduce pathological matchings between two time series and distort the true
similarity. The constraint warping is also utilized for developing the lower-bounding
distance (Keogh and Ratanamahatana 2005) as well as for indexing time series based
on DTW (Vlachos et al. 2006).

Another group of similarity measures for time series has been developed based
on the concept of the edit distance for strings. The main intuition behind the Editing
measures is visualized in Fig. 5.

The best known example from this category is the LCSS distance, which is based
on the longest common subsequence model (André-Jonsson and Badal 1997; Vlachos
et al. 2002). To adapt the concepts used in matching characters and strings in the set-
tings of time series, a threshold parameter ¢ was introduced, the semantics of which
is that two points from two time series are considered to match if their distance is less
than ¢. The work reported in Vlachos et al. (2002) also took into consideration an
additional constraint—the matching of points along the temporal dimension, using a
so called warping threshold §. A lower-bounding measure and indexing technique for
LCSS were introduced in Vlachos et al. (2006).

EDR (Chen et al. 2005a) is another similarity measure based on the edit distance.
Similar to LCSS, EDR also uses a threshold parameter &, except its role is to quantify
the distance between a pair of points to 0 or 1. Unlike LCSS, EDR assigns penalties
to the gaps between two matched segments according to the lengths of the gaps.

The ERP distance (Chen and Ng 2004) attempts to combine the merits of both DTW
and EDR, by introducing the concept of a constant reference point for computing the
distance between gaps of two time series. Essentially, if the distance between two
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Fig. 6 An illustration of a
Threshold measure. The distance
measure is proportional to the
length of the double-headed
arrows

De Brazza monkey
(juvenile)

™, ‘ e

Threshold
Measure

De Brazza monkey

Cercopithecus neglectus

points is too large, ERP simply uses the distance value between one of those point and
the reference point.

Recently, a new approach for computing the edit distance based similarity measures
was proposed in Morse and Patel (2007). Whereas traditional tabular dynamic pro-
gramming was used for computing DTW, LCSS, EDR and ERP, a matching threshold
is used to divide the data space into grid cells and, subsequently, matching points
are found by hashing. An important feature of the similarity model Swale(cf. Morse
and Patel 2007) is that it rewards matching points and penalizes gaps. In addition to
the matching threshold ¢, Swale requires the tuning of two parameters: the matching
reward weight r and the gap penalty weight p.

The TQuEST distance (Affalg et al. 2000) introduced a rather novel approach to
computing the similarity measure between time series. The main idea behind TQuEST
is that, given a threshold parameter 7, a time series is transformed into a sequence of
so-called threshold-crossing time intervals, where the points within each time interval
have a value greater than t. Each time interval is then treated as a point in a two dimen-
sional space, where the starting time and ending time constitute the two dimensions.
The similarity between two time series is then defined as the Minkowski sum of the
two sequences of time interval points (Flato 2000). Figure 6 visually illustrates the
intuition behind the threshold measures.

The last approach considered in this work is SpADe (Chen et al. 2007b), which is
a pattern-based similarity measure for time series. The key idea behind the presented
algorithm is to find out matching segments within the entire time series, called pat-
terns, by allowing shifting and scaling in both the temporal and amplitude dimensions.
The problem of computing similarity value between time series is then transformed to
the one of finding the most similar set of matching patterns. SpADe requires tuning a
number of parameters, such as the temporal scale factor, amplitude scale factor, pattern
length, sliding step size, etc.
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3 Comparison of time series representations

We compare all the major time series representations that have been proposed in the
literature, including SAX, DFT, DWT, DCT, PAA, CHEB, APCA and IPLA. We note
that all the representation methods studied in this paper allow lower bounding, and
any of them can be used to index the Euclidean Distance, the Dynamic Time Warp-
ing, and at least some of the other elastic measures. While various subsets of these
representations have been compared before, to the best of our knowledge, this is the
first attempt to compare all of them together. One obvious question that needs to be
considered is what metric should should be used for comparison? We postulate that
the wall clock time is a poor choice, because it may be open to an implementation
bias (Keogh and Kasetty 2003). Instead, we believe that using the tightness of lower
bounds (TLB) is a very meaningful measure (Keogh et al. 2001b), and this also appears
to be the current consensus in the literature (Cai and Ng 2004; Chen and Ng 2004;
Chen et al. 2007a; Keogh 2002, 2006; Keogh et al. 2001a; Keogh and Ratanamahatana
2005; Ratanamahatana and Keogh 2005; Vlachos et al. 2006). Formally, given two
time series, T and S, the corresponding TLB is defined as

TLB = Lower Bound Dist (T, S)/True Euclidean Dist(T, S)

The advantage of using TLB is twofold:

1. Itis a completely implementation-free measure, independent of hardware and soft-
ware choices, and is therefore completely reproducible.
2. It allows a very accurate prediction of the indexing performance.

