Mobility Data Mining

Case Studies
Contents

• Corporate Users
 – Geomarketing
 – Monitoring Driving-based Segmentation

• Individual Users
 – Self-awareness
 – Proactive Carpooling

• Public Sector
 – Urban Mobility Atlas
 – Borders
Services Towards Corporate Users

Geomarketing
Problem definition

Based on the trajectories of a sample of population, what is the best place to open a new shop / mall?
The “best” place

Experts' knowledge: best place to open a mall is where people pass during everyday activities

Area crossed by road segments with a high frequency of systematic travels of people
Systematic movements

Step 1: Map-matching

- See users' movements as sequences of road segments.

Step 2: Mobility profiles

- Select only systematic movements.

User’s systematic movement: L1 → L2
Frequently visited road segments

- Aggregate systematic movements by road segments
- Set a threshold to select the frequent ones

Frequency threshold: 150 users
Candidate areas for a mall

Using a spatial clustering we can extract cluster of frequent road segments which are spatially close each other.

- Distance of 2 segments
- Compare vertices
- Draw clusters as convex hull

Clustering tolerance: 200 meters
Temporal evolution

Repeat this process for each hour of the day and analyze how they evolve.
Services Towards Corporate Users

Monitoring Driving-based Segmentation
Segmentation and monitoring

- Mobility application scenario of the LIFT European project

- Focused on distributed monitoring technologies
Scenario context & motivation

Customer segmentation: a marketing strategy that involves dividing a broad target market into subsets of consumers who have common needs.

Needs: car insurance companies would like to define customer segments that capture different driving profiles.

- Each segment could then be offered suitable contract conditions.

Opportunities: the vehicles insured by some companies have on-board GPS devices that can trace their movements.

- They could aggregate such traces into driving habit indicators based on recent history for the driver and transmit them.
Scenario description

Driving indicators

- **Each vehicle** continuously keeps track of recent movements, compute aggregate indicators and sends them to controller.

Profile extraction

- **The controller** uses initial indicator values to build clusters of drivers, each corresponding to a “driving profile.”

Profile monitoring

- **The controller** continuously checks updates to verify that the driving profiles extracted are still good enough.
Step 1: Features for individual mobility behaviors

- Indicators for recent mobility behaviors
- Computed over recent history \rightarrow sliding window

- Include information derivable from standard GPS devices
Step 1: Features for individual mobility behaviors

- Which features?
 - Superset of those currently used by insurance companies

How fast I drive w.r.t. speed limits
Where I drive w.r.t. road categories
How dynamic I drive w.r.t. acc-/decelerations
Features over sliding window

- Length = traveled distance
- Duration = time spent driving
- Count = number of trips
- Phighway = % km on highways
- Pcity = % km inside cities
- Length_arc_crowded = km on 20% most crowded roads
- Pnight = % km in night time
- Pover = % km over speed limit
- Profile = % of km on systematic trips
- Radius_g = radius of gyration
- Radius_g_L1 = radius of gyration w.r.t. L1
- Avg_Dist_L1 = average distance from L1
- TimeL1L2 = % time spent on L1 and L2
- EntropyArc = entropy on road segment frequencies
- EntropyLocation = entropy on location frequencies
- EntropyTime = entropy on hours of the day

Basic aggregates

Aggregates on spatial / temporal selection

Count of events

Spatial/Temporal distribution
Correlation analysis

Correlation coefficients:
- radius_g_l1: 0.99
- avg_length_l1: 0.84
- duration: 0.84, 0.72
- entropy_re: 0.79, 0.72
- length: 0.84, 0.73, 0.99
- pcity: 0.87
- phighway: 0.9, 0.76
- length_earth: 0.78, 0.73
- crowded: 0.75
- center: 0.72
- location: 0.75
- time: 0.73, 0.72
- profile
- time_1_2
- crowed
- location
Features over sliding window

- Length = traveled distance
- Duration = time spent driving
- Count = number of trips
- Phighway = % km on highways
- Pcity = % km inside cities
- Length_arc_crowded = km on 20% most crowded roads
- Pnight = % km in night time
- Pover = % km over speed limit
- Profile = % of km on systematic trips
- Radius_g = radius of gyration
- Radius_g_L1 = radius of gyration w.r.t. L1
- Avg_Dist_L1 = average distance from L1
- TimeL1L2 = % time spent on L1 and L2
- EntropyArc = entropy on road segment frequencies
- EntropyLocation = entropy on location frequencies
- EntropyTime = entropy on hours of the day

Basic aggregates

Aggregates on spatial / temporal selection

Count of events

Spatial/Temporal distribution
Features normalization

- Log transformation for features with skewed distribution
- Z-score normalization for all features
(2) Compute driving profiles

