Sequential Pattern Mining

Frequent patterns for sequences

Slides edited from the “Lecture Notes for Chapter 7” by Tan, Steinbach, Kumar

From itemsets to sequences

e Frequent itemsets and association rules focus on
transactions and the items that appear there

e Databases of transactions usually have a
temporal information

— Sequential patter exploit it

e Example data:
— Market basket transactions
— Web server logs
— Tweets
— Workflow production logs

Frequent patterns

Events or combinations of events that appear
frequently in the data

E.g. items bought by customers of a supermarket

N

X

3
N

% 7 A £
Lz "'Ifr = @ @ % @
Xy b
/AV
7

Q|G

Frequent patterns

Frequent itemsets w.r.t. minimum threshold

E.g. with Min_freq =5

Ao

,// ‘e“l'
7,, f
sTrECr ,‘/; ?"
N

Rt
Y il | .
\eemef .

6.0 o6

=)=

EYEIEE

1
2
3
4
5
6
7

I

Frequent patterns
Complex domains

Frequent sequences (a.k.a. Sequential patterns)
Input: sequences of events (or of groups)

Frequent patterns
_Complexdomains

Obijective: identify sequences that occur frequently
- Sequential pattern: {© @)} > &

Sequence Data

Sequence Database:

Object

Timestamp

Events

10

, 3,5

20

1

23

11

17

21

“A
N

28

Olm|m|m|T|>|>|>

14

NEANNNNENEN
<
o

0 |0 |00
N

Timeline

Object A:

Object B:

Object C:

TN [7T

N=0~N +

Terminology

EIement
Event
(Tra nsactlon)
(Item)
Sequence
t/me
Sequence Sequence Element Event
Database (Transaction) (Item)
Customer Purchase history of a given A set of items bought by a Books, diary products,
customer customer at time t CDs, etc
Web Data Browsing activity of a particular | A collection of files viewed Home page, index
Web visitor by a Web visitor after a page, contact info, etc
single mouse click
Event data History of events generated by | Events triggered by a Types of alarms
a given sensor sensor at time t generated by sensors
Genome DNA sequence of a particular An element of the DNA Bases A, T,G,C
sequences species sequence

Formal Definition of a Sequence

e A sequence is an ordered list of elements
(transactions)

S=<eee;..>

— Each element is attributed to a specific time or location
— Each element contains a collection of events (items)

e = {iy, ipy .ny it}

e Length of a sequence, [s|, is given by the number
of elements of the sequence

e A k-sequence is a sequence that contains k
events (items)

Formal Definition of a Sequence

e Example
S =< {AB), {BEF}, {A}, {EFH} >

e Length of s: |s| =4 elements
e sis a 9-sequence

e Times associated to elements:
e {AB}> time=0
e {B,E,F} > time =120
e {A} 2> time =130
e {E,F,H} > time =200

Sequences without explicit time info

e Default: time of element = position in the
sequence

e Example
S=< {AC} {E}, {AF}, {EGH} >

e Default times associated to elements:
e {AC}> time=0
o {E} >time=1
o {AF}>time=2
e {E,G,H} > time=3

Examples of Sequence

e \Web sequence:

/ Singleton elements

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera}
{Shopping Cart} {Order Confirmation} {Return to Shopping} >

e Sequence of initiating events causing the nuclear
accident at 3-mile Island:

(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)

< {clogged resin & outlet valve closure} {loss of feedwater}
{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips & main turbine trips & reactor pressure increases}>

™~ Complex elements
e Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

\ Singleton elements

Formal Definition of a Subsequence

e Asequence <a,a, ... a,> is contained in another
sequence <b, b, ... b,> (m 2 n) if there exist integers
I, <i,<...<I suchthata,cb,,a,cb,...,a,c b,

Data sequence Subsequence Contain?
<{2,4}{3,5,6} {8} > <{2}{3,5} > Yes

<{1,2}{3,4} > <{1}{2} > No
<{2,4}{2,4}{2,5} > <{2} {4} > Yes

Formal Definition of Sequential Pattern

e The support of a subsequence w
e is the fraction of data sequences that contain w

Input sequences:

o> Cn oC@> v
X
v
a> X
0 1 2 3 4 5
e Asequential pattern support of w: 2/4 = 0.50 (50%)

e is a frequent subsequence
e i.e., a subsequence whose support is = minsup

Formal Definition of Sequential Pattern

e Remark: a subsequence (i.e. a candidate pattern) might be mapped
into a sequence in several different ways

e Each mapping is an instance of the subsequence
e In mining sequential patterns we need to find only one instance