If the value of TLB is zero, then any indexing technique is condemned to retrieving
every single time series from the disk. On the other hand, if the value of TLB is one
then, after some trivial processing in main memory, we could simply retrieve a single
object from the disk and guarantee that we have obtained the true nearest neighbor.
Note that, in general, the speedup obtained is non-linear in TLB, that is to say, if one
representation has a lower bound that is twice as large as another, we can usually
expect a much greater than twofold decrease in the number of disk accesses.

As part of this work, we randomly sampled T and § (with replacement) 1, 000
times for each combination of parameters. We varied the time series length among
the values of {480, 960, 1,440, 1, 920}, as well as the number of coefficients per
time series available to the dimensionality reduction approach among the values of
{4, 6, 8, 10} (each coefficient takes 4 bytes). For SAX, we hard coded the cardinality
to 256. Figure 7 shows the result of one such experiment with an ECG data set.

At a first glance, the results of this experiment may appear surprising, as they
show that there is very little difference between representations, in spite of the appar-
ent results to the contrary in the literature. However, we believe that some of these
results may be due to some errors or bias in the experiments. For example, a recent
study showed that DFT is much worse than all the other approaches (Chen et al.
2007a), however it appears that the complex conjugate property of DFT was not
exploited. As another example, it was suggested that “it only takes 4 to 6 Chebyshev
coefficients to deliver the same pruning power produced by 20 APCA coefficients”
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TLB

& Number of

Length of time series  coefficients

Fig. 7 The tightness of lower bounds (TLB) for various time series representations on an ECG data set

SAX, DCT, ACPA, DFT, PAA/DWT, CHEB, IPLA

08
9 o
2 o
02
0 Sy -
S A = —=
§¢gs S
8 TS S o
8
6 ﬂ
foetal_ecg (excerpt) 4
0 200 400 & Number of
Length of time series coefficients

Fig. 8 The tightness of lower bounds (TLB) for various time series representations on a relatively bursty
data set (see inset)

& Number of

Length of time series coefficients

Fig. 9 The tightness of lower bounds (TLB) for various time series representations on a periodic data set
of tide levels

(Cai and Ng 2004), however this claim has since been withdrawn by the authors, who
explained it was due to a coding error (Ng 2006). Of course there are some variabilities
and differences depending on the data sets. For example, on a highly periodic data set
the spectral methods are better, whereas on bursty data sets APCA can be significantly
better, as shown in Fig. 8.

In contrast, in Fig. 9 we can see that highly periodic data can slightly favor the spec-
tral representations (DCT, DFT, CHEB) over the polynomial representations (SAX,
APCA, DWT/PAA, IPLA).

However it is worth noting that the differences presented in these figures are the
most extreme cases found in a search spanning over 80 diverse data sets from the
publicly available UCR Time Series Data Mining Archive (Keogh et al. 2006). This,
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in turn, makes it very likely that, in general, there is very little to choose between
representations in terms of pruning power.

4 Comparison of time series similarity measures

In this section we present our experimental evaluation on the accuracy of different
similarity measures.

4.1 The effect of data set size on accuracy and speed

We first discuss an extremely important finding which, in some circumstances makes
some of the previous findings on efficiency, and the subsequent findings on accuracy,
moot. This finding has been noted before (Ratanamahatana and Keogh 2005), but does
not seem to be appreciated by the database community.

For an elastic distance measure, both the accuracy of classification (or preci-
sion/recall of similarity search), and the amortized speed, depend critically on the
size of the data set. Specifically, on one hand, as data sets get larger, the amortized
speed of elastic measures approaches that of lock-step measures, on the other hand,
the accuracy/precision of lock-step measures approaches that of the elastic measures.
This observation has significant implications for much of the research in the litera-
ture. Many papers present results along the lines of “I have shown on these 80 time
series that my elastic approach is faster than DTW and more accurate that Euclidean
distance, so if you want to index a million time series, use my method’. However, our
observation suggests that even if the method is faster than DTW, the speed difference
will decrease for larger data sets. Furthermore, for large data sets, the differences in
accuracy/precision will also diminish or disappear. To demonstrate our claim we con-
ducted experiments on two highly warped data sets that are often used to highlight the
superiority of elastic measures, Two-Patterns and CBF. Because these are synthetic
data sets, one has the luxury of creating as many instances as needed, using the data
generation algorithms proposed in the original papers (Geurts 2001, 2002). However,
it is critical to note that the same effect can be seen on all the data sets considered
in this work. For each problem we created 10, 000 test time series, and increasingly
large training data sets of size 50, 100, 200, . . ., 6, 400. We measured the classification
accuracy of 1NN for the various data sets (explained in more detail in Sect. 4.2.1),
using both Euclidean distance and DTW with 10% warping window, and the results
are shown in Fig. 10.

