Mobility Data Mining

Mobility Analytics on Mobile Phone data
What are GSM data

- Most popular resource for mobile phone data
- In principle, several kinds of data
GSM data types

CDR
Who calls, where and when

Call Graph
Who calls whom and when

Hand over
Inter-cell flow counts
GSM infrastructure

- Aimed at providing voice/data telecom.
GSM data - Description

Call Data Record (CDR)

Data gathered from mobile phone operator for billing purpose

<table>
<thead>
<tr>
<th>User id</th>
<th>Time start</th>
<th>Cell start</th>
<th>Cell end</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10294595</td>
<td>"2014-02-20 14:24:58"</td>
<td>"PI010U2"</td>
<td>"PI010U1"</td>
<td>48</td>
</tr>
<tr>
<td>10294595</td>
<td>"2014-02-20 18:50:22"</td>
<td>"PI002G1"</td>
<td>"PI010U2"</td>
<td>78</td>
</tr>
<tr>
<td>10294595</td>
<td>"2014-02-21 09:19:51"</td>
<td>"PI080G1"</td>
<td>"PI016G1"</td>
<td>357</td>
</tr>
</tbody>
</table>
GSM data - Description

- Distinction between antenna and tower
 - Usually one “tower” carries 3 directional antennas
- Which one is in the data depends...
Pros and cons of using GSM data

Pros
- Passive sensing: does not require an active contribution of the users
- Contains huge amount of information of how, when, with whom we communicate
- Same data format in all the world

Cons
- Poor demographic and economic data
- Privacy concern: different legislations for different countries
- Low sampling: few events of calls for a considerable amount of users
Simple CDR-based statistics
Daily pattern behavior
Weekly pattern behavior
How many times we call?
How long we talk on the phone?
How many minutes goes by a call to the next?
Theoretical model of call durations

- **Truncated Lazy Contractor (TLAC)**

\[
PDF_{TLAC}(x) = \frac{\exp(z(1 + \sigma) - \mu)}{(\sigma(1 + e^z))^2}
\]

de Melo-Akoglu-Faloutsos-Loureiro.
Surprising Patterns for the Call Duration Distribution of Mobile Phone Users. ECML PKDD 2010.
Join the *spatial* part of the mobile phone data
From CDR to Geography:
CDRs describe where the calls started
From CDR to Geography:
CDRs describe where the calls started

Voronoi tessellation
Spatial distribution of calls

High presences of people within the working area of Pisa
Observing the mobility of individuals
Mobility Behaviours

From CDR to how users move within a territory

- The phone towers are shown as grey dots
- The trajectory describes the user's movements during 4 days (each day in a different color).
Characteristic distance traveled by an individual

radius of gyration produces heavy tails

\[r_g = \sqrt{\frac{1}{N} \sum_{i \in L} n_i (\vec{r}_i - \vec{r}_{cm})^2} \]
Estimating movements

- Reconstruct individual mobility through consecutive locations (individual flows)
- If $|\text{time(Call}_1\text{)} - \text{time(Call}_2\text{)}| < \Delta T$
 then consider movement $\text{Call}_1 \rightarrow \text{Call}_2$
- Issue: how to choose threshold?
 - Large ΔT => spurious data
 - Small ΔT => miss data
Estimating movements
Estimating movements

• Example on Pisa city
Estimating movements

- Example on Abidjan (Ivory Coast)

Sample application: Analyzing tourist data

- Case study of foreign (roaming) visitors of Paris area
- Users arriving and leaving at CDG airport

106,000 Users
Distribution of visiting time

![Graph showing the distribution of visiting time over hours. The x-axis represents hours, and the y-axis represents the number of users. There are vertical lines at 20, 40, 60, 120, and 180 hours, indicating 1 day, 2 days, and 5 days respectively. The graph shows a decline in the number of users over time, with a significant drop after 1 day, a smaller drop after 2 days, and a further decline after 5 days.]
Categorization of tourists

- **Short period stay Tourist** (1 day → 2 days)
- **Medium period stay Tourist** (2 day → 5 days)
- **Long period stay Tourist** (5 day → 7 days)
Density map (Short stay)

Short stay tourists visit the very center of Paris and go back to the airport to leave.
Density map (Medium stay)

Medium stay tourists visit the center of Paris mostly but Versailles and Disneyland appear as new destinations.

Green = Disneyland Paris
Red = Versailles
Density map (Long stay)

Long stay tourists visit the center of Paris, Versailles and Disneyland as major destinations, but they also leave Paris toward the surrounding areas.