• Clustering-based definition
 – Profile = representative set of indicators for a large group of drivers with similar behaviors (i.e. similar indicator values)

• Clustering method
 – **K-means** – a partitional, center-based clustering algorithm
 – **Euclidean distance** over driving indicators
 – Refinements: Iterated K-means & select best solution + Noise removal

• Profile = average point of each cluster
Cluster refinement

- Iterated K-means
 - Run clustering multiple times (→ initial random seeding)
 - Select output with best quality
 - Based on clusters compactness (→ SSE – see definition later)
- Noise removal
 - Performed at postprocessing
 - From each cluster, remove points p such that
 \[d(p, c) > 2 \text{ median } \{ d(x, c) \mid x \text{ in cluster} \} \]
 where c is the cluster center
 - Alternative solutions are possible
 - e.g.: density-based noise removal
Experimental setting

- GSP traces of an insurance company customers
 - 35 days monitoring
- Sample of ~11k vehicles moving in the area
- Short temporal thresholds for testing purposes
 - Compute driving indicators over a sliding window of 3 days

 \[
 \text{width} = 72\text{h}
 \]
 - Update indicators every 15'
 - Most likely larger in a real application – parameter tuning to be done with domain experts
Experiments: clusters inspection

- Explorers
- Long-range commuters
- Sunday drivers
(3) Driving profiles monitoring

- Translated to “cluster quality monitoring”

- Quality measure: $SSE = \text{Sum of Squared Errors}$
 - Given a clustering $C = \{ C_1, \ldots, C_k \}$, and average points m_i for each cluster C_i

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$
(3) Driving profiles monitoring

Definition 1 (Cluster Monitoring Problem).
Given a clustering $C = \{C_1, \ldots, C_k\}$ having initial SSE equal to SSE_0, and given a tolerance $\alpha \in \mathbb{R}^+$, we require to ensure that at each time instant t the following holds for the SSE of the (dynamic) dataset D_t:

$$SSE_t \leq (1 + \alpha)SSE_0$$

When that does not happen, a recomputation/update of cluster assignments should be performed.
Monitoring process

Initialization: compute clusters, cluster centers (used as reference points for Safe Zones) and distribute SSE thresholds to clusters
Monitoring process

Node-level test: each node checks to be within the safe zone

Cluster-level test: check that SSE\(^{(i)}\) does not exceed threshold

Clustering-level test: checks that global SSE does not exceed threshold

Re-clustering
Experiments: communications / strict problem def.

Communications from controller w/ broadcasting: between 1.23% and 2.34%, dominated by balancing
Services Towards Individual Users

Self-awareness
Self-awareness services

- Mobility-based specialization of self-awareness services for generic users
 - Provide summary of activity of the user
 - Provide comparison against collectivity
Self-awareness services

• Summaries based on
 – Temporal statistics
 – Spatial statistics / distributions
 – Movement aggregates
User's activity summaries

- A real example
Comparison against collectivity

- In space

City hotspots

User's hotspots
Comparison against collectivity

- In time
Comparison against collectivity

- On general statistics
 - KM traveled per month
 - Total duration of travels
 - Speed vs. Length of trips
 - Radius of gyration
Services Towards Individual Users

Proactive Carpooling
Proactive car pooling

Application developed within the EU project ICON
Carpooling cycle

Context

• Several initiatives, especially on the web
Carpooling cycle
Distinctive features

Traditional approach vs. Data-driven cycle

- Users manually insert and update their rides
- Users search and contact candidate pals
- Users make individual, "local" choice
- System autonomously detect systematic trips
- System automatically suggest pairings
- System seeks globally optimal allocation
Carpooling cycle
Assumptions

- Users provide access to their mobility traces
Carpooling cycle
Step 1: Inferring Individual Systematic Mobility

• Extraction of Mobility Profiles
 – Describes an abstraction in space and time of the systematic movements of a user.
 – Exceptional movements are completely ignored.
 – Based on trajectory clustering with noise removal
Carpooling cycle
Step 2: Build Network of possible carpool matches

- Based on “routine containment”
 - One user can pick up the other along his trip

- Carpooling network
 - Nodes = users
 - Edges = pairs of users with matching routines
Carpooling cycle
Step 3: Optimal allocation of drivers-passengers

- Given a Carpooling Network N, select a subset of edges that minimizes $|S|$.
 - S = set of circulating vehicles

provided that the edges are coherent, i.e.:
 - indegree(n) = 0 OR outdegree(n) = 0 (a driver cannot be a passenger)
 - indegree(n) \leq capacity(n)
Carpooling cycle