Note that for small data sets, DTW is significantly more accurate than Euclidean
distance in both cases. However, for CBF, by the time we have a mere 400 time series
in our training set, there is no statistically significant difference. For Two-Patterns
it takes longer for Euclidean Distance to converge to DTW’s accuracy, nevertheless,
by the time we have seen a few thousand objects there is no statistically significant
difference.

This experiment can also be used to demonstrate our claim that the amortized
speed of a (lower-boundable) elastic method approaches that of Euclidean distance.
Recall that Euclidean distance has a time complexity of O (n) and that a single DTW
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Fig. 10 The error rate for 1-Nearest Neighbor Classification for increasingly large instantiations of two
classic time series benchmarks

calculation has a time complexity of O (nw), where w is the warping window size.
However for similarity search or INN classification, the amortized complexity of DTW
is O((P -n)+ (1 — P) - nw), where P is the fraction of DTW calculations pruned by
a linear time lower bound such as LB_Keogh (Keogh 2002). A similar result can be
achieved for LCSS as well, and possibly for the other measures. In the Two-Pattern
experiments above, when classifying with only 50 objects, P = 0.1, so we are forced
to do many Full DTW calculations. However, by the time we have 6, 400 objects, we
empirically find out that P = 0.9696, so about 97% of the objects are disposed of
in the same time as it takes to do a Euclidean distance calculation. To ground this
into concrete numbers, it takes less that one second to find the nearest neighbor to a
query in the database of 6, 400 Two-Patterns time series, on our off-the-shelf desktop
computer, even if we use the pessimistically wide warping window. We note that this
time is for just sequential search with a lower bound—no attempt was made to index
the data.

To summarize, many of the results reporting on the advantages of a particular dis-
tance measure being the fastest or most accurate one may have been biased by the lack
of tests on very (or even slightly) large(r) data sets.

4.2 Accuracy of similarity measures

In this section, we evaluate the accuracy of the similarity measures presented in Sect. 2.
We first explain the methodology of our evaluation, as well as the parameters that need
to be tuned for each similarity measure. We then present the results of our experiments
and discuss several interesting findings.

@ Springer



X. Wang et al.

4.2.1 Accuracy evaluation framework

Accuracy evaluation answers one of the most important questions about a similarity
measure: why is this a good measure for describing the (dis)similarity between time
series? We found that accuracy evaluation is often insufficient in existing literature: it
has been either based on subjective evaluation, e.g., (Chen et al. 2005a; ABfalg et al.
2006), or using clustering with small data sets which are not statistically significant,
e.g., (Vlachos et al. 2006; Morse and Patel 2007). In this work, we use an objec-
tive evaluation method recently proposed (Keogh and Kasetty 2003). The idea is to
use a one nearest neighbor (INN) classifier (Tan et al. 2005; Han and Kamber 2005)
on labelled data to evaluate the efficacy of the distance measure used. Specifically,
each time series has a correct class label, and the classifier tries to predict the label
as that of its nearest neighbor in the training set. There are several advantages with
this approach. First, it is well known that the underlying distance metric is critical
to the performance of 1NN classifier (Tan et al. 2005), hence, the accuracy of the
INN classifier directly reflects the effectiveness of the similarity measure. Second, the
INN classifier is straightforward to implement and is parameter free, which makes
it easy for anyone to reproduce our results. Third, it has been proved that the error
ratio of 1NN classifier is at most twice the Bayes error ratio (Duda and Hart 1973).
Finally, we note that while there have been attempts to classify time series with deci-
sion trees, neural networks, Bayesian networks, supporting vector machines, etc., the
best published results (by a large margin) come from simple nearest neighbor methods
(Xi et al. 2006).

