UNVEILING THE COMPLEXITY OF HUMAN MOBILITY BY MINING & QUERYING MASSIVE TRAJECTORY DATA

Fosca Giannotti

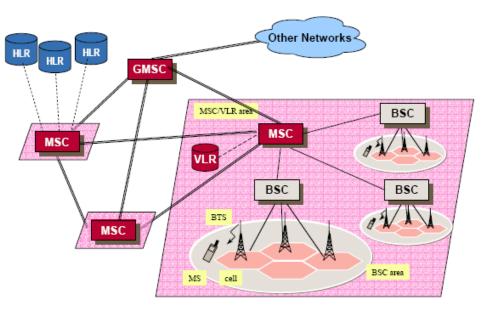
Knowledge Discovery & Data Mining LAB ISTI-CNR & Università di Pisa

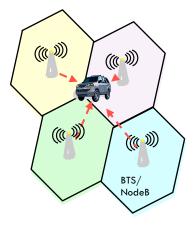
http://kdd.isti.cnr.it

BIG DATA as a proxy of human mobility

GSM data

- Mobile Cellular Networks handle information about the positioning of mobile terminals
 - CDR Call Data Records: call logs (tower position, time, duration,..)
 - Handover data: time of tower transition
- More sophisticated
 Network Measurement allow tracking of all active (calling) handsets





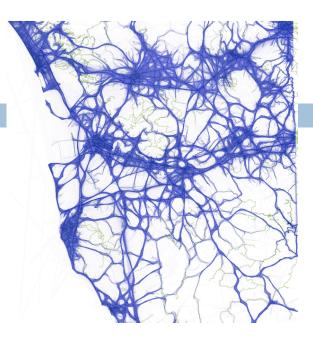
GSM data as a proxy of presence and fluxes

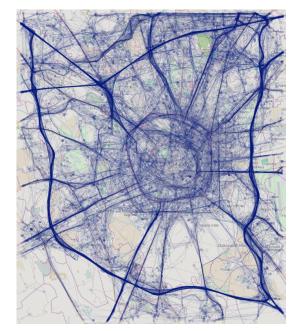
Video: Paris_splines.avi

GPS tracks

- Onboard navigation devices send GPS tracks to central
 - servers
 - Sampling rate ~3 secs
 - Spatial precision ~ 10 m

Ide;Time;Lat;Lon;Height;Course;Speed;PDOP;State;NSat





^{8;22/03/07 08:51:52;50.777132;7.205580; 67.6;345.4;21.817;3.8;1808;4} 8;22/03/07 08:51:56;50.777352;7.205435; 68.4;35.6;14.223;3.8;1808;4 8;22/03/07 08:51:59;50.777415;7.205543; 68.3;112.7;25.298;3.8;1808;4 8;22/03/07 08:52:03;50.777317;7.205877; 68.8;119.8;32.447;3.8;1808;4 8;22/03/07 08:52:06;50.777185;7.206202; 68.1;124.1;30.058;3.8;1808;4 8;22/03/07 08:52:09;50.777057;7.206522; 67.9;117.7;34.003;3.8;1808;4 8;22/03/07 08:52:12;50.776925;7.206858; 66.9;117.5;37.151;3.8;1808;4 8;22/03/07 08:52:15;50.776813;7.207263; 67.0;99.2;39.188;3.8;1808;4 8;22/03/07 08:52:18;50.776780;7.207745; 68.8;90.6;41.170;3.8;1808;4 8;22/03/07 08:52:21;50.776803;7.208262; 71.1;82.0;35.058;3.8;1808;4 8;22/03/07 08:52:24;50.776832;7.208682; 68.6;117.1;11.371;3.8;1808;4

GPS: detailed movements within an area

Video: moves_viz_prov_cut.mov

GPS: movements within the town

Video: moves_viz_city_cut.mov

Social Networks: goal of movements

Video: flickr_cut.mov

Plan of the presentation

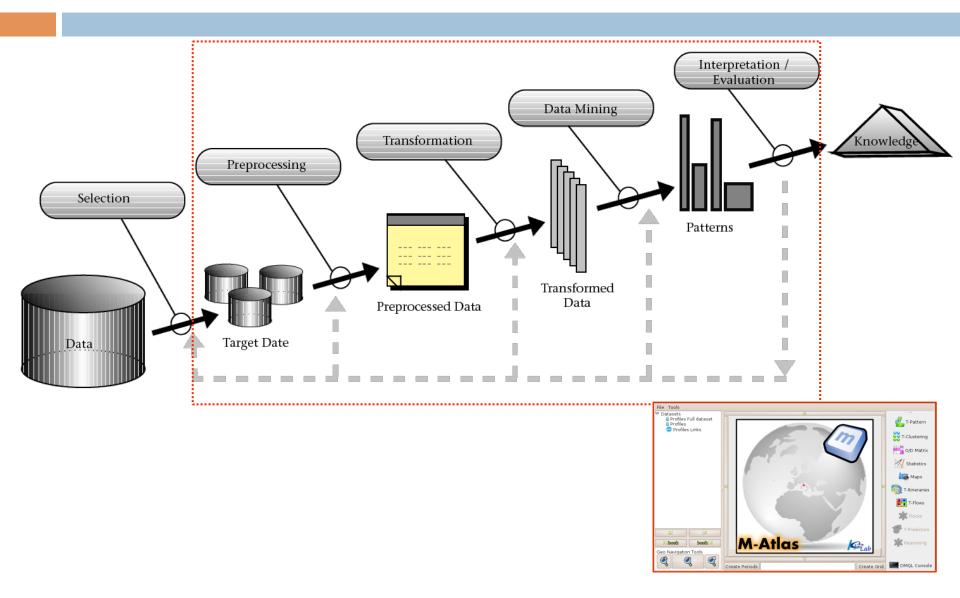
- Mastering the overall KDD process
 - M-atlas platform
- Exemplar case studies
 - Advanced OD Matrix browsing
 - Understanding collective patterns
 - Understanding Individual profiles
 - Putting interactions in the game

Mastering the overall KDD process: M-Atlas platform

Fosca Giannotti · Mirco Nanni · Dino Pedreschi · Fabio Pinelli · Chiara Renso · Salvatore Rinzivillo · Roberto Trasarti Unveiling the complexity of human mobility by querying and mining massive trajectory data *The VLDB Journal*, 2011

> Roberto Trasarti, Fosca Giannotti, Mirco Nanni, Dino Pedreschi, Chiara Renso. A Query Language for Mobility Data Mining. International Journal of Data Warehousing and Mining (IJDWM) 2010

Knowledge Discovery process



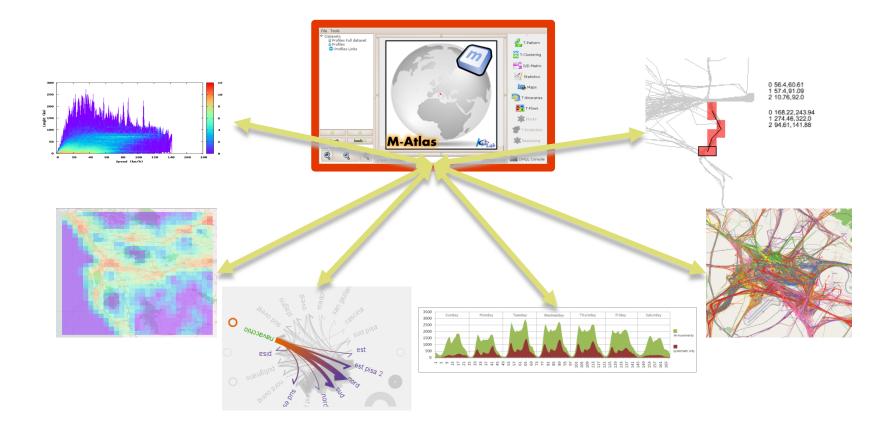
M-Atlas platform

M-Atlas: An analytical system to create and navigate an atlas of urban mobility

Source data: GPS, GSM, Sensors, Rfid, spatial data

M-Atlas platform

A tool kit to extract, store, combine different kinds of models to build mobility knowledge discovery processes.