1=1,12=2,13=5

1=1,12=4,13=5

@

[1=2,12=4,13=5

@

v

Exercises

e find instances/occurrence of the following
patterns

<{CHH}C)>
<{Aj {F} >
<{AjiAD}>
<{AJAB}{F}>

e in the input sequence below

< {AC} {(CD} {FH} {AB} {BCD} {E} {ABD} {F} >
=0 t=1 =2 =3 =4 =5 =6 7

Exercises

e find instances/occurrence of the following
patterns

<{CHH}C)>
<{Aj B} >
<{CHCHE}>
<{AJ{E}>

e in the input sequence below

< {AC} {(CDE! {F (AH} {B,C,D! {E} {ABD} >
=0 t=1 =2 =3 =4 =5 =6

Sequential Pattern Mining: Definition

e Given:
— a database of sequences
— a user-specified minimum support threshold, minsup

e Task:
— Find all subsequences with support 2 minsup

Sequential Pattern Mining: Challenge

e Trivial approach: generate all possible k-
subsequences, for k=1,2,3,... and compute
support

e Combinatorial explosion!
e With frequent itemsets mining we had:

n
e N. of k-subsets = (J n = n. of distinct items in the data
k

e With sequential patterns:

e N. of k-subsequences = n*

e The same item can be repeated:
o <{A}{A}{B}{A}...>

Sequential Pattern Mining: Challenge

e Even if we generate them from input sequences
e E.g.: Given an-sequence: <{ab}{cde}{f}{ghi}>

— Examples of subsequences:
<{a}{c d}{f} {9} > <{cde}> <{b}{g} >, etc.

e Number of k-subsequences can be extracted from it
<{a bj{cd e}{f}{gh i}> n=9
NN
k=4: Y_ _YY ___Y Amswer
<{a} {de) iy U _ m _ 126

k 4

Sequential Pattern Mining: Example

Object Timestamp Events

A 1 1,2,4 Minsup = 50%

A 2,3

A 3 5 Examples of Frequent Subsequences:

2 ; ;§4 <{1,2} > s=60%

C 1 T o <{2,3} > s=60%

- > 2’3 2 <{2,4}> s=80%
A < {3} {5}> s=80%

& 3 2,4.5 <{1}{2}> s=80%

D 1 2 <{2} {2} > $s=60%

D 2 3,4 <{1}{2,3}> s=60%

D 3 4,5 <{2}{2,3} > s=60%

E 1 1,3 <{1,2} {2,3} > s=60%

E 2 2,4,5

Generalized Sequential Pattern (GSP)

e Follows the same structure of Apriori
— Start from short patterns and find longer ones at each iteration

e Based on “Apriori principle” or “anti-monotonicity of support”

— If one sequence S1 is contained in sequence S2, then the support of S2
cannot be larger than that of S1:

S, <S8, = sup(S,)=sup(S,)

e Intuitive proof
- Any input sequence that contains S2 will also contain S1

6

;
Input sequence /
{ <>

©

Generalized Sequential Pattern (GSP)

e Follows the same structure of Apriori
— Start from short patterns and find longer ones at each iteration

e Step1:

— Make the first pass over the sequence database D to yield all the 1-
element frequent sequences

e Step 2:

Repeat until no new frequent sequences are found:
— Candidate Generation:
+ Merge pairs of frequent subsequences found in the (k-1)th pass to generate
candidate sequences that contain k items
— Candidate Pruning:
¢ Prune candidate k-sequences that contain infrequent (k-7)-subsequences

— Support Counting:
+ Make a new pass over the sequence database D to find the support for these
candidate sequences
— Candidate Elimination:
¢ Eliminate candidate k-sequences whose actual support is less than minsup

Extracting Sequential Patterns

e Given nevents: iy, iy, g, ..., I,

e Candidate 1-subsequences:
<{i1}>, <{i}>, ig}>, ..., <{i}>
e Candidate 2-subsequences:
<{iy, i}>, <{iy, i5}>, ..., <{i} {i1}>, <{is} {i}>, ..o, <{ip 4} {i}>

e Candidate 3-subsequences:
<{iq, iy, Ia}>, iy, ip, 193>, ooy <{iy, i {igd>, <{iy, it {ig}>, -,

<{ig} {iy, i3> <{ig}{iy, i5}>, oo, <{igh {ig} {ig}>, <{ig} {is} {i}>, ...

e Remark: events within a element are ordered
YES: <{i,, i,, is}> NO: <{is, i, i,}>

Candidate Generation

e Base case (k=2):
— Merging two frequent 1-sequences <{i,}> and <{i,}> will produce two
candidate 2-sequences: <{i;} {i,}> and <{i;iy}>
— Special case: i; can be merged with itself: <{i,} {i;}>

e General case (k>2):

— Afrequent (k-1)-sequence w, is merged with another frequent
(k-1)-sequence w, to produce a candidate k-sequence if the subsequence
obtained by removing the first event in w, is the same as the one obtained
by removing the last event in w,

— The resulting candidate after merging is given by the sequence
w, extended with the last event of w.,.