Input mobility data

DM: Extract mobility profiles

Build Carpooling network

CP: Optimal allocation

Users accept/reject suggestions
Carpooling cycle Improvement

• In carpooling (especially if proactive) users might not like the suggested matches
 – Impossible to know who will accept a given match
 – Modeling acceptance might improve results

• Two new components
 – **Learning** mechanism to guess success probability of a carpooling match
 – **Optimization** task exploits it to offer solution with best expected overall success
Carpooling cycle revised

Input mobility data

Users accept/reject suggestions

DM: Extract mobility profiles

Training data

CP: Allocation with best expected success

ML: Learn/update success model

Weighted Carpooling network
Carpooling cycle
Learning a success model

• **Input**: set of features describing a single carpooling pair
• **Output**: success probability p in $[0,1]$
• 36 Features adopted
 - **Ease of carpooling**: $\text{space_dist_start_pickup}$, $\text{space_dist_end_drop_off}$,
 $\text{time_dist_start_pickup}$, $\text{time_dist_end_drop_off}$, $\text{time_pick_up_get_off}$,
 start_together, end_together, $\text{distance_between_homes}$,
 $\text{dist_between_works}$

 - **Personal features** (of both driver and passenger): age, gender,
 marital_status, occupation, is_smoker, has_children, has_animals,
 car_free_seats → Cannot be inferred, need external data

 - **Past personal history in the service** (of both driver and passenger):
 last_driver_accepted, last_passenger_accepted, %_acceptance_driver,
 %_acceptance_passenger

 - **History of the two users together** (if any): last_accepted_pair,
 last_rejected_pair, %_accepted_pair
Carpooling cycle
Learning a success model

• Model selected: “probability estimation tree”
 → simple decision tree with assigned probabilities of prediction in the leaves

- \(P(Yes) = \frac{6}{10} = 60\% \)
- \(P(Yes) = \frac{3}{13} = 23\% \)
Carpooling cycle
Revised optimization model

• Given a Carpooling Network N, select a subset W of edges that maximize

 $$\sum p(w) \mid w \in W$$

provided that the edges are coherent, i.e.:

 – $\text{indegree}(n) = 0$ OR $\text{outdegree}(n) = 0$ (a driver cannot be a passenger)
 – $\text{indegree}(n) \leq \text{capacity}(n)$
Carpooling cycle
Two usage scenarios

• Scenario 1:
 - Real service is implemented, with real users interacting (accept/reject suggestions)

• Scenario 2:
 - Simulation environment where the users' behaviour is simulated through a model
 - Mobility data is taken from historical traces
 - Useful to perform what-if analyses on
 - (i – social) effects of different users' behaviours
 - (ii – performances) effects of different learning strategies
Carpooling cycle
Scenario 2 – sample results

• Profiles involved in carpooling network
Carpooling cycle
Scenario 2 – sample results

- Prediction models

Iteration 0
- is_smoker_p: 0.51763342041
- car_free_seats_d: 0.196822768067
- space_dist_end_drop_off: 0.161445930025
- space_dist_start_pickup: 0.124097881498
- time_dist_start_pickup: 0.0
- last_accepted_pair: 0.0
- l1_l1_dist: 0.0
- age_d: 0.0
- gender_p: 0.0
- has_children_p: 0.0

Iteration 4
- last_accepted_pair: 0.300609683595
- _accepted_pair: 0.18422352604
- gender_d: 0.121782490916
- is_smoker_d: 0.096830535215
- l1_l1_dist: 0.0947711528021
- is_smoker_p: 0.0921934235296
- age_p: 0.0549409842076
- gender_p: 0.0396236591312
- time_dist_start_pickup: 0.00874162379163
- car_free_seats_d: 0.00628292077177
Carpooling cycle
Scenario 2 – sample results

- Performances
Services Towards Public Sector

Urban Mobility Atlas
Dynamics of urban mobility
Impact of Systematic Mobility

Access Routes
Systematic Mobility (%)
Pisa – Incoming traffic
Pisa – Outgoing Traffic
… and Comparison

Florence

Montepulciano
Services Towards Public Sector

Mobility-based Redefinition of Borders
Mobility coverages
Step 1: spatial regions
Step 2: evaluate flows among regions
Step 3: forget geography
Step 4: perform community detection
Step 4: perform community detection
Step 5: map back to geography
Step 6: draw borders
Final result
Final result: compare with municipality borders
Borders in different time periods

Only weekdays movements

Similar to global clustering: strong influence of systematic movements

Only weekend movements

Strong fragmentation: the influence of systematic movements (home-work) is missing
Borders at regional scale
Final results
Comparison with “new provinces”