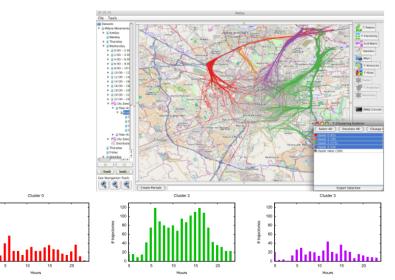
DMQL EXPRESSIVENESS:

How do people leave the city toward suburban areas?

CREATE MODEL MilanODMatrix AS MINE ODMATRIX FROM (SELECT t.id, t.trajectory FROM TrajectoryTable t), (SELECT orig.id, orig.area FROM MunicipalityTable orig), (SELECT dest.id, dest.area FROM MunicipalityTable dest)

CREATE RELATION CenterToNESuburbTrajectories USING ENTAIL FROM (SELECT t.id, t.trajectory FROM TrajectoryTable t, MilanODMatrix m WHERE m.origin = Milan AND m.destination IN (Monza, ..., Brugherio))

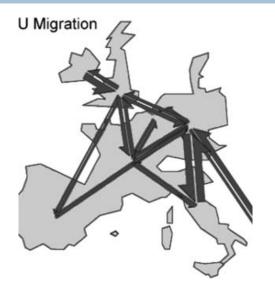
CREATE MODEL ClusteringTable AS MINE T-CLUSTERING FROM (Select t.id, t.trajectory from CenterToNESuburbTrajectories t) SET T-CLUSTERING.FUNCTION = ROUTE_SIMILARITY AND T-CLUSTERING.EPS = 400 AND T-CLUSTERING.MIN_PTS = 5

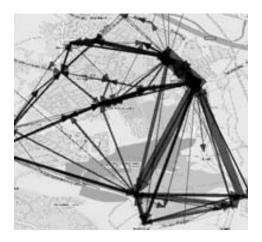


A DataWarehouse for OD Matrix

OD Matrix

- Model mobility demand by measuring the flows among different areas
- General approach
 - Spatial grid with relevant zones
 - (Estimated) flows of movement from origin to destination



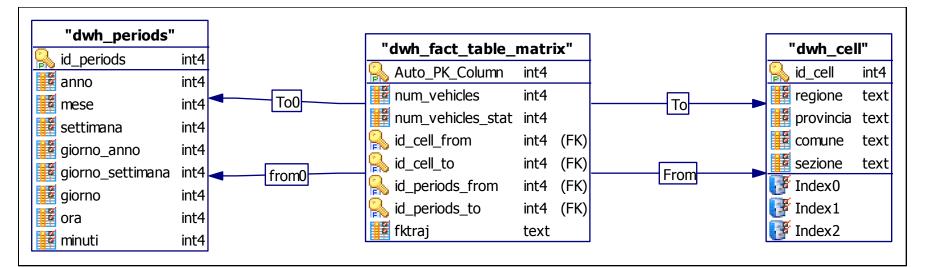


OD Matrix exploration

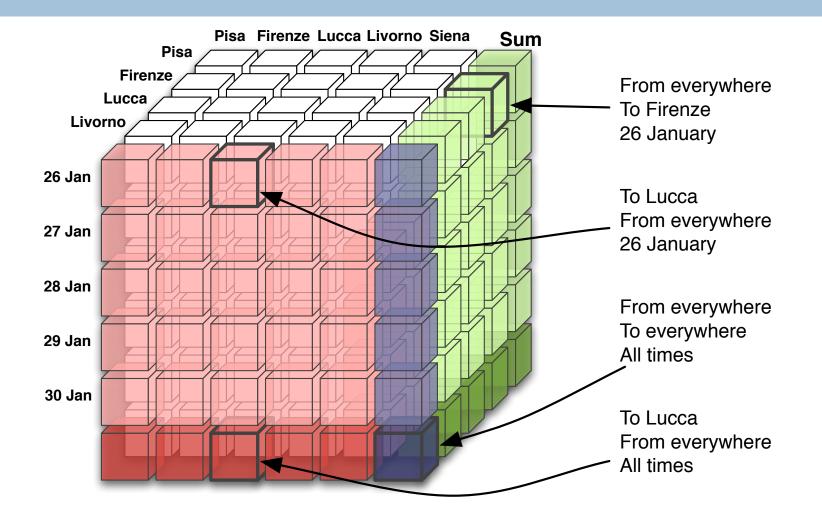
- OD Matrix should answer the questions
 - □ From which region?
 - To which region?
 - When?
 - How many?

DW Concepts

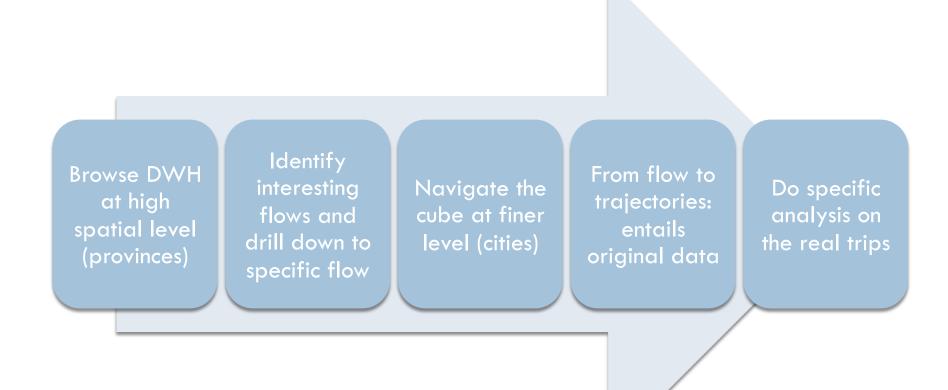
- Facts: basic observation
 - Aggregated movements from an origin to a destination
- Dimensions
 - Origins
 - Destinations
 - Time
- Measures
 - Count
 - Ratio over total