— If last two events in w, belong to the same element => last event in w, becomes
part of the last element in w: <{dH{a}{b}> + <{a}{b,c}> = <{d}{a}{b,c}>

— Otherwise, the last event in w, becomes a separate element appended to the end of
Wi <{a,d{b}> + <{d}{b}{c}> = <{a,d{b}{c}>
— Special case: check if w, can be merged with itself

— Works when it contains only one event type: < {a} {a}> + <{a} {a}> = < {a} {a} {a}>

Candidate Generation Examples

e Merging the sequences
w,=<{1} {2 3} {4}> and w, =<{2 3} {4 5}>
will produce the candidate sequence < {1} {2 3} {4 5}> because the
last two events in w, (4 and 5) belong to the same element

e Merging the sequences
w,=<{1} {2 3} {4}> and w, =<{2 3} {4} {5}>
will produce the candidate sequence < {1} {2 3} {4} {5}> because the
last two events in w, (4 and 5) do not belong to the same element

e \We do not have to merge the sequences
wy =<{1} {2 6} {4}> and w, =<{1} {2} {4 5}>
to produce the candidate < {1} {2 6} {4 5}>

e Notice that if the latter is a viable candidate, it will be obtained by merging w, with
<{2 6} {4 5}>

Candidate Pruning

e Based on Apriori principle:

e If a k-sequence W contains a (k-1)-subsequence that is not
frequent, then W is not frequent and can be pruned

e Method:

e Enumerate all (k-1)-subsequence:
o {a,b}{cHd} > {bHcHd}, {al{cHd}, {a,b}{d}, {a,b}c}
e Each subsequence generated by cancelling 1 eventin W
e Number of (k-1)-subsequences = k
e Remark: candidates are generated by merging two “mother” (k-1)-
subsequences that we know to be frequent
e Correspond to remove the first event or the last one
e Number of significant (k-1)-subsequences to test =k — 2

e Special cases: at step k=2 the pruning has no utility, since the only (k-1)-
subsequences are the “mother” ones

GSP Example

Frequent
3-sequences

< (1} {2} {3} > Candidgte
<{1}{25}> Generation \
<{1}{5} {3} > _
< {2} {3} {4} > < {1} {2} {3} {4} > Candidate
<{25}{3} > <{1}{2 5} {3} > Pruning
s 1
< {5} {34} > < >
OHE4 <{25}{34}> <{1}{2 5} {3} >

GSP Exercise

e Given the following dataset of sequences

ID Sequence

1 ab — a — b
2 b —> a —> cd
3 a —> b

4 a — a — bd

e Generate sequential patterns if min_sup = 35%

GSP Exercise - solution

Sequential pattern Support

100 %

100 %

50 %

50 %

75 %

50 %

50 %

VD[O|O[O[O[S[JO[|O

LIV LY

VIV O|T|OD

— b 50 %

Timing Constraints

Motivation by examples:

« Sequential Pattern {milk} - {cookies}
« It might suggest that cookies are bought to better enjoy milk

* Yet, we might obtain it even if all customers by milk and after 6
months buy cookies, in which case our interpretation is wrong

« {cheese A} = {cheese B}

 Does it mean that buying and eating cheese A induces the
customer to try also cheese B (e.g. by the same brand)?

« Maybe, yet if they are bought within 20 minutes it is like that they
were to be bought together (and the customer forgot it)

« {buy PC} - {buy printer}->{ask for repair}
« |sita good or bad sign?

* |t depends on how much time the whole process took:
« Short time => issues, Long time => OK, normal life cycle

Timing Constraints

« Define 3 types of constraint on the instances to consider
 E.g. ask that the pattern instances last no more than 30 days

X4 Max-gap = Each element of the pattern
instance must be at most x_ time
9
{A B} {C} {D E} after the previous one
< <=Xq :"9 ‘ ng: min-gap - Each element of the pattern
| | instance must be at least n, time
<=m, after the previous one
m,: maximum span - The overall duration of the pattern
instance must be at most mg
Xg=2,ny=0,m=4 -> consecutive elements at most distance 2
& overall duration at most 4 time units
Data sequence Subsequence Contain?
<{2,4}{3,5,6} {4,7} {4,5} {8} > < {6} {5} > Yes
<{1}{2} {3} {4} {5}> <{1}{4}> No
<{1}{2,3} {3,4} {4,5}> <{2} {3} {5} > Yes
<{1,2}{3}{2,3} {3,4} {2,4} {4,5}> <{1,2}{35}> No

Mining Sequential Patterns with Timing Constraints

e Approach 1:
— Mine sequential patterns without timing constraints
— Postprocess the discovered patterns

— Dangerous: might generate billions of sequential
patterns to obtain only a few time-constrained ones

e Approach 2:

— Modify GSP to directly prune candidates that violate
timing constraints

— Question:
+ Does Apriori principle still hold?