Green = Disneyland Paris
Red = Versailles
Blue = Highway/Train to Mante la jolie
Black = Highway to South-West
Point of Interests and Towers

The trajectories jump between towers which do not correspond to the exact position of the POIs. To perform the mapping we defined a mapping between the towers and POIs:

\[
\text{Weight} = \frac{1}{\text{#neighboring POIs}}
\]
Comparison with Ticketing data

There are differences between the ticketing data and GSM-based density, we discovered that they are comparable only in the places where the ticket is necessary and the data is not estimated.
Understanding Individual Mobility

- Difficult task: high variability of behaviours
Understanding Individual Mobility

• Difficult task: several low frequency users
Identifying important locations

- Home (residence) and Work play an important role in understanding urban mobility
- "Personal Anchor Points": high-frequency visited places of a user
 - Select top 2 cells with max number of days with calls
 - Determine home and work through time constraints:
 - average start time of calls and its deviation
Identifying important locations

- “Personal Anchor Points”

Identifying important locations

- Estimating users' **residence through night activity**
 - Home = region with highest frequency of calls during nighttime
- First issue: cells might not correspond perfectly to the regions to measure
- Second issue: cells might not have uniform density of population

Pierre Deville et al.
Dynamic population mapping using mobile phone data.
PNAS vol. 111 no. 45, pp. 15888–15893, doi: 10.1073/pnas.1408439111
Identifying important locations

- First issue: cells might not correspond perfectly to the regions to measure

\[\sigma_{c_i} = \frac{1}{A_{c_i}} \sum_{v_j} \sigma_{v_j} A_{(c_i \cap v_j)} \]

- Approach: each cell contributes proportionally to its overlap with the region
Identifying important locations

- Second issue: cells might not have uniform density of population

- Approach: integrate external indicators of relative density – e.g. from environment and infrastructures – to distribute cells' contrib.

\[
\rho_i^{RS} = \frac{w_i}{\sum_j w_j} P
\]
Identifying important locations

- Linear or superlinear relation?
 - $\rho_c = \text{population density}$
 - $\sigma_c = \text{mobile phone residents}$
 - $P = \text{national population (real vs. estimated)}$

$$\rho_c = \frac{P}{\hat{P}} \alpha \sigma_c^\beta$$
Identifying important locations

- Sample results on Portugal

A = Census B = GSM data C = Environment/Infrastructures-based
Identifying important locations

- Sample results on Portugal (close-up)

D = Census E = GSM data F = Environment/Infrastructures-based
Identifying important locations

- Sample results

A = GSM data B = Environment/Infrastructures-based
Identifying important locations

- Sample usage: evaluate seasonal changes
 - Summer variations vs. Winter period
Classifying into **city users** categories
Basic methodology: Sociometer

- GSM calls used as proxy of users' presence in a specific area
- 3 categories used: Residents, Commuters, Visitors

GSM Calls

Temporal Profile

Computation

Profile Map

Residents

Commuters

Visitors/Tourists
Sociometer
Step 1: build individual profiles

- Derive presence distribution for each < user, municipality >

\[t_1 = [00:00-08:00), \]
\[t_2 = [8:00-19:00), \]
\[t_3 = [19:00-24:00) \]
Sociometer 2.0
Step 1: build individual profiles

- Result for each user: set of individual profiles:
Sociometer 2.0
Step 2: find representative profiles across all dataset

• Based on clustering
 – simple k-means: start with K random representatives, and iteratively refine them
 – in our experiments, k=100

• Output: set of reference (unlabelled) profiles
Sociometer 2.0
Step 3: associate representative profiles to categories

- Manual labelling
 - Use fuzzy rules, difficult to formalize
 - Crisp classification, no weights (reliability of labels)
Sociometer 2.0

Step 3bis: consistency check / labels distribution / fix bugs

- Profiles (individual and representative) are 24-dimensional
- MDS (24 → 2) to visualize them
Sociometer 2.0
Step 4: label propagation

- Simple k-NN classification, k=1
 - Associates each individual profile to the closest representative profile
- So far, no voting schema (k>1) was used
Sociometer 2.0
Step 5: aggregate into presence stats and O/D flows

• Presence aggregates
 – Residents = Static + Dynamic residents

• Kind of flows represented:
 – Dynamic residence → sites of commuting
 – Dynamic residence → sites of occasional visits
ISTAT Persons & Places project

• Ultimate goal: Use Big GSM data to
 – Estimate user categories on a given territory
 – Infer O/D matrix across municipalities

• Goal of this project:
 – Apply/adapt GSM-based user categorization (Sociometer) on municipalities of a large territory
 – Infer partial O/D matrix
 – Direct/Indirect comparison against official data

• GSM 4-weeks Dataset on Pisa and Lucca provinces
Static residents GSM

Correlazione residenti GSM riscalati residenti ISTAT

\[y = 174.18 + 0.45x \quad r = 0.977 \]
Dynamic residents (outgoing)
Sample results / 1
Home-Work
Sample results / 2
Home-Visits
A multidimensional data driven study of human behavior
Goals

- Understanding the complex relationships between several social aspects:

 - Sociality
 - Mobility
 - Economy
Goals

- Mobile phone data are used as a proxy for both human mobility and social interactions.