OD Matrix: DW design



The general process

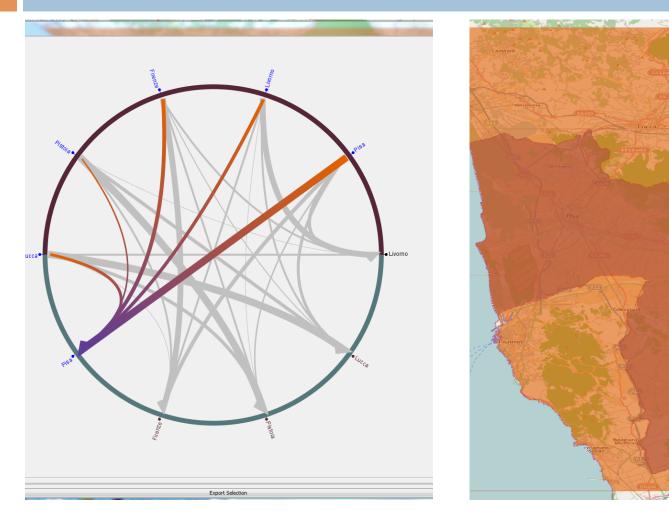


Navigate the cube at higher spatial level (provinces): pivot table

Time to	Cell to	Cell to			Measures	
(All)	Regione	Provincia	Regione	Provincia	🔻 Numero Veicoli	Perc
+All Time T	o Toscana	+Pisa	Toscana	*Pisa	462.583	
				Firenze	27.742	13,26%
				Livorno	20.429	10,05%
				Lucca	17.681	04,07%
				Pistoia	5.727	01,30%
		Pistoia	Toscana	Pistoia	405.003	92,05%
				Lucca	19.040	04,38%
				Firenze	7.853	03,75%
				*Pisa	5.630	01,05%
				Livorno	2.306	01,13%
		+Lucca	Toscana	Lucca	388.854	
				Pistoia	19.268	04,38%
				∗Pisa	17.750	03,32%
				Livorno	6,488	b 3,19%
				Firenze	2.747	01,31%
		Firenze	Toscana	Firenze	163.845	78,34%
				*Pisa	27.571	05,16%
				Pistoia	7.769	01,77%
				Livorno	6.617	03,26%
				Lucca	2.650	00,61%
		+Livorno	Toscana	Livorno	167.347	82,36%
				∗Pisa	21.088	03,94%
				Firenze		03,33%
				Lucca	6.625	01,52%
				Pistoia	2.228	00,51%

- The cube dimensions are flattened by means of a multi-row table
- Example at the province level:
 - How many trips from Lucca province to Pisa province?
 - How many in the other way?

Navigate the cube at higher spatial level (provinces): visual browser



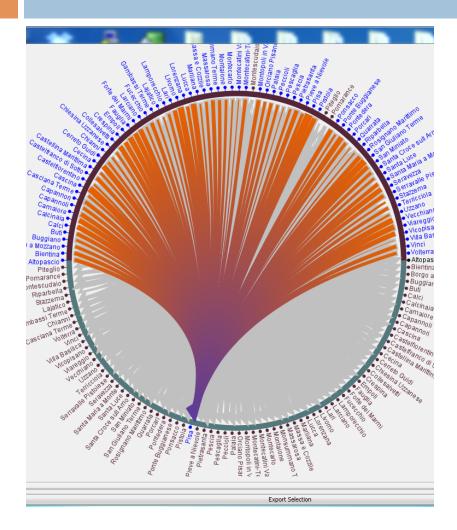
Select origins and destination from the doughnut. The map is linked with the selection. Flow weights are represented by line width

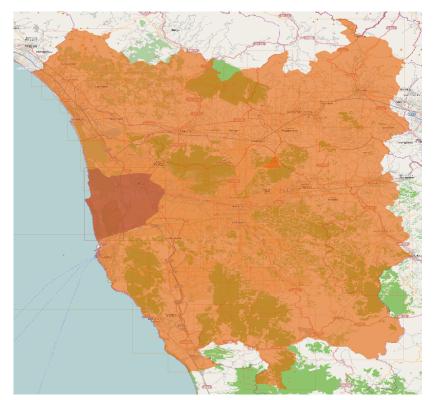
Drill down: from province to single cities

me to	Cell to			Cell from		Measures	
AII)	Regione	Provincia	Comune	Regione	Provincia	Numero Veicoli	• Pe
Il Time To Toscan	Toscana	-Pisa		Toscana	∗Pisa	462.583	86,53
					Firenze	27.742	13,26
					Livorno	20.429	10,05
					Lucca	17.681	04,07
					Pistoia	5.727	01,30
		Pisa	*Pisa	Toscana	Pisa	131.430	
					Livorno	8.066	39,48
					Lucca	7.053	· ·
					 Firenze 	2.383	08,59
					Pistoia	1.574	<u> </u>
			+Cascina	Toscana		58.146	12,57
					Livorno	1.777	08,70
					+Lucca	1.168	06,61
					 Firenze 	795	02,87
					Pistoia	305	05,33
			San Miniato	Toscana	Pisa	30.924	06,69
					 Firenze 	12.018	43,32
					Livorno		02,25
					Pistoia	388	06,77
					Lucca	283	01,60
			Pontedera	Toscana	*Pisa	37.186	08,04
					Firenze	2.402	08,66
					Livorno	1.180	05,78
					Lucca	611	03,46
					Pistoia	244	04,26
			San Giuliano Terme	Toscana	Pisa	30.331	06,56
					Lucca	1.983	11,22
					Livorno	468	02,29
					Pistoia	345	06,02
					 Firenze 		00,45
			Calcinaia	Toscana	+Pisa	18.425	<u> </u>
					Livorno	359	01,76
					◆Lucca	331	01,87
					 Firenze 		01,00
					◆Pistoia	194	03,39
			Santa Croce sull Arno	Toscana		14.561	· ·
					 Firenze 	3.893	14,03
					Lucca		01,96
					Pistoia	290	05,06
					Livorno	133	00,65
			Vecchiano	Toscana		12.931	
					Lucca	2.700	<u> </u>
					Pistoia	1.032	18,02
					Livorno	388	01,90
					Firenze	79	00,28

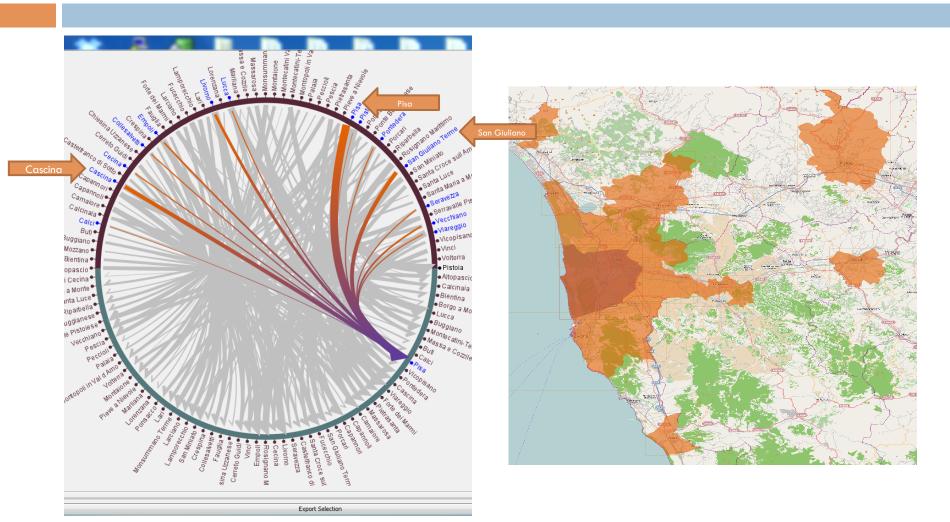
- Explode the destination by specific cities
 - Easy to identify the cities with the higher incomin traffic
 - For each city it is possible to identify the source of traffic