Apriori principle with time constraints

e Case 1: max-span

e Intuitive check
- Does any input sequence that contains S2 will also contain S1 ?

\6

nput sequence

} > i\
Span for S, : Span = 4 J
Span for S, : \ Span = 1 |

e When S1 has less elements, S1 span can (only) decrease
- If S2 span is OK, then also S1 span is OK \'

Apriori principle with time constraints

e Case 2: min-gap

e Intuitive check
- Does any input sequence that contains S2 will also contain S1 ?

/
Input sequence / /
} { o
Gaps for S, : Gap =1 Gap =3 J
Gaps for S, : \ Gap = 4 }

e When S1 has less elements, gaps for S1 can (only) increase
- If S2 gaps are OK, they are OK also for S1 \

Apriori principle with time constraints

e Case 3: max-gap

e Intuitive check
- Does any input sequence that contains S2 will also contain S1 ?

/
Input sequence / /
@) { @
Gaps for S, : Gap = 1 Gap = 3 [
Gaps for S, : \ Gap = 4 [

e When S1 has less elements, gaps for S1 can (only) increase
- Happens when S1 has lost an internal element w.r.t. S2 X
- Even if S2 gaps are OK, S1 gaps might grow too large w.r.t. max-gap

Apriori Principle for Sequence Data

Object Timestamp Events
A 1 1,2,4
A 2 2,3
A 3 5
B 1 1,2
B 2 2,3,4
C 1 1, 2
C 2 2,3,4
C 3 2,45
D 1 2
D 2 3,4
D 3 4,5
E 1 1,3
E 2 2,4,5

Suppose:

Xy = 1 (max-gap)

ng = 0 (min-gap)

mg = 5 (maximum span)

minsup = 60%

<{2} {5}> support =40%
but
<{2} {3} {5}> support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Contiguous Subsequences

e sis a contiguous subsequence of

w=<e,><e,>...<e’>

if any of the following conditions hold:

1.
2.

s is obtained from w by deleting an item from either e, or e,

s is obtained from w by deleting an item from any | Key point: avoids
element e, that contains more than 2 items internal ‘jumps”

s is a contiguous subsequence of s'and s’ is a Not interesting
contiguous subsequence of w (recursive definition) for our usage

e Examples:s=<{1}{2}>

IS a contiguous subsequence of
<{1}{23}> <{12} {2} {3}>,and < {3 4} {1 2} {2 3} {4} >

is not a contiguous subsequence of
<{1}{3}{2}> and < {2} {1} {3} {2}>

Modified Candidate Pruning Step

e Without maxgap constraint:

— A candidate k-sequence is pruned if at least one of its
(k-1)-subsequences is infrequent

e With maxgap constraint:

— A candidate k-sequence is pruned if at least one of its
contiguous (k-7)-subsequences is infrequent

— Remark: the “pruning power” is now reduced
— Less subsequences to test for “killing” the candidate

— Question: what is the “pruning power” when all
elements are singletons?

Other kinds of patterns for sequences

e In some domains, we may have only one very long
time series

— Example:
+ monitoring network traffic events for attacks
+ monitoring telecommunication alarm signals

e Goal is to find frequent sequences of events in the
time series

— Now we have to count “instances”, but which ones?
— This problem is also known as frequent episode mining

Pattern: <E1> <E3>

@ =2 E4 E2
E2* E4 E E4 E E5 E E5 E 1
\ i
> ~ _?_ - -~

General Support Counting Schemes

Object's Timeline

Sequence: (p) (9)

Method Support

COBJ

} CWIN

p P P
P P 4949 49 494 (q
1 2 3 4 5 6
o —
—e
——o
*—
. ®
*——o
| o —]
— o
—o
o——— 0
*—2
——
o
S e

} CMINWIN

} CDIST_O
} CDIST

Count

1

6

4

Assume:
Xy = 2 (max-gap)
n, = 0 (min-gap)

mg = 2 (maximum span)