- The economic dimension (at municipality level) is provided by INSEE (French National Institute of Statistics and Economic Studies).
Goals

Individual level
(individual social and mobility measures)

Spatial level
(municipality, urban area, department, region)

Community level
(overlapping and non overlapping communities)

aggregation
Mobility measures

- The **radius of gyration** of a user is the characteristic traveled distance, a measure of how far she is from her center of mass.

\[
\vec{r}_{cm} = \frac{1}{N} \sum_{i \in L} n_i \vec{r}_i
\]

\[
r_g = \sqrt{\frac{1}{N} \sum_{i \in L} n_i (\vec{r}_i - \vec{r}_{cm})^2}
\]
Mobility entropy
Social measures

- **Social diversity** captures the social diversity of communication ties within an individual’s social network. We quantify topological diversity as a function of the Shannon entropy.

\[
D_{social}(i) = -\frac{\sum_{j=1}^{k} p_{ij} \log(p_{ij})}{\log(k)}
\]

\[
p_{ij} = \frac{V_{ij}}{\sum_{j=1}^{k} V_{ij}},
\]
Social Diversity
Deprivation Index
What did we do…
Correlation rg vs $dsocial$
What did we do...
Correlation dsocial vs mobility
People tend to connect with individuals having similar radius of gyration
Correlations/dependencies between areas

Discovering urban and country dynamics from mobile phone data with spatial correlation patterns

Roberto Trasarti
Mirco Nanni
Barbara Furletti, Fosca Giannotti

Ana-Maria Olteanu-Raimond
Thomas Couronné
Zbigniew Smoreda, Cezary Ziemlicki
General objective

Focus: observe the way the population density behaves in different areas of the city/region

Objective: spot statistically significant, yet potentially hidden, collective regularities

Approach: discover groups of regions that consistently behave in a coordinated way, suggesting the existence of some kind of connection among them
Examples/1

Set of events frequently happening at same time

- Regions that are tightly connected or all react to some (external) factor

- E.g.: people might tend to concentrate in specific areas during leisure time whenever the weather conditions are exceptionally good
Examples/2

- Sequence of events that frequently happen in a specific order
- Existence of a reaction chain or external factors answered with different reaction times
- E.g. (a chain of events): a large increase of people at a central train station frequently followed by an increase in another station within a few hours
Analysis process

1. Extract events related to population density from raw data
 - Density peaks & valleys might be not meaningful because physiologic to the region
 - E.g., rush hours, crowded stations, etc.
 - Focus on deviations w.r.t. typical population density levels in each region

2. Search frequent combinations of events across different regions
Step 1: estimate density of population

Use Call Detail Records to measure population

• Alternative: heuristics to identify stops

Each GSM tower associated to estimated coverage

Aggregations adopted on larger-scale scenarios

Paris area
Step 2: compute density over a space-time grid

Divide the dataset into days, and days into 24h

- ST grid = GSM cells x Hours
Step 3: detect events

Split the dataset into temporal segments

- **Baseline** segment: compute average density values for each hour of each day of the week
- **Event detection** segment: compare values against baseline to detect events
Step 3: detect events / 2

Event = significant deviation from average

- Deviations are discretized into bins (e.g., 5% bins)
- Deviations smaller than a threshold are neglected
Step 3: detect events / 3

Output: dataset of event sequences:

Day 1: \{(Cell13,+20\%), (Cell5,-15\%)\}_{1A.M.} \rightarrow \{(Cell8,-20\%)\}_{2A.M.} \rightarrow ...

Day 2: \{(Cell3,-30\%)\}_{1A.M.} \rightarrow \{(Cell16,+20\%)\}_{5A.M.} \rightarrow ...

...

Day N: \{(Cell270,-10\%)\}_{2A.M.} \rightarrow \{(Cell71,+20\%), (Cell5,-10\%)\}_{4A.M.} \rightarrow ...
Step 4: correlation patterns/1

- Extract **frequent sequential patterns** of events
 - Frequent itemsets model relations between events that happen at the same time (co-occurrence)
 - Sequential patterns extend that by including ordered sequences of events (chain of events)
- Filter frequent patterns based on a **correlation index**:
 - Comparison against a simplified null model

\[c-index(D) = \frac{\text{supp}(D)}{\prod_i \prod_{d \in D_i} \text{supp}(d)} \]
Step 4: correlation patterns/2

Example:

\[
\{(\text{Cell27, +35\%})\} \to \{(\text{Cell7, +15\%}), (\text{Cell5, +10\%})\} \to \{(\text{Cell13, +5\%})\}
\]
National level example (departments)

Focus on Seine-Saint-Denis