DM& MLfor smart cities

Dino Pedreschi, Fosca Giannotti, Riccardo Guidotti Pisa KDD Lab, ISTI-CNR & Univ. Pisa

http://www-kdd.isti.cnr.it/

Master MAINS 2018

Suggested Bibliography

- Mobility Data: Modeling, Management and Understanding.
 Ed. Edited by Chiara Renso, Stefano Spaccapietra, Esteban
 Zimanyi. Cambridge Press. chapter 10 Car Traffic Monitoring.
 Nanni, Rinzivillo
- M Batty, KW Axhausen, F Giannotti, A Pozdnoukhov, A Bazzani, M Wachowicz. Smart cities of the future. The European Physical Journal Special Topics 214 (1), 481-518, 2012

F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, and R. Trasarti. Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J., 2011

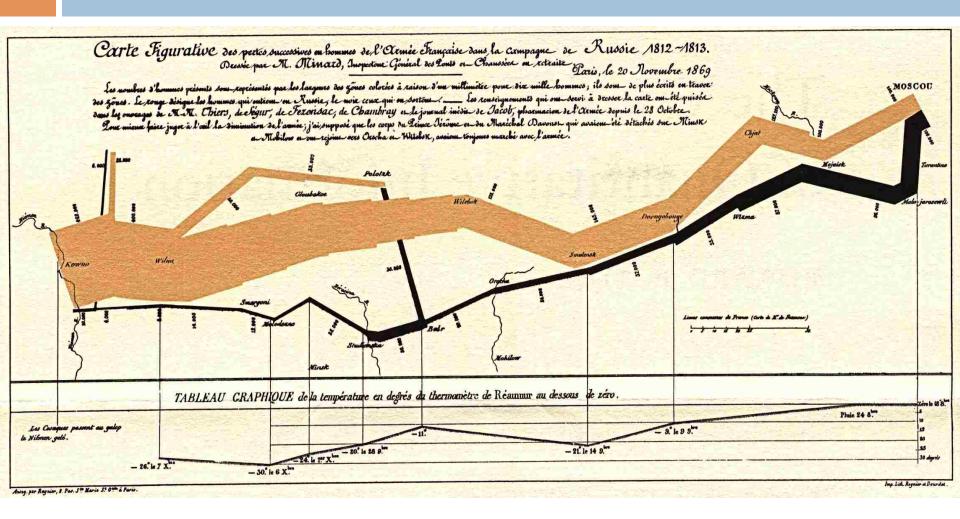
Miao Lin, Wen-Jing Hsu, Mining GPS data for Mobility Pattern: A Survey. Pervasive Computing 2013

Summary

- Big mobility data & Methods in a nutshell
- Mobility data mining methods
 - Trajectory Clustering
 - Trajectory pattern mining
 - Trajectory classification / prediction
- Understanding human mobility with GPS
 - Trajectory reconstruction
 - Sensing the movemnt: exploring OD Matrix
 - Discover collective and individual patterns (Sistematic vs Non-sistematic behavior)
 - Building territory Indicators (Urban Mobility Atlas)
 - Activity Recognition
 - Building services towards corporate(Geomarketing, Driving profile)
 - Building services towards citizens (adaptive car pooling)
 - Data validation
- Understanding city (territory) dynamics with GSM
 - Exploring the possible dimensions:
 - call behavior, presence in space, mobility
 - Classifying city users from call behavior
 - Measuring Economic Development
- Models of Human Mobility
 - From Levy Flight to preferential return
 - Explorers & returners
- Sport Analytics

BIG DATA AS A PROXY OF HUMAN MOBILITY

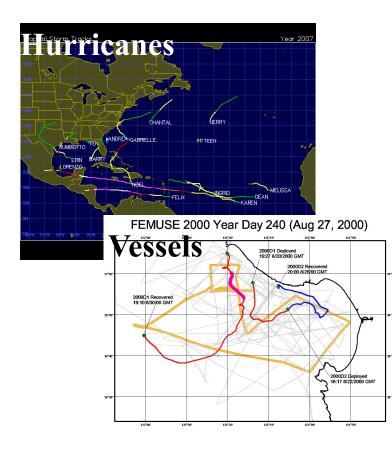
Understanding Human Mobility: a long path

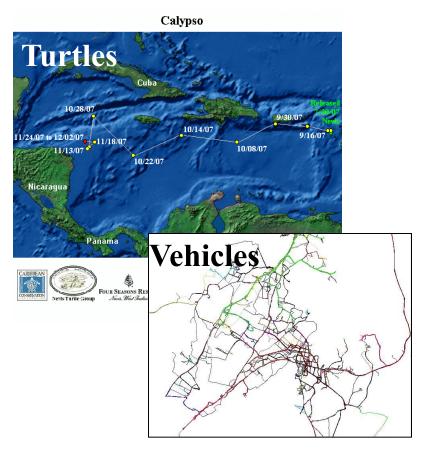


Charles Minard. "Carte figurative des pertes successives en hommes de l'Armée Francaise dans la campagne de Russie 1812-1813". 1869.

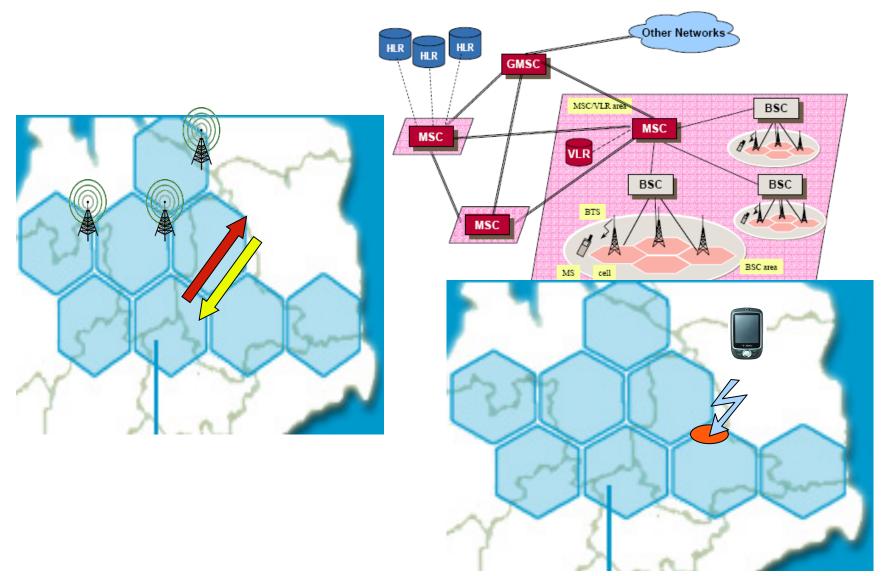
Moving Object Data

Several domains:

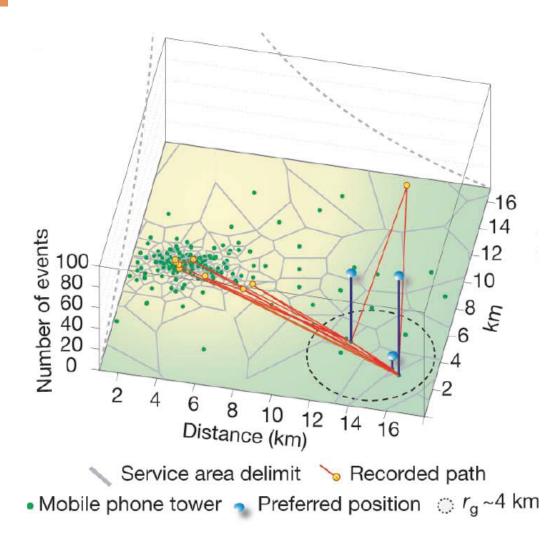


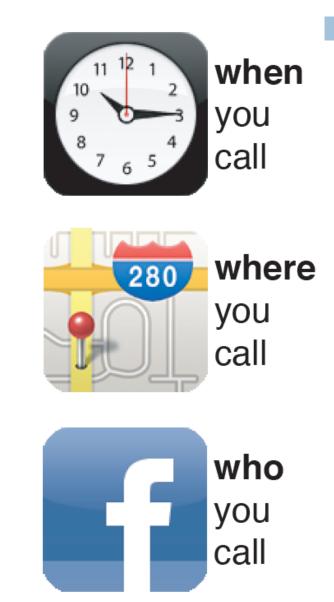


GSM roaming CDR data –



Country-wide mobile phone data





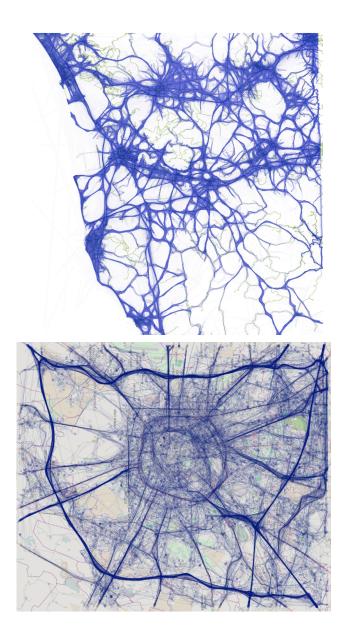
GPS tracks

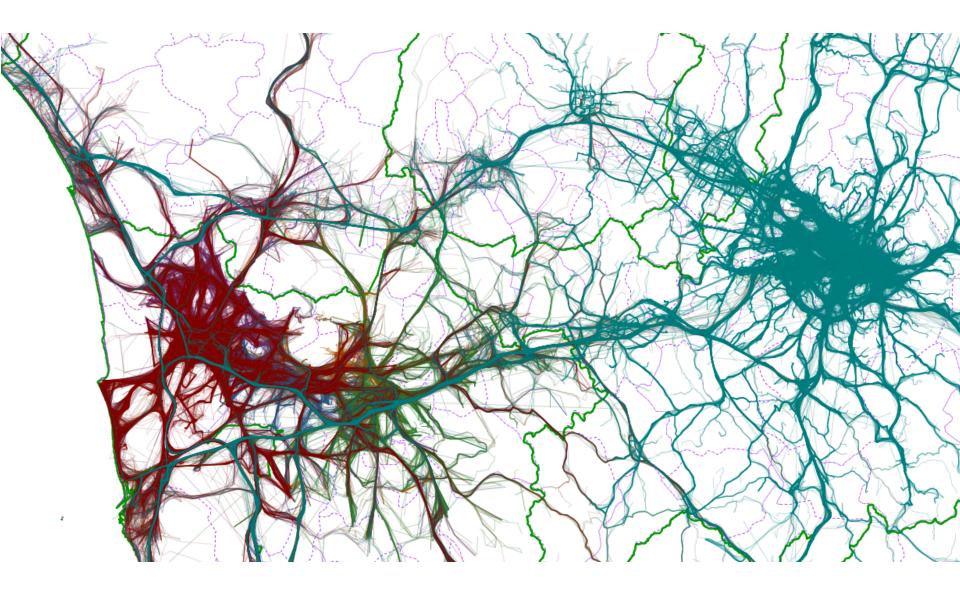
Onboard navigation devices send GPS tracks to central servers Ide;Time;Lat;Lon;Height;Course;Speed;PDOP;State;NSat

8;22/03/07 08:51:52;50.777132;7.205580; 67.6;345.4;21.817;3.8;1808;4 8;22/03/07 08:51:56;50.777352;7.205435; 68.4;35.6;14.223;3.8;1808;4 8;22/03/07 08:51:59;50.777415;7.205543; 68.3;112.7;25.298;3.8;1808;4 8;22/03/07 08:52:03;50.777317;7.205877; 68.8;119.8;32.447;3.8;1808;4 8;22/03/07 08:52:06;50.777185;7.206202; 68.1;124.1;30.058;3.8;1808;4 8;22/03/07 08:52:09;50.777057;7.206522; 67.9;117.7;34.003;3.8;1808;4 8;22/03/07 08:52:12;50.776925;7.206858; 66.9;117.5;37.151;3.8;1808;4 8;22/03/07 08:52:15;50.776813;7.207263; 67.0;99.2;39.188;3.8;1808;4 8;22/03/07 08:52:18;50.776780;7.207745; 68.8;90.6;41.170;3.8;1808;4 8;22/03/07 08:52:21;50.776803;7.208262; 71.1;82.0;35.058;3.8;1808;4 8;22/03/07 08:52:24;50.776832;7.208682; 68.6;117.1;11.371;3.8;1808;4

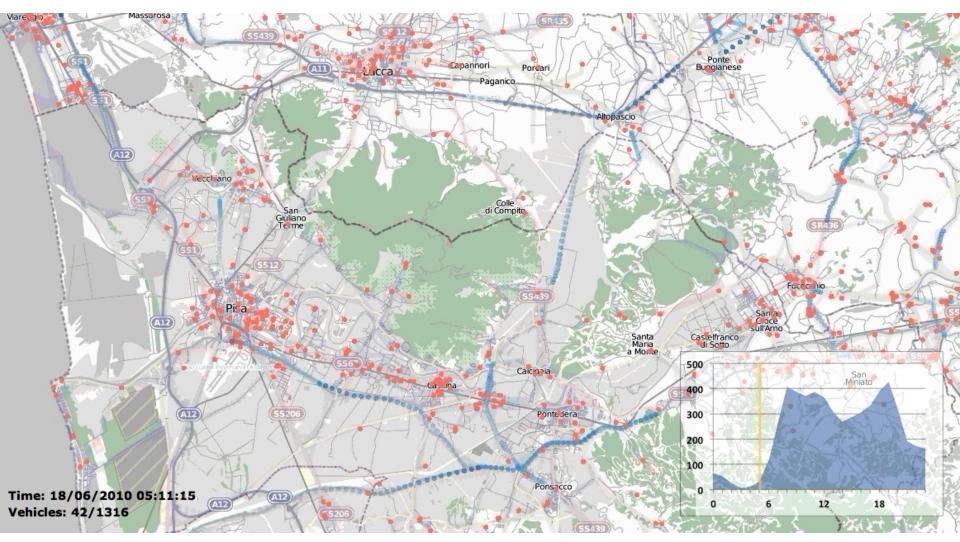
Sampling rate ~3 secs

Spatial precision ~ 10 m



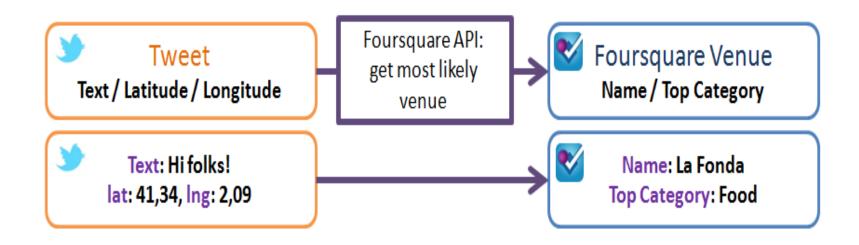


GPS: detailed movements within an

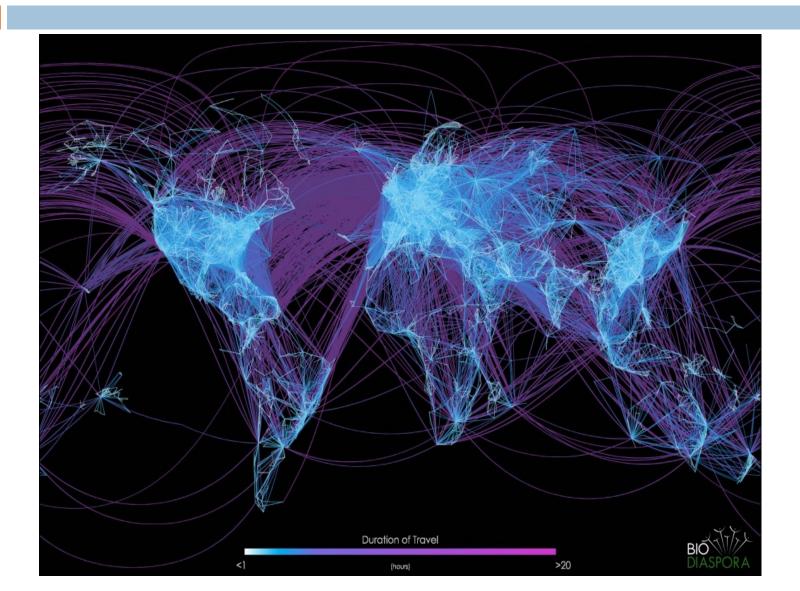


Social Networks: goal of the movement

Twitter



Airlines Flights



Quality of Mobility Data

included, but, but,				
	data type			
	mobile phone	wirelessnetwork	GPS	
	data	traces	data	
resolution	km	m	m	
scale	metropolitan area	campus/work place	global	
velocity	no	no	yes	
pausetime	approximate	approximate	exact	
ict	exact	labels needed	labels needed	
path in fo	rough	rough	exact	