Drill down: from cities to cities



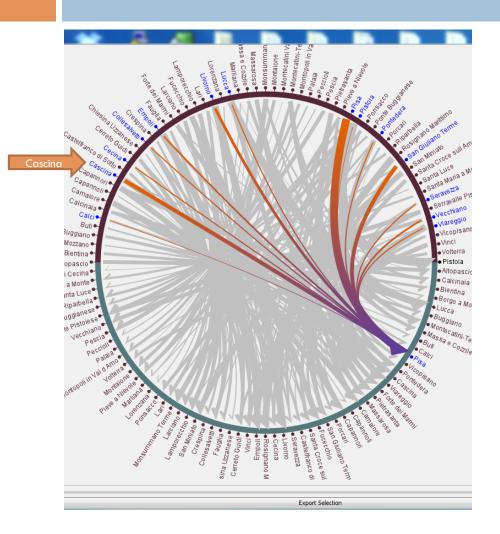


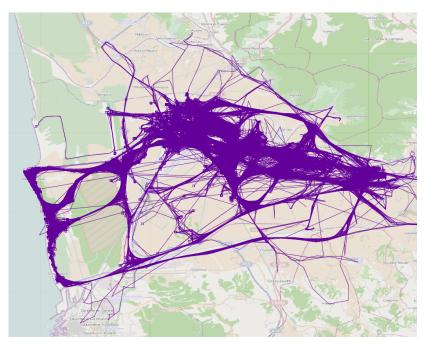
Drill down: from cities to cities (filtered)



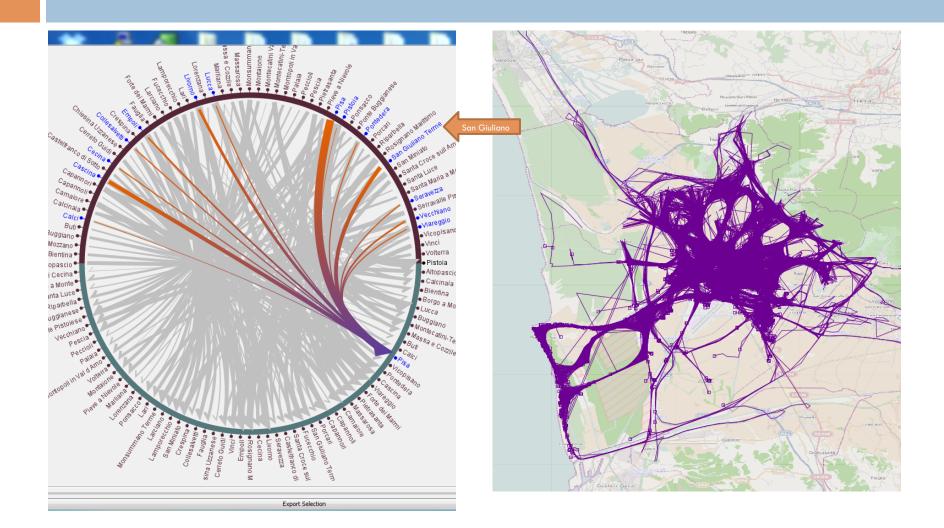
Restrict visualization to flows above a given threshold. Select specific flows: from Cascina, San Giuliano, and Pisa

Specific flow: from Cascina to Pisa

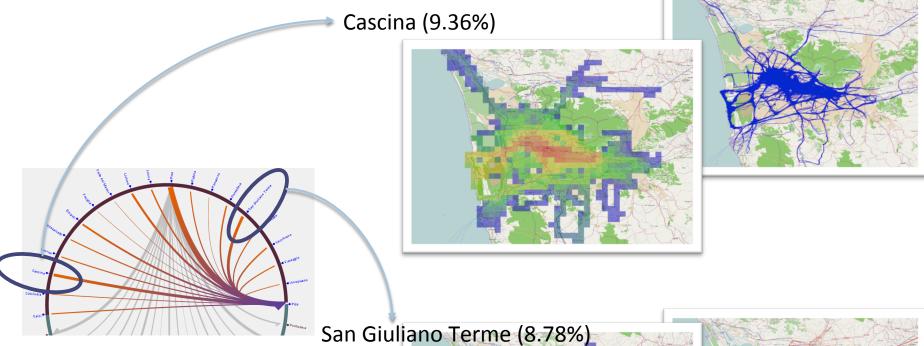




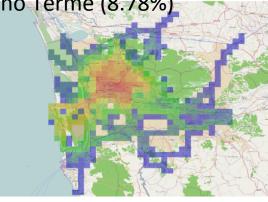
Specific flow: from San Giuliano to Pisa



Exploring entailed data

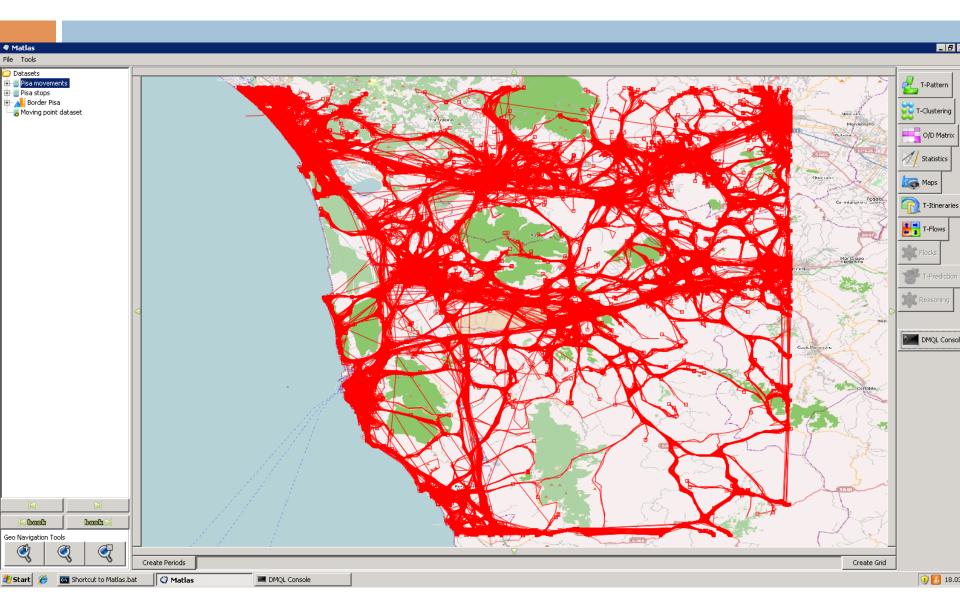


		Measures		
Cell To	Cell From	Num vehicles	▼ %	
+Pisa	-Pisa	89.730	84,24%	
	↓ Pisa	63.331	70,58%	
	+Cascina	8.402	09,36%	
	San Giuliano Terme	7.877	08,78%	
	+Vecchiano	1.869	02,08%	
	+Pontedera	1.408	01,57%	
	+Calci	1.220	01,36%	

