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Networks evolve

internet in 1982.. ..and now!
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Networks evolve

online communities in 2007 ..and in 2010
source: xkcd.com
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Questions

• How does a network evolve over time?

• Is the evolution somehow regular?

• Can we predict new links?

• Is the evolution characterized by important eras?

• How do we find and characterize them?
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Link Prediction

Given a snapshot of a social network at time t (or network evolution between t1 and t2), we seek to

accurately predict the edges that will be added to the network during the interval from time t (or t2)

to a given future time t′.
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LP - Applications

Overcoming the data-sparsity problem in recommender
systems using collaborative filtering (Huang et al, 2005).
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LP - Applications

Identifying the structure of a criminal network
Predicting missing links in a criminal network using incomplete
data.
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LP - Applications

Accelerating a mutually beneficial professional- or academic
connection that would have taken longer to form
serendipitously (Farrell et al, 2005).
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LP - Applications

To analyze users’ navigation history to generate tools that
increase navigational efficiency (Zhu 2003)
i.e. Predictive server prefetching
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LP - Applications

Monitoring and controlling computer viruses that use email as a
vector (Lim et al, 2005).
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LP - Methods

• Assign a connection weight score(x, y) to pairs of nodes x,
y, based on the input graph, and then produce a ranked list
in decreasing order of score(x, y)

• Can be viewed as computing a measure of proximity or
“similarity” between nodes x and y

• Supervised vs unsupervised
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LP - Commong Neighbors

Newman 2001: The probability of scientists collaborating
increases with the number of other collaborators they have in
common.
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LP - Jaccard Similarity

May be they have common neighbors because each one has a
lot of neighbors, not because they are strongly related to each
others
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LP - Preferential Attachment

Newman 2001: The probability of co-authorship of x and y is
correlated with the product of the number of collaborators of x
and y
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LP - Adamic Adar

This gives more weight to neighbours that are not shared with
many others.
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LP - Comparisons
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Learning and Predicting the Evolution of a Network

Given n snapshots of an evolving
network G1 . . .Gn we want to mine
patterns such as

time t time t+3 time t+7

Support=245

to learn and predict the evolution of a network at the local level

Bringmann, Berlingerio, Bonchi, Gionis, IEEE Intelligent Systems 2010
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Learning and Predicting the Evolution of a Network

GERM, a new constraint-based frequent
subgraph mining algorithm

Algorithm 1
SubgraphMining(G,S, s)

if s 6= min(s) then return // using our canonical form
S ← S ∪ s
enumerate all s′ potential children with one edge growth
for all enumerated s′ do

// considering ∆ offset and our support definition
if σ(s′,G) ≥ minSupp then

SubgraphMining(G, S, s′)
end if

end for

and get:
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Learning and Predicting the Evolution of a Network
Results:

Rules characterize
networks:

GERM-based
prediction helps:
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Discovery of Eras in Evolving Networks

Given n snapshots of an evolving network G1 . . .Gn we want
detected eras of evolution

• Cluster the snapshots at the global level
• Allow for evolution within one era
• Two eras characterized by different speed of evolution
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Framework for Era Discovery
• Extraction of a time evolving network from real data

• Definition of a measure of dissimilarity among temporal
snapshots of the same data

• Definition of clusters giving thresholds of such dissimilarity

• Merge of two (consecutive) clusters

• Assigning labels to clusters

• Realization of a dendrogram summarizing the clusters

Berlingerio, Coscia, Giannotti, Monreale, Pedreschi. M3SN2010 & PAKDD2010 & IDA Journal 2011
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Dissimilarity measure
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Figure: Evolution of the Jaccard Coefficient in DBLP
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Dissimilarity measure

Jaccard plot
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Dissimilarity measure
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Jaccard plot
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Dissimilarity measure

dist(b)
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b

Jaccard plot
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Dissimilarity measure

dist(b)

a

b

Jaccard plot

d(ti , tj) =
{

dist(tmax(i,j)) if |i − j | = 1
undefined otherwise
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Dissimilarity measure
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Figure: Dissimilarity Measure in DBLP
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Eras on DBLP
DBLP - edges
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How to add semantic?

Labels assigned via TF/IDF

Start End Labels
1980 1982 pascal, language, database, data, micro-computer
1983 1985 prolog, database, online, abstract, expert
1987 1991 parallel, program, logic, abstract, database
1992 1996 parallel, program, logic, object oriented, computer
1997 1999 model, parallel, design, distributed, image
2001 2003 model, data, network, design, image
2004 2005 network, model, algorithm, web, data
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Eras on DBLP
DBLP - edges
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How to add semantic?

Labels assigned via TF/IDF

Start End Labels
1980 1982 pascal, language, database, data, micro-computer
1983 1985 prolog, database, online, abstract, expert
1987 1991 parallel, program, logic, abstract, database
1992 1996 parallel, program, logic, object oriented, computer
1997 1999 model, parallel, design, distributed, image
2001 2003 model, data, network, design, image
2004 2005 network, model, algorithm, web, data
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Eras on IMDb
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Figure: Dissimilarity Measure in DBLP
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Lessons learned..

• Network evolution is characterized by some regularity
(evolution model)

• The network evolution model may be a sum of weaker
signals

• The evolution model(s) may vary its/their speed
(parameters)
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Thank you!

Questions?


	Introduction
	Link Prediction
	Problem and Applications
	Methods

	Detection of Eras
	Problem
	Framework
	Results