Algorithm 1 Time series classification with INN classifier

Input: Labelled time series data set T, similarity measure operator Sim Dist, number of crosses k

Output: Average 1NN classification error ratio and standard deviation

1: Randomly divide T into k stratified subsets Ty, ..., Ty

2: Initialize an array ratios[k]

3: for Each subset T; of T do

if Sim Dist requires parameter tuning then
Randomly split T; into two equal size stratified subsets T;1 and T;»
Use T;; for parameter tuning, by performing a leave-one-out classification with 1NN classifier
Set the parameters to values that yields the minimum error ratio from the leave-one-out tuning
process

8:  Use T; as the training set, T — T; as the testing set

9:  ratioli] <« the classification error ratio with 1NN classifier

10: return Average and standard deviation of ratios[k]

P A

To evaluate the effectiveness of each similarity measure, we use a cross-validation
algorithm as described in Algorithm 1, based on the approach suggested in Salzberg
(1997). We first use a stratified random split to divide the input data set into k subsets for
the subsequent classification (line 1) in order to minimize the impact of skewed class
distribution. The number of cross validations k is dependent on the data sets and we
explain shortly how we choose the proper value for k. We then carry out the cross vali-
dation, using one subset at a time for the training set of the 1NN classifier, and the rest
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Table 1 Parameter tuning for similarity measures

Parameter Min value Max value Step size
DTW.8 1 25% - n 1

LCSS.é 1 25% - n 1

LCSS.¢e 0.02 - Stdv Stdv 0.02 - Stdv
EDR.¢ 0.02 - Stdv Stdv 0.02 - Stdv
Swale.e 0.02 - Stdv Stdv 0.02 - Stdv
Swale.reward 50 50 -
Swale.penalty 0 reward 1
TQuEST.t Avg — Stdv Avg + Stdv 0.02 - Stdv
SpADe.plength 8 64 8
SpADe.ascale 0 4 1
SpADe.tscale 0 4 1
SpADe.slidestep plength/32 plength/8 plength/32

k — 1 subsets as the testing set (lines 3-9). If the similarity measure Sim Dist requires
parameter tuning, we divide the training set into two equal size stratified subsets, and
use one of the subset for parameter tuning (lines 4-7). We perform an exhaustive
search for all the possible (combinations of) value(s) of the similarity parameter, and
conduct a leave-one-out classification test with a INN classifier. We record the error
ratios of the leave-one-out test, and use the parameter values that yield the minimum
error ratio. Finally, we report the average error ratio of the INN classification over the
k cross validations, as well as the standard deviation (line 10).

Algorithm 1 requires that we provide an input & for the number of cross validations.
In our experiments, we need to take into consideration the impact of training data set
size discussed in Sect. 4.1. Therefore, our selection of k for each data set attempts to
strike a balance between the following factors:

1. The training set size should be selected to enable discriminativity, i.e., one can tell
the performance difference between different distance measures.

2. The number of items in the training set should be large enough to represent each
class. This is especially important when the distance measure needs parameter
tuning.

3. The number of cross validations should be between 5 and 20 in order to minimize
bias and variation, as recommended in Kohavi (1995).

The actual number of splits is empirically selected such that the training error for
INN Euclidean distance (which we use as a comparison reference) is not perfect, but
significantly better than the default rate.

Several of the similarity measures that we investigated require the setting of one or
more parameters. The proper values for these parameters are key to the effectiveness
of the measure. However, most of the time only empirical values are provided for each
parameter in isolation. In our experiments, we perform an exhaustive search for all
the possible values of the parameters, as described in Table 1.
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For DTW and LCSS measures, a common optional parameter is the window size
d that constrains the temporal warping, as suggested in Vlachos et al. (2006). In our
experiments we consider both the version of distance measures without warping and
with warping. For the latter case, we search for the best warping window size up to
25% of the length of the time series n. An additional parameter for LCSS, which is
also used in EDR and Swale, is the matching threshold €. We search for the optimal
threshold starting from 0.02 - Stdv up to Stdv, where Stdv is the standard deviation
of the data set. Swale has two other parameters, the matching reward weight and the
gap penalty weight. We fix the matching reward weight to 50 and search for the opti-
mal penalty weight from 0 to 50, as suggested by the authors. Although the warping
window size can also be constrained for EDR, ERP and Swale, we only consider full
matching for these distance measures in our current experiments—and the rationale
for this choice was the fairness. Namely, while each of the three approaches may be
amenable to less-than-full matching, this was never proposed, nor considered, as a fea-
ture in the original works. For TQuUEST, we search for the optimal querying threshold
from Avg — Stdv to Avg + Stdv, where Avg is the average of the time series data set.
For SpADe, we tune four parameters based on the original implementation and use
the parameter tuning strategy, i.e. search range, step size, as suggested by the aut