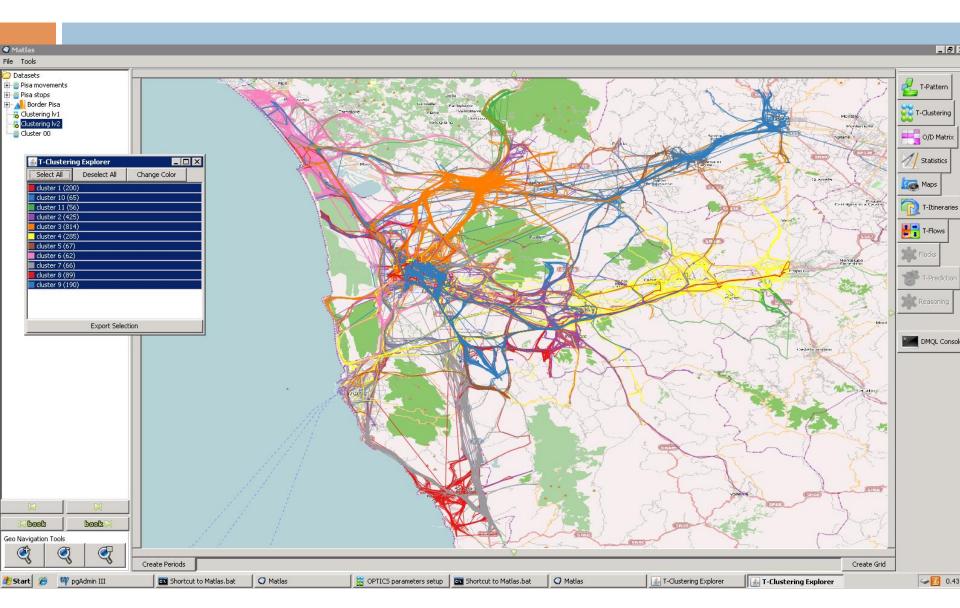


Discovering **access patterns** to Pisa with GPS track data

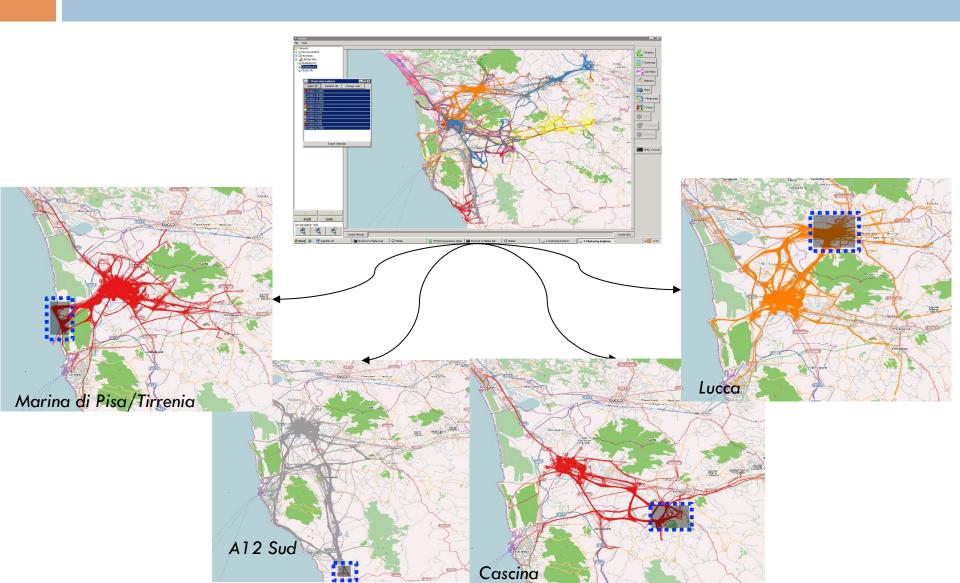
Access patterns using T-clustering



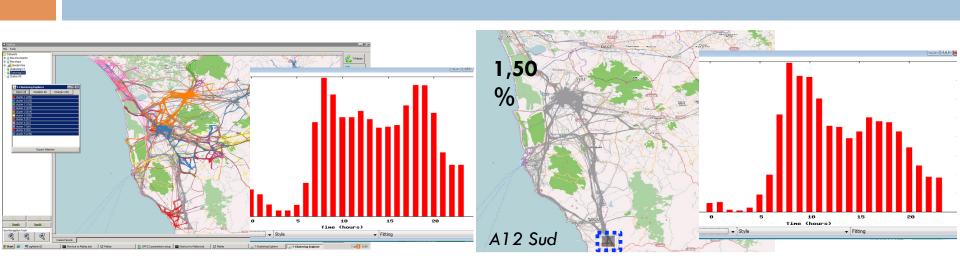
Access patterns using T-clustering



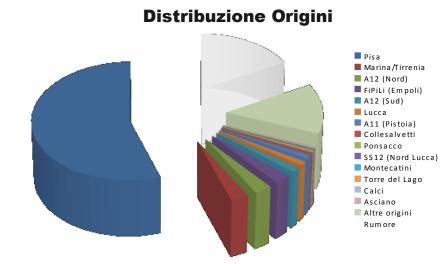
Access patterns using T-clustering

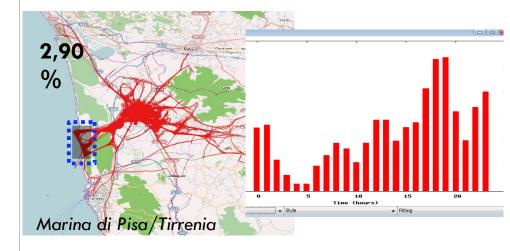


Characterizing the access patterns: origin & time



Origin distribution

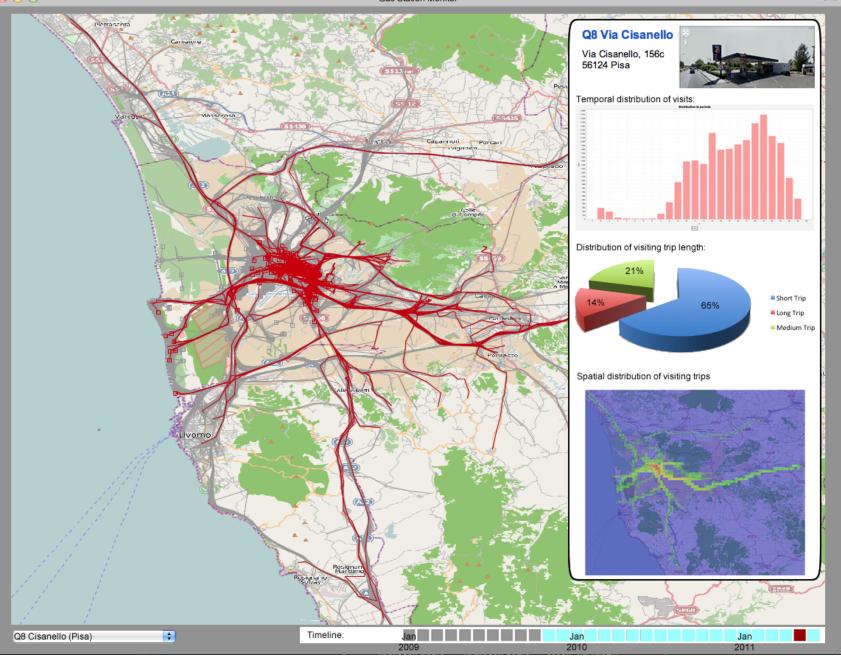




Persistency of access patterns

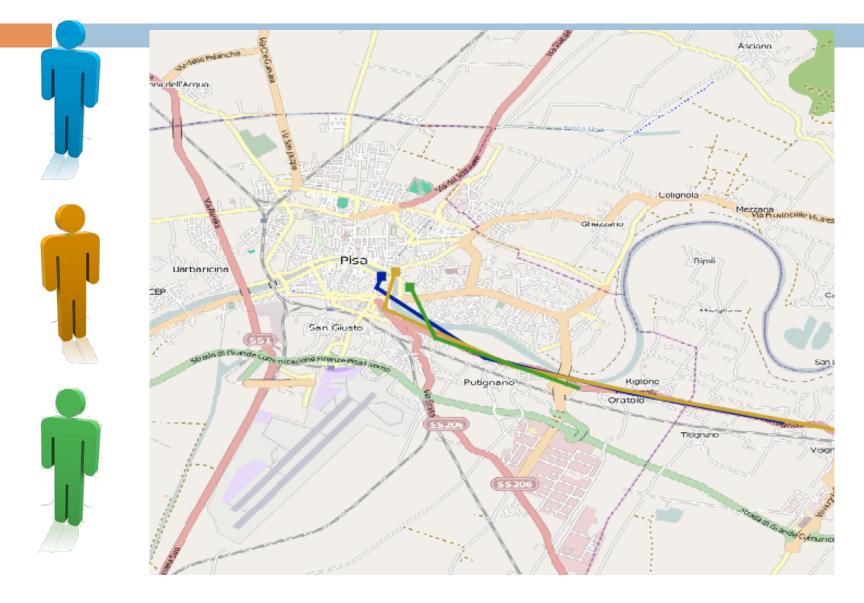
Studying the attractiveness/efficiency of a service with GPS tracks

C



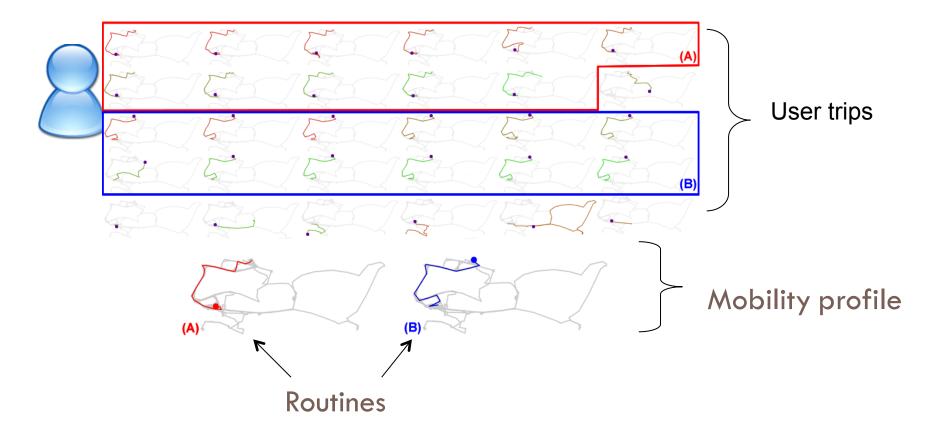
Discovering mobility profiles with GPS tracks data

Extract travellers profiles



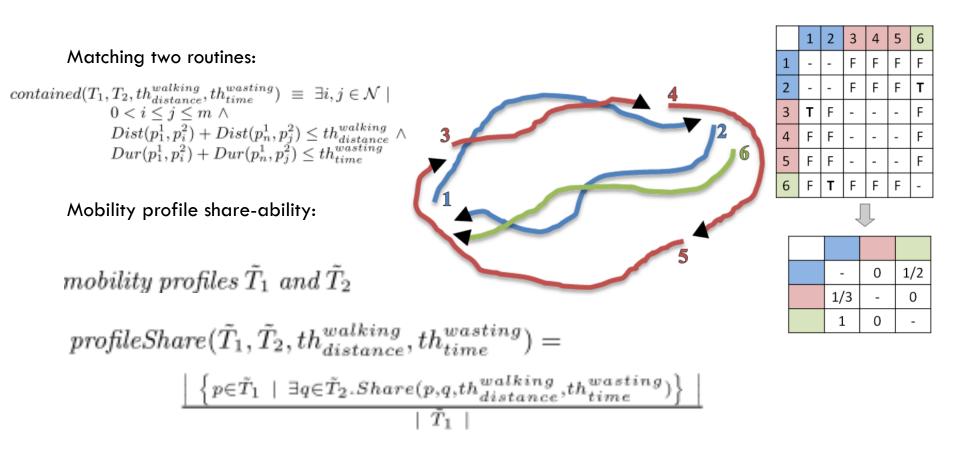
Extracting travellers profiles

- Analysis focused on the single individual
- Find his/her systematic mobility



Application: Car pooling

Pro-active suggestions of sharing rides opportunities without the need for the user to explicitly specify the trips of interest.

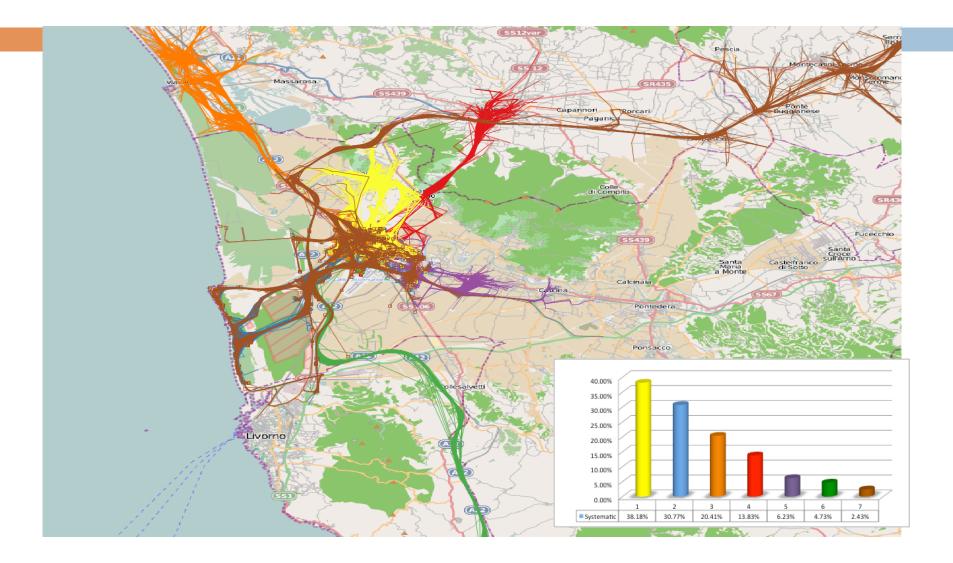


Car pooling potential

67.2% routines match with a routine of other users

32.5% users share one or more routines with other users

Impact of systematic mobility on access patterns

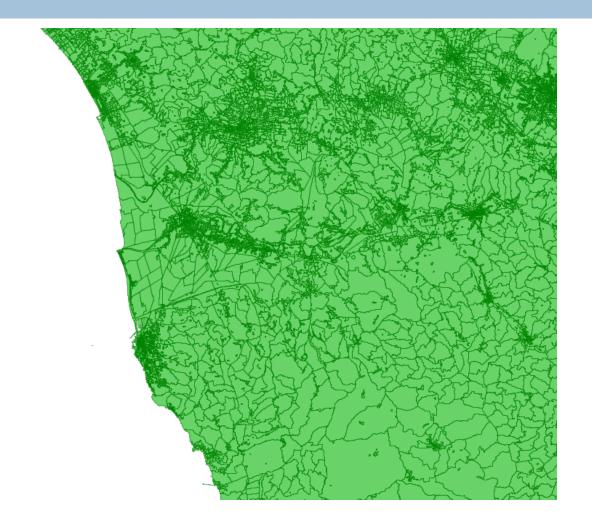


Find border of human mobility

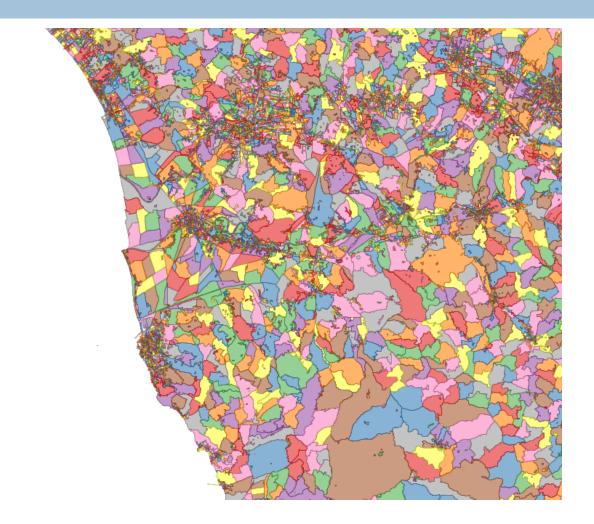
Motivations

- Mobility management offices needs accurate information to handle mobility issues
 - Monitoring: how to predict/manage emergences of special events?
 - Planning: public transportation desisgn, incentives for multimodal movement, etc.
- Planning involse several entities
 - The city level is not sufficient: the neighbor cities are necessarily influenced
 - The regional level is too general: lost focus for specific/local requirements
 - Does provinces provide the necessary level of details?

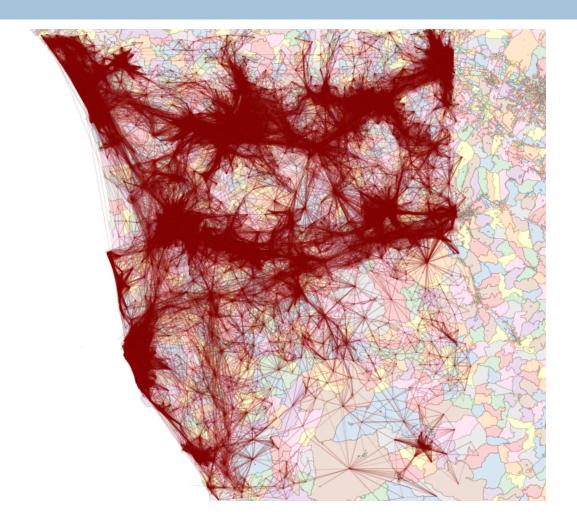
Step 1: spatial regions



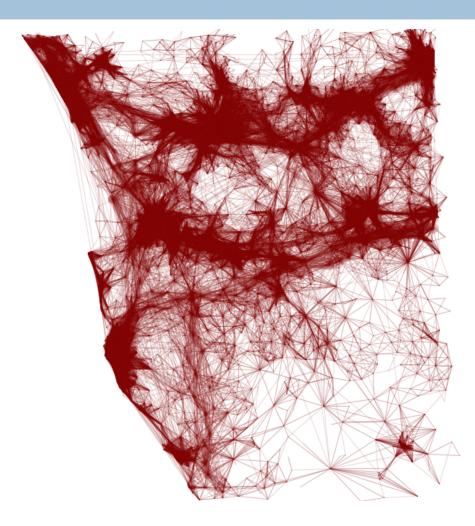
Start from random labeling for region



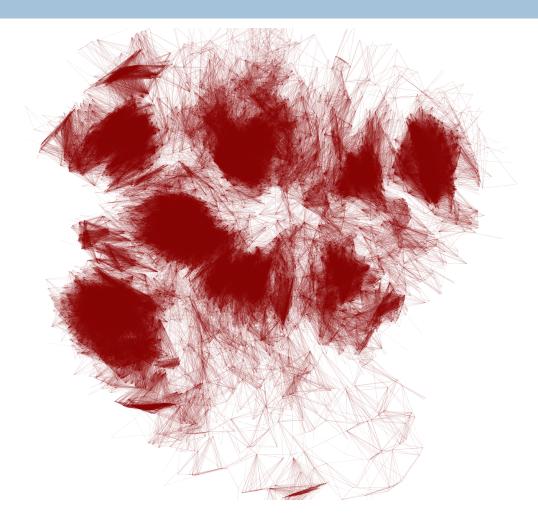
Step 2: evaluate flows among regions



Step 3: consider only the network

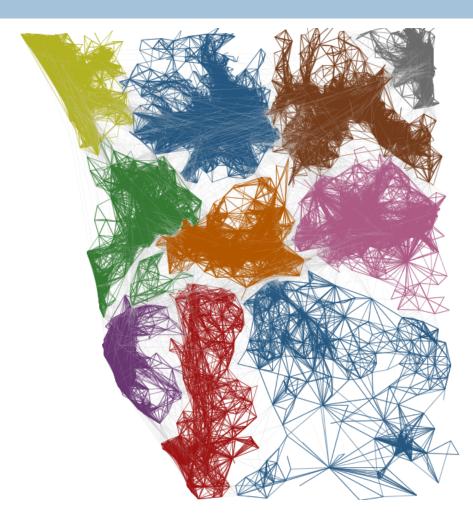


Step 4: perform clustering

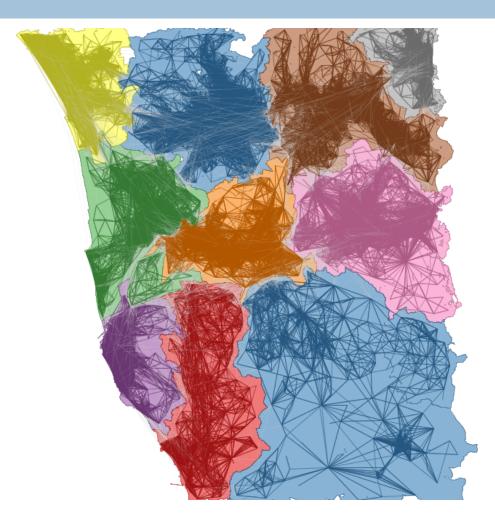


Step 4: perform clustering

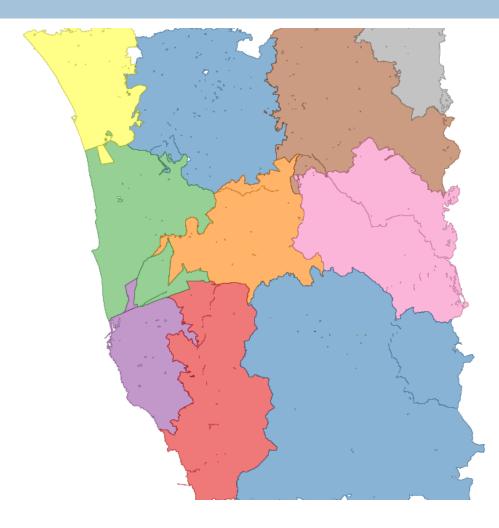
Step 5: map nodes back to geography



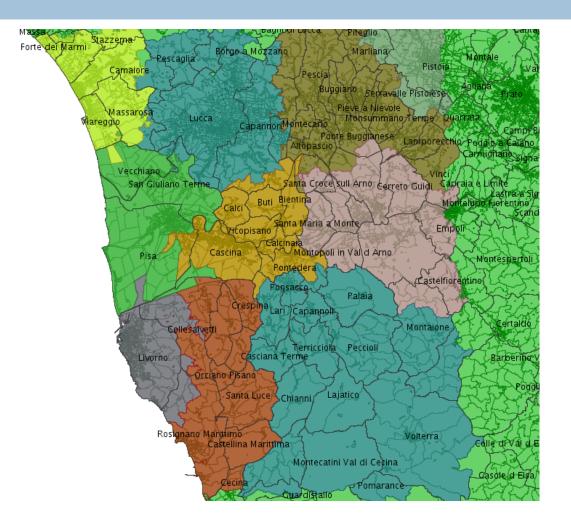
Step 5: map nodes back to geography



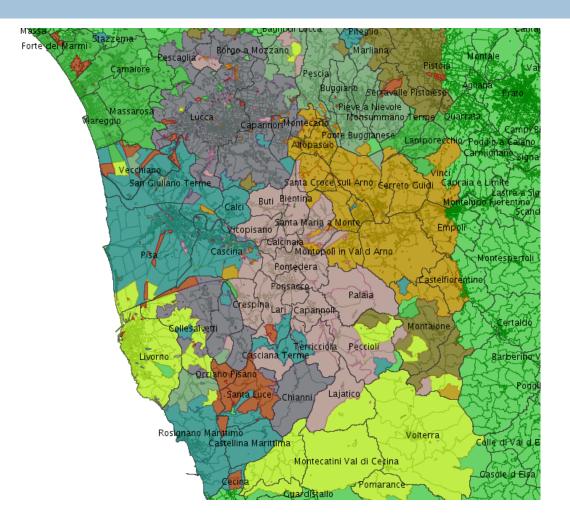
Final result



Final result: comparison

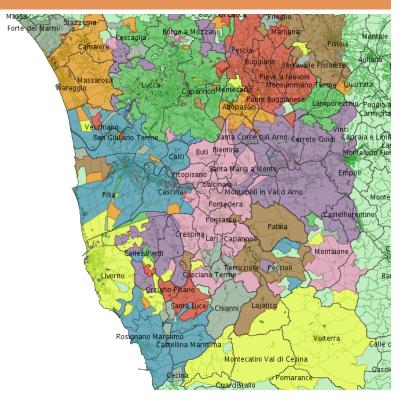


Borders using only OD flows



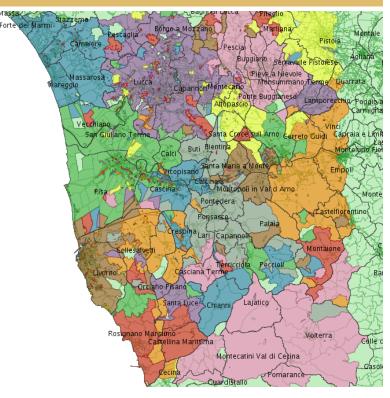
Borders in different time periods

Only weekdays movements



Similar to global clustering: strong influence of systematic movements

Only weekend movements



Strong fragmentation: the influence of systematic movements (home-work) is missing

Summarizing: big data push towards converging sciences

Big data push towards convergence

Network science

Global models of complex social phenomena

Behavioral diversity in society at large

Data mining

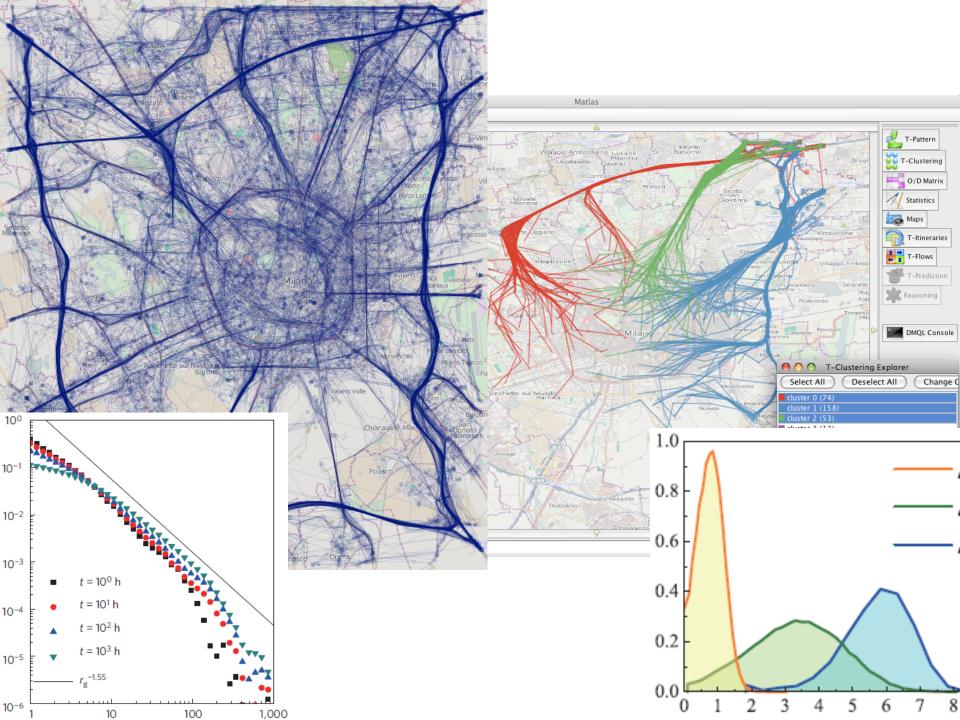
Local patterns of complex social phenomena

Behavioral similarity in sub-populations

 Both visions needed to achieve realistic and accurate models for prediction and simulation

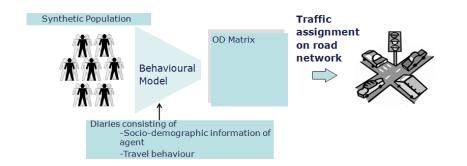
Computational sociology (Lazer et al., Science 2009)

□ Both data-driven, each leverage on the other



DATA-SIM – Data science for simulating the era of electric vehicles

- What's the impact on mobility and energy distribution in the case of a massive switch to electric cars?
- Data mining + network science + agent-based simulation
- FET project started
 October 2011
 www.datasimfet.eu
- KDD LAB Pisa + I-MOB Hasselt + Barabasi Lab Budapest+OCTO



Knowledge Discovery and Data Mining Laboratory

Web Site: http://kdd.isti.cnr.it

Personnel

Lab Head

Giannotti Fosca

Pedreschi Dino

Turini Franco

Berlingerio Michele

PhD Student

Post Doc

Pinelli Fabio

Monreale Anna

Pennacchioli Diego

Nanni Mirco

Rinzivillo Salvatore

Ruggieri Salvatore

Coscia Michele

Ong Rebecca

Renso Chiara

Caterina D'angelo

Claudio Schifani

Chiara Falchi

Zehui Qu

Barbara Furletti, Andrea Romei, Sergio Barsocchi