Mining GPS Data for Mobility Patterns: A Survey

Miao Lin and Wen-Jing Hsu

Nanyang Technological University

Complexity of Mobility data

- Uncertainty
 - Sampling rate could be inconstant: From every few seconds transmitting a signal to every few days transmitting one
 - Data can be sparse: A recorded location every 3 days
- Noise
 - Erroneous points (e.g., a point in the ocean)
- Background
 - Cars follow underlying road network
 - Animals movements relate to mountains, lakes, ...
- Movement interactions: Affected by nearby moving objects

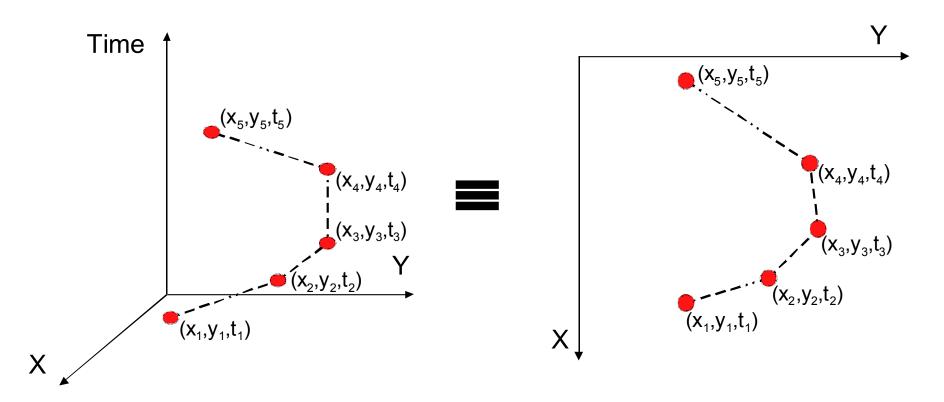
Application Domains

- 17
- Moving object and trajectory data mining has many important, real-world applications driven by the real need
 - Ecological analysis (e.g., animal scientists)
 - Weather forecast
 - Traffic control
 - Location-based services
 - Homeland security (*e.g.*, border monitoring)
 - Law enforcement (*e.g.*, video surveillance)
 - **–** ...

MOBILITY DATA MINING METHODS IN SHORT

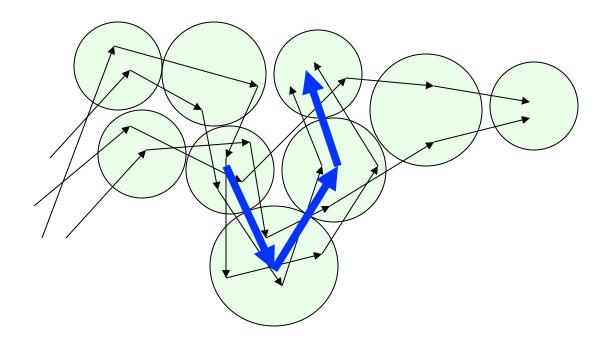
Trajectory data

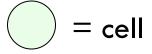
- Mobility of an object is described by a set of trips
- Each trip is a trajectory, i.e. a sequence of time-stamped locations



Trajectory patterns

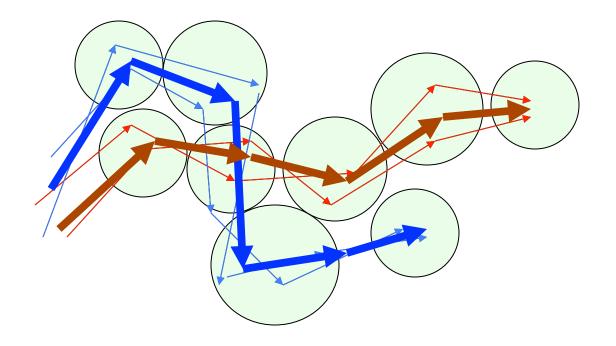
Discover frequently followed itineraries

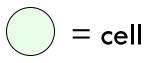




Trajectory Clustering

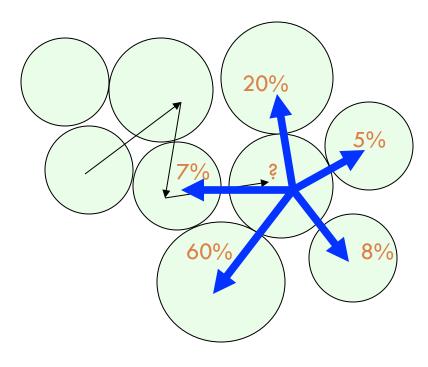
- □ Group together similar trajectories
- □ For each group produce a summary

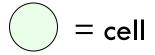




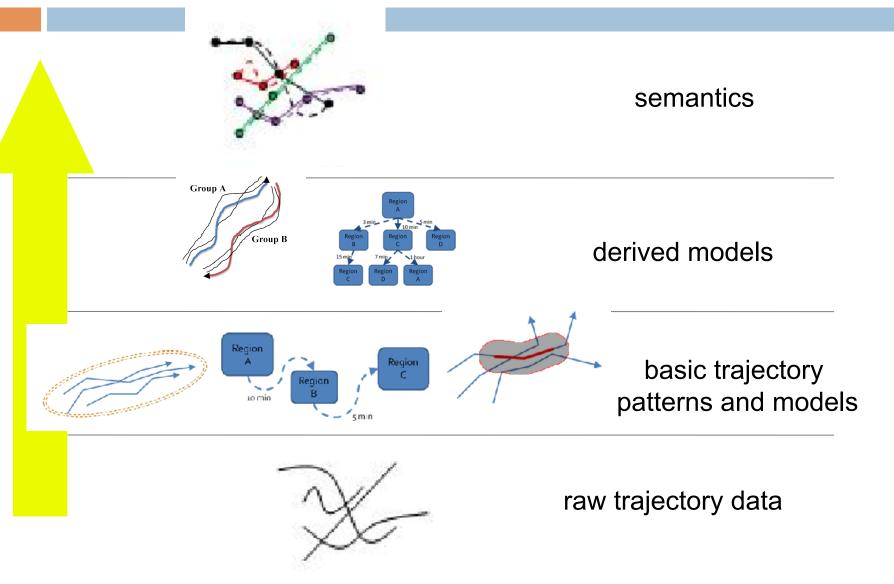
Trajectory classification and prediction

- Extract behaviour rules from history
- Use rules to predict behaviour of future users

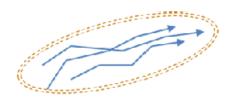


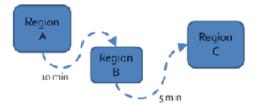


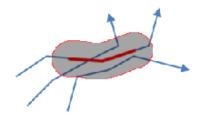
4-stage mobility data mining



Basic mobility patterns and models

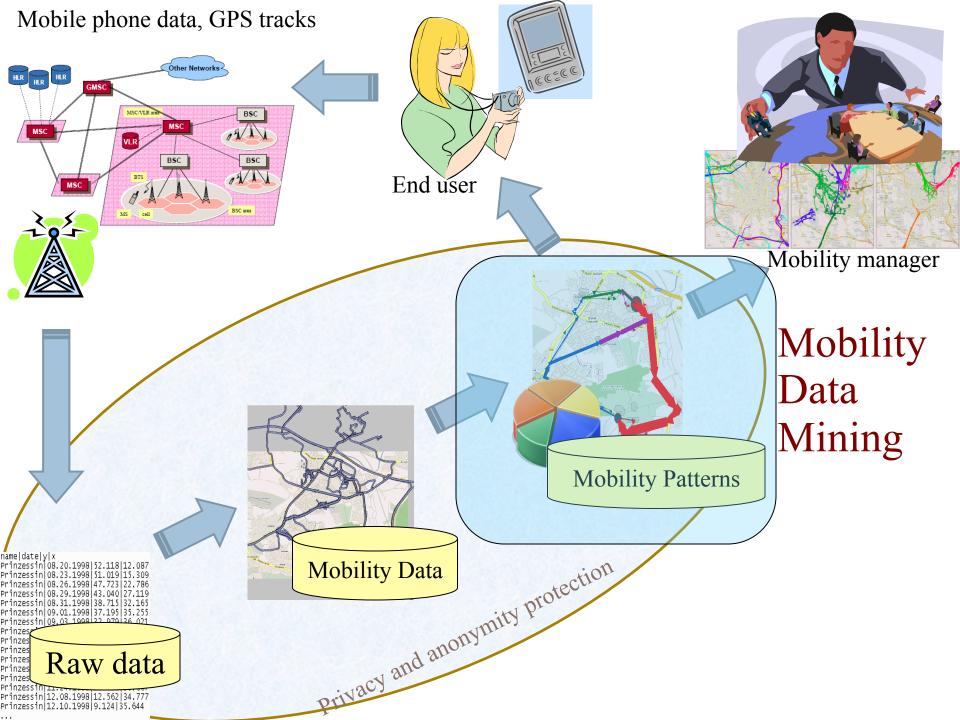






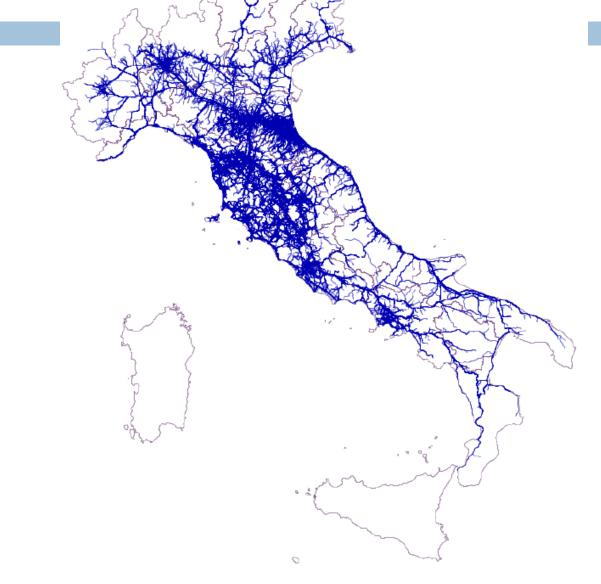
- T-Cluster: represents a group of similar trajectories
- T-Pattern: represents trajectory segments that visit a sequence of regions with similar transition times

 T-Flock: represents trajectory segments that move together for a time interval

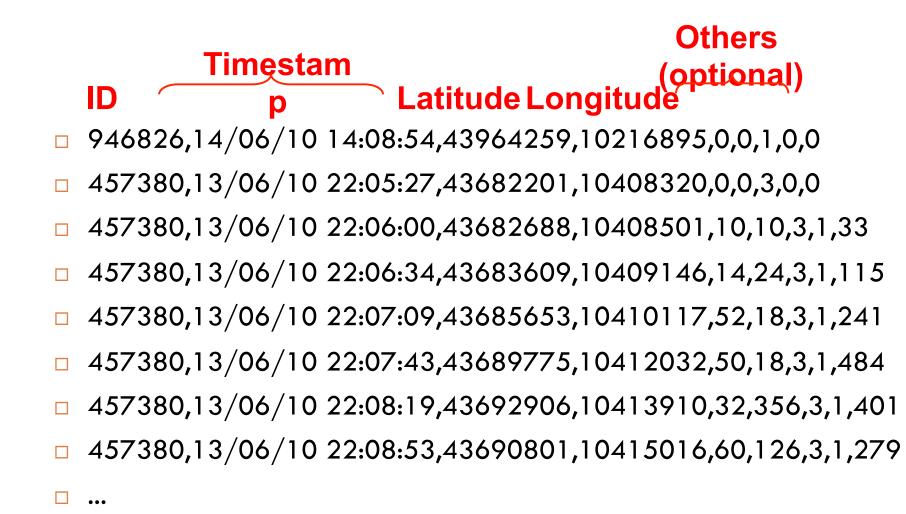


UNDERSTANDING HUMAN MOBILITY WITH GPS

Data Understanding

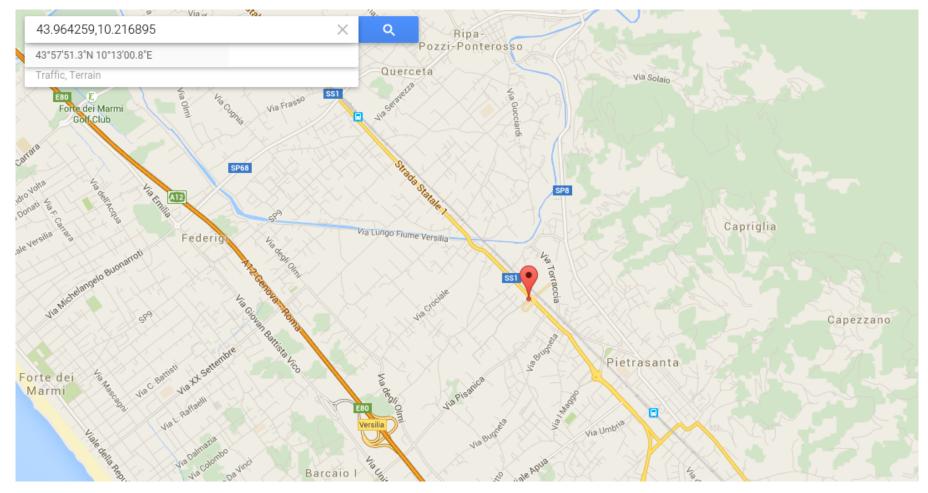


Raw GPS Data



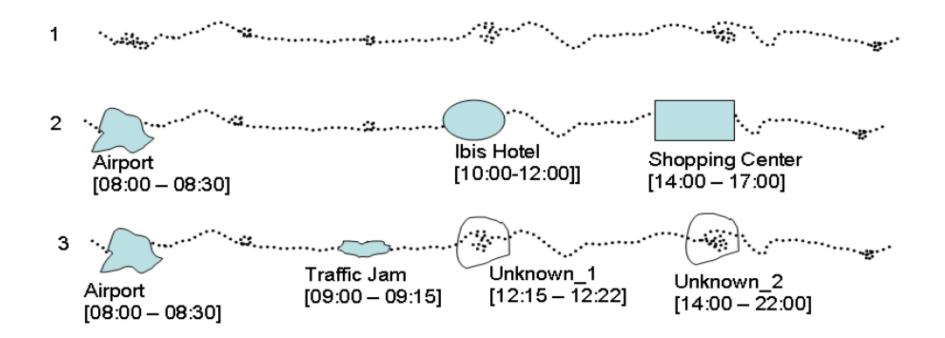
Sample point on the map

□ 946826,14/06/10 14:08:54,43964259,10216895,0,0,1,0,0



Trajectory reconstruction

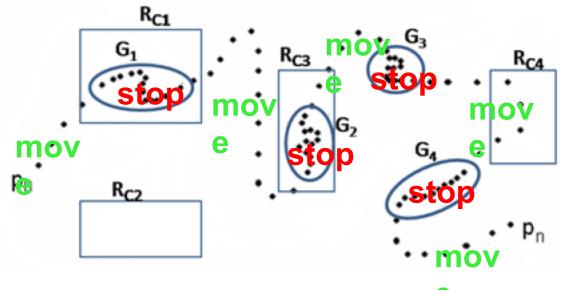
- Raw data forms a continuous stream of points
- How to cut it into stops and trips?
 - Example on smart phone traces :



Trajectory reconstruction

General criteria based on speed

- If it moves very little (threshold Th_S) over a significant time interval (threshold Th_T) then it is practically a stop
- Trajectory (trip) = contiguous sequence of points between two stops

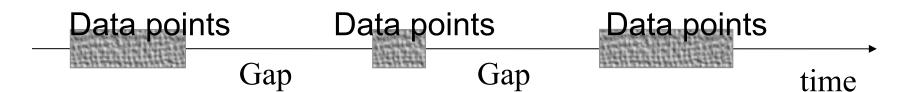


Trajectory reconstruction

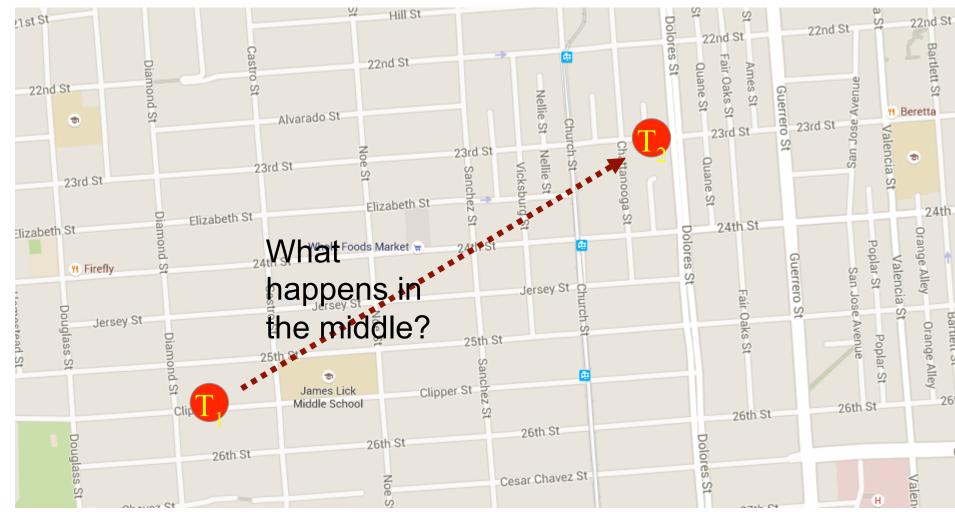
- Special cases, easier to treat
 - Stop explicitly in the data: e.g. engine status on/off
 - Simply "cut" trajectories on status transitions

time

- Device is off during stops:
 - Typical of cars data
 - A stop results in a time gap in the data
 - Exceptions: short stops might remain undetected



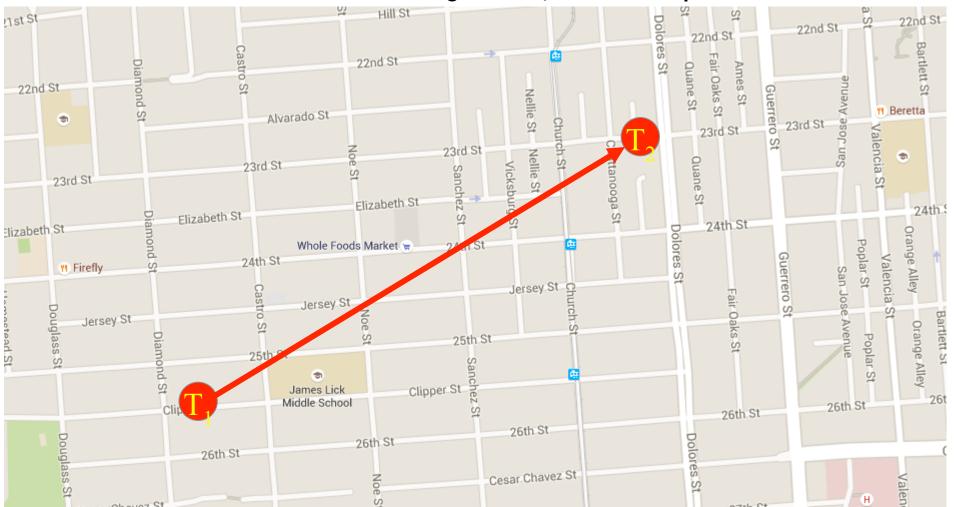
Sometimes the space/time gap between consecutive points is significant



Free vs. constrained movement

Typical solutions:

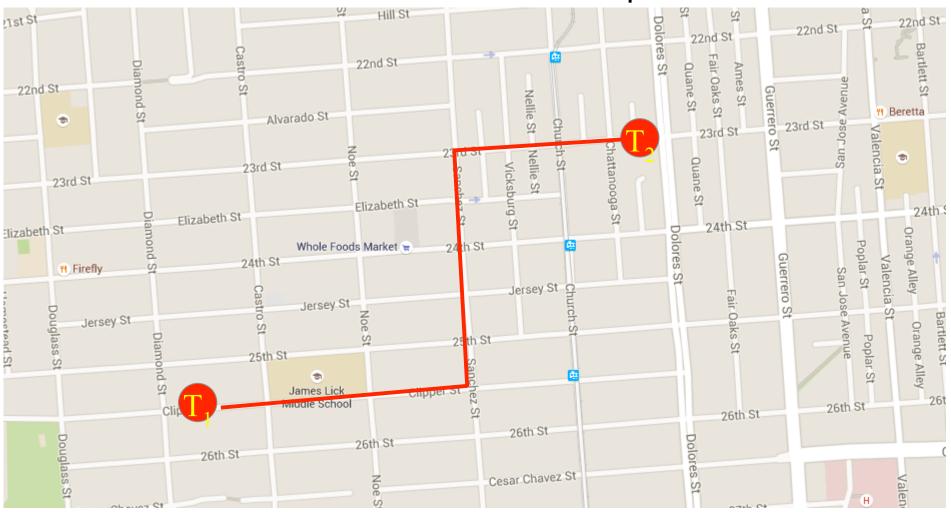
Free movement => straight line, uniform speed



Free vs. constrained movement

• Typical solutions:

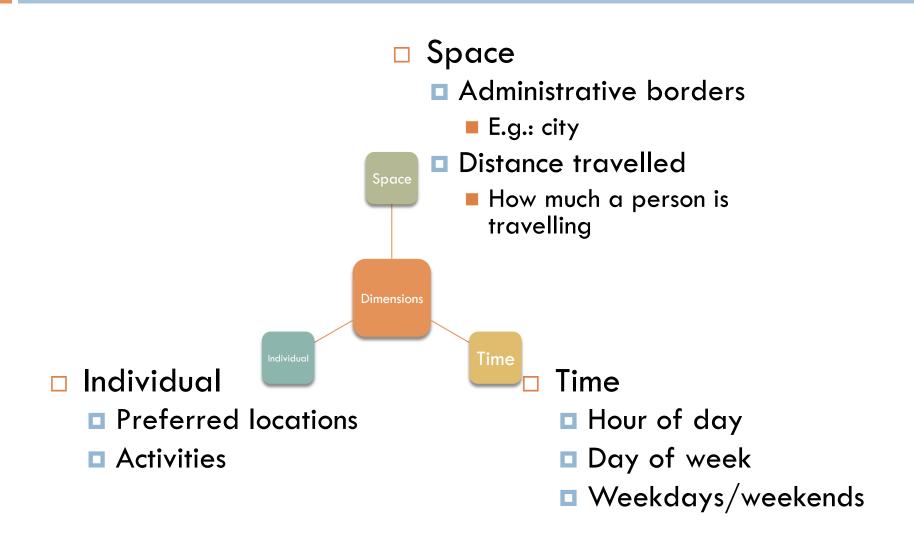
Constrained movement => shortest path



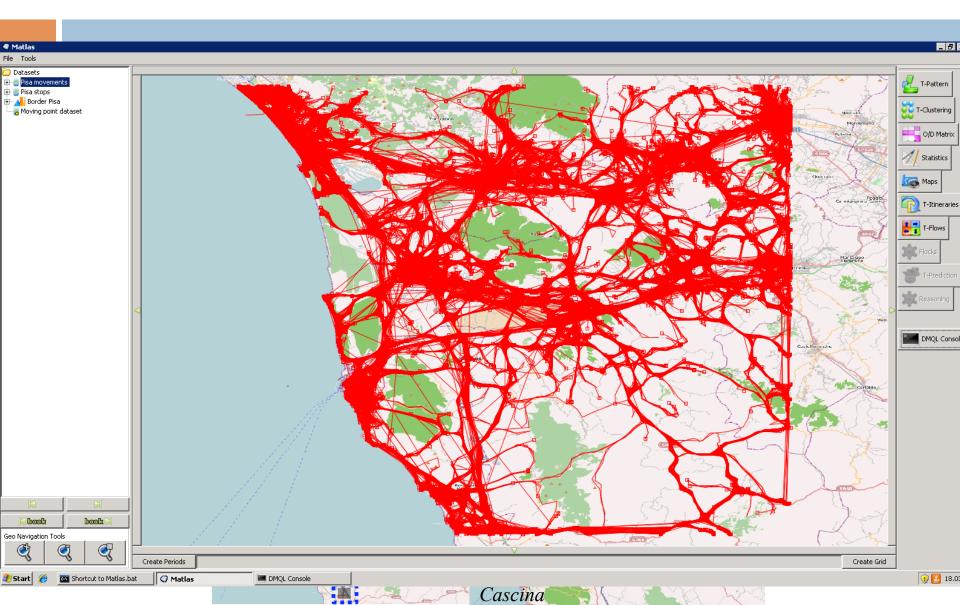
Understanding collective and individual mobility

F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S. Rinzivillo, and R. Trasarti. Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J., 2011.

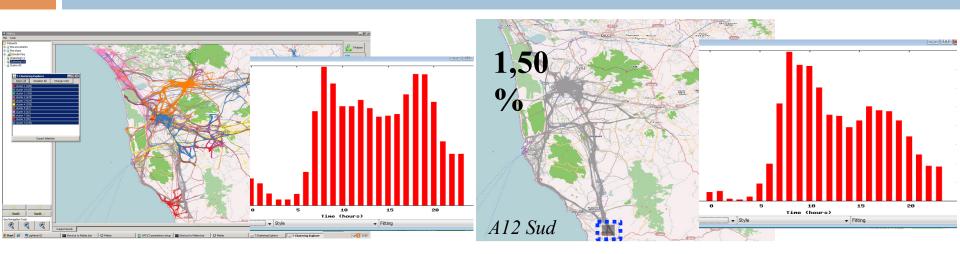
Dimensions to explore



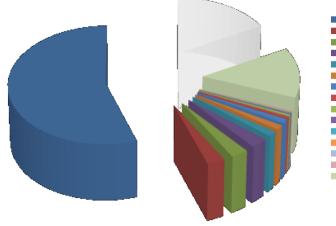
Access patterns using T-clustering



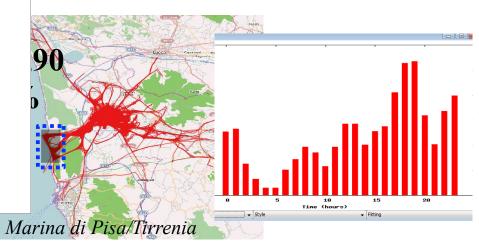
Characterizing the access patterns: origin & time



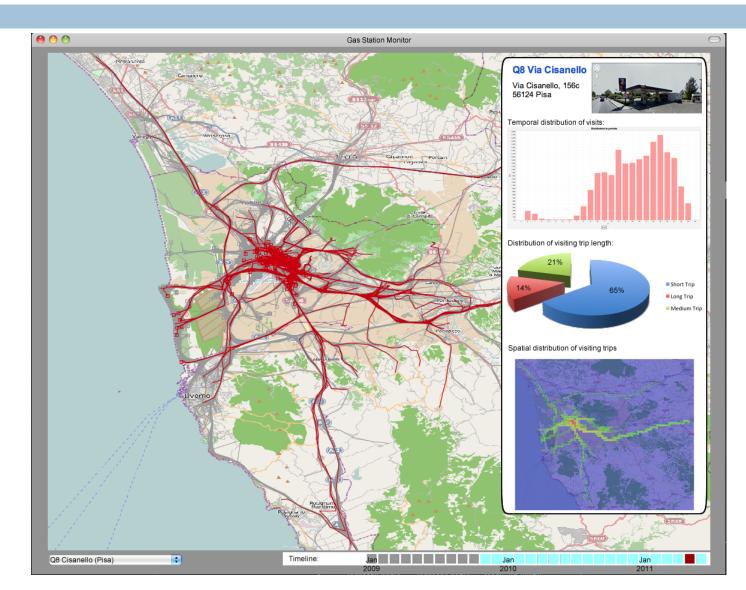
Distribuzione Origini

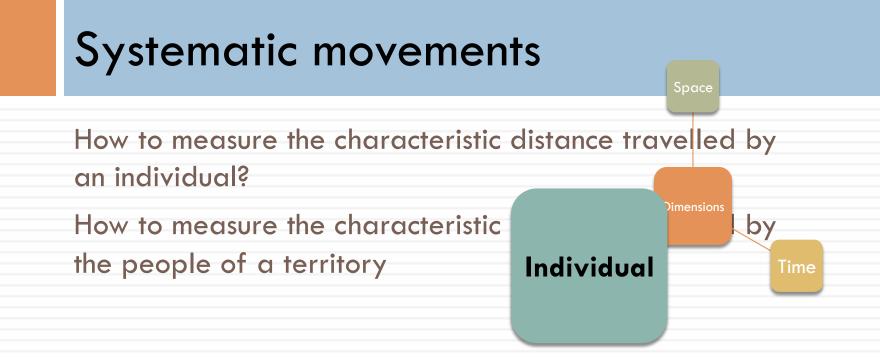


Pisa Marina/Tirrenia A12 (Nord) FiPiLi (Empoli) A12 (Sud) Lucca A11 (Pistoia) Collesalvetti Ponsacco SS12 (Nord Lucca) Montecatini Torre del Lago Calci Asciano Altre origini Rumore

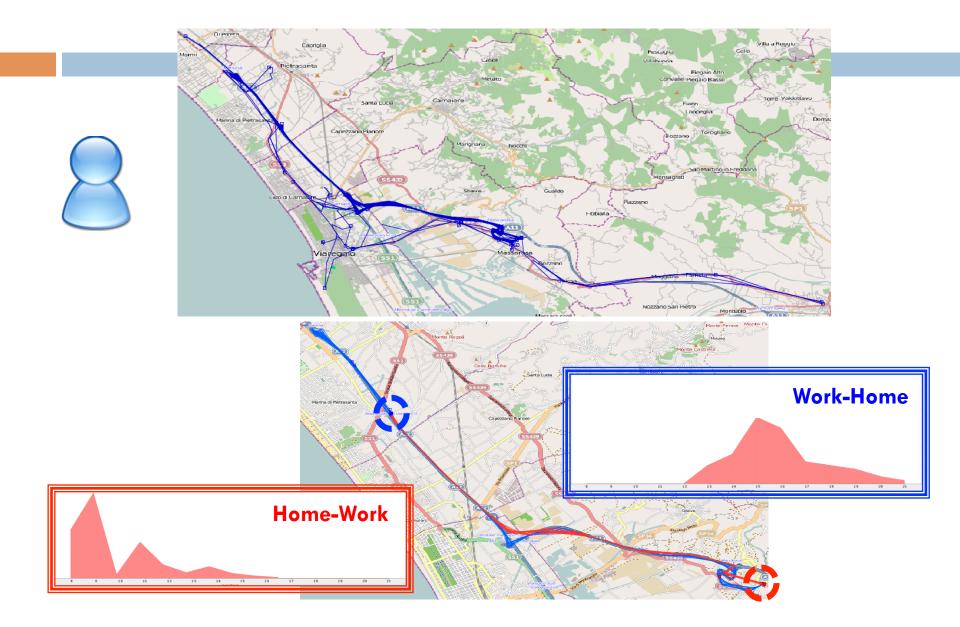


Studying the attractiveness/efficiency of a service with GPS tracks



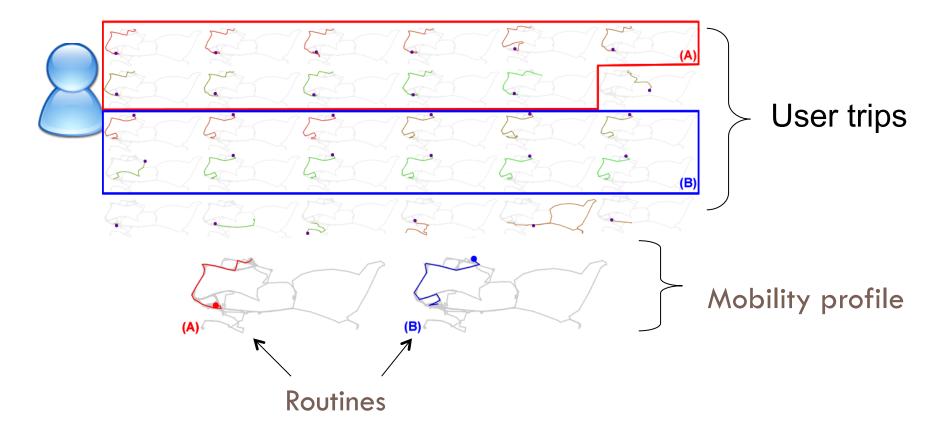


Discovering individual systematic movements

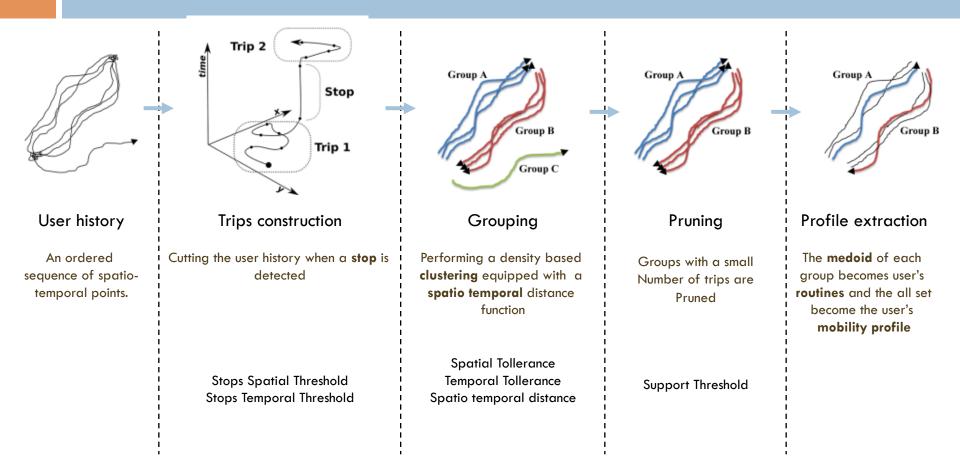


Extracting travellers profiles

- Analysis focused on the single individual
- Find his/her systematic mobility



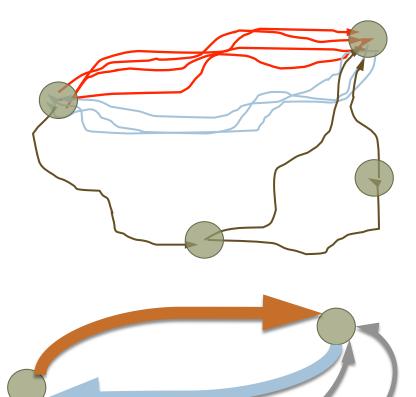
Mobility profiles



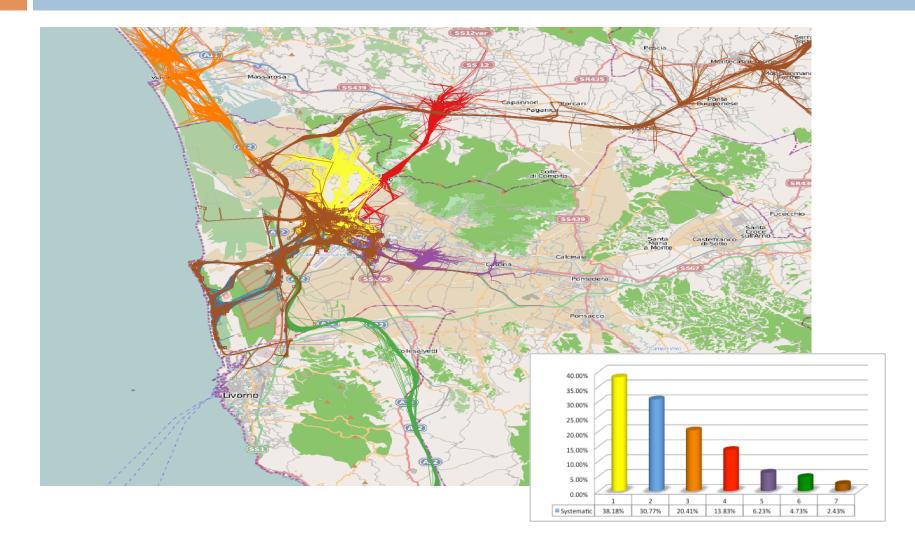
Trasarti, Pinelli, Nanni, Giannotti. Mining mobility user profiles for car pooling. ACM SIGKDD 2011

From Profiles to Systematicity Indicator

- Each routine of a profile is associated with a measure of frequency
- Routines are sorted according to their frequency: rank 1, rank 2, rank 3, ...
- A minimum frequency threshold allow to distinguish a systematic trip from an occasional one



City access paths vs systematic movements



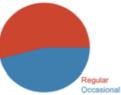
Pisa – Inbound traffic

Incoming Temporal Matrix 3560 2670-1780-890-1634 3268 4902 6536 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 Mon ٠ . Tue Wed • Thur • • • • Sat

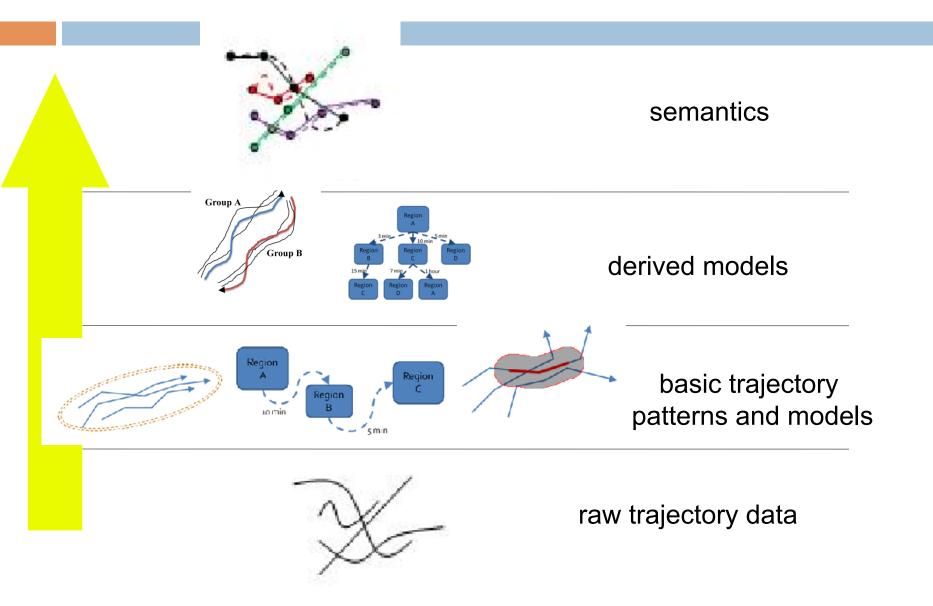
	City	Traj	Perc
NORD 32%	San Giuliano T	4.816	62%
	Vecchiano	1.425	94%
	Viareggio	1.142	99%
	Lucca	862	67%
	Camaiore	358	94%
OVEST 0%			
SUD 12%	Livorno	2.843	92%
	Collesalvetti	565	50%
	Rosignano Mari	140	41%
	Fauglia	137	19%
	Cecina	124	45%
EST 54%	Cascina	7.078	97%
	San Giuliano T	2.881	37%
	Pontedera	1.350	95%
	Calci	795	79%
	Calcinaia	693	92%

Incoming Traffic (38.464 Trajectories)

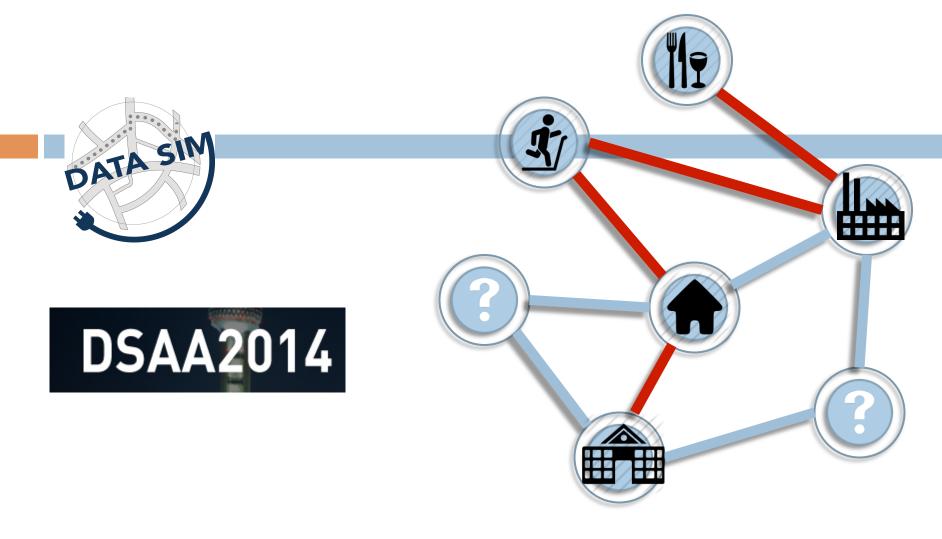
Regular VS Occasional



4-stage mobility data mining



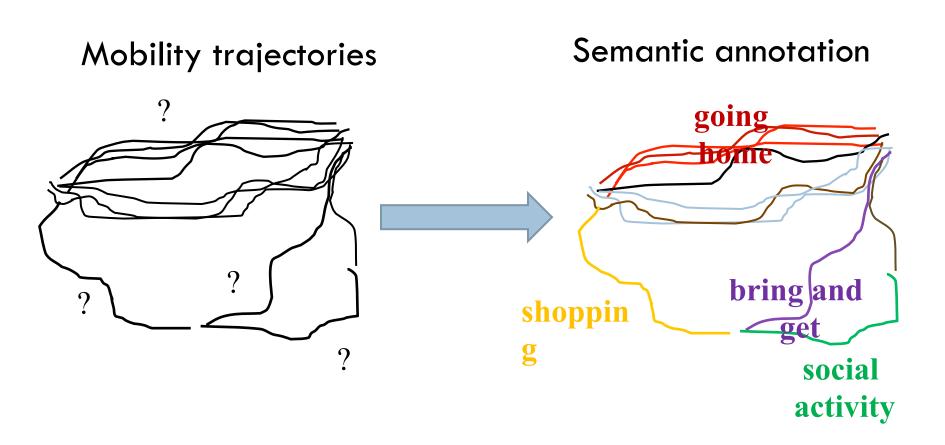
Activity Recognition –



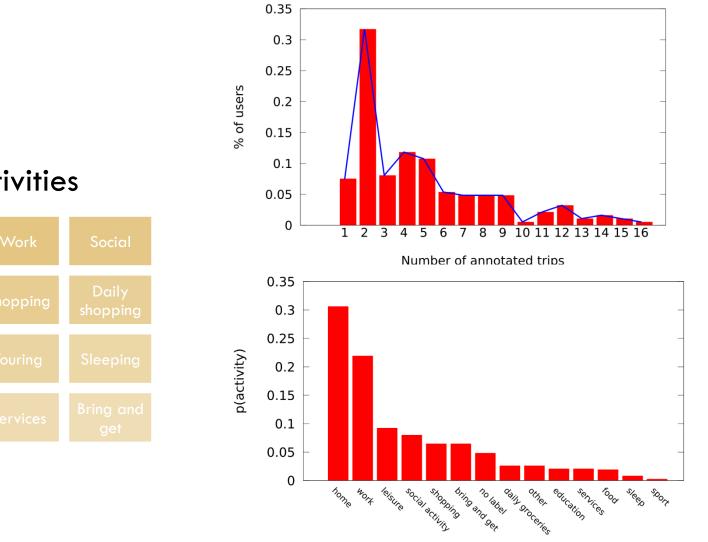
The Purpose of Motion

Learning Activities from Individual Mobility Networks

From raw trajectories to activity diaries

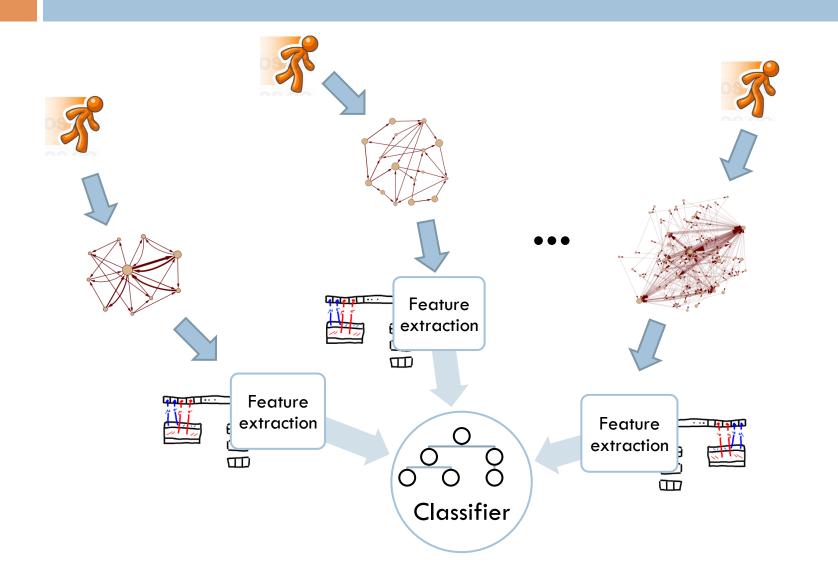


Learn from survey data



activities

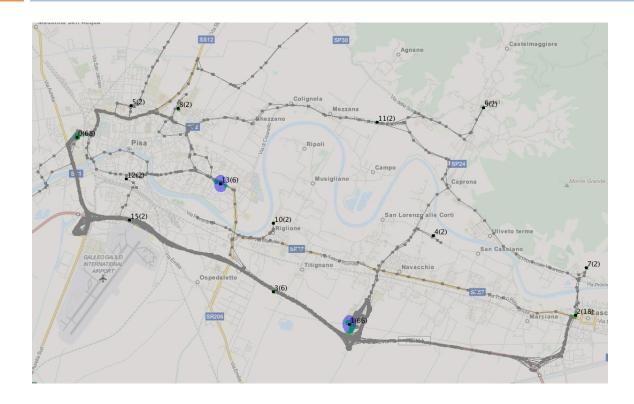
Semantic diary classifier



The process

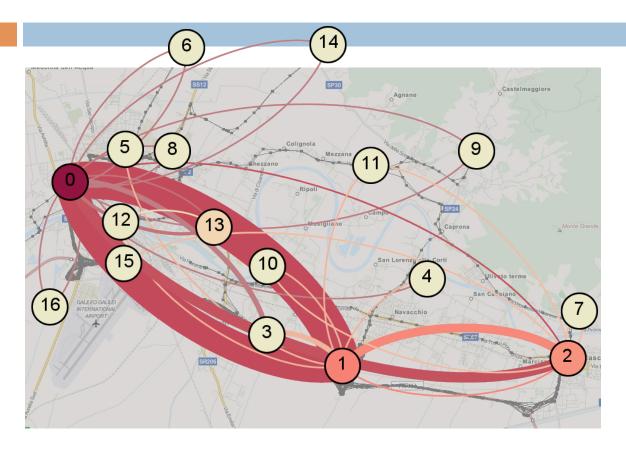
- Build from data an Individual Mobility Network (IMN)
- Extract structural features from the Individual Mobility Network (INM)
- Use survey data for annotate some INM
- Learn a model using cascading classification with label propagation (ABC classifier)
- Use the model

How to synthesize Individual Mobility?



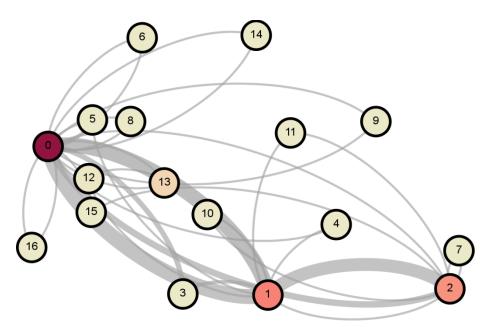
Mobility Data Mining methods automatically extract relevant episodes: locations and movements.

How to synthesize Individual Mobility?



Graph abstraction based on locations (nodes) and movements (edges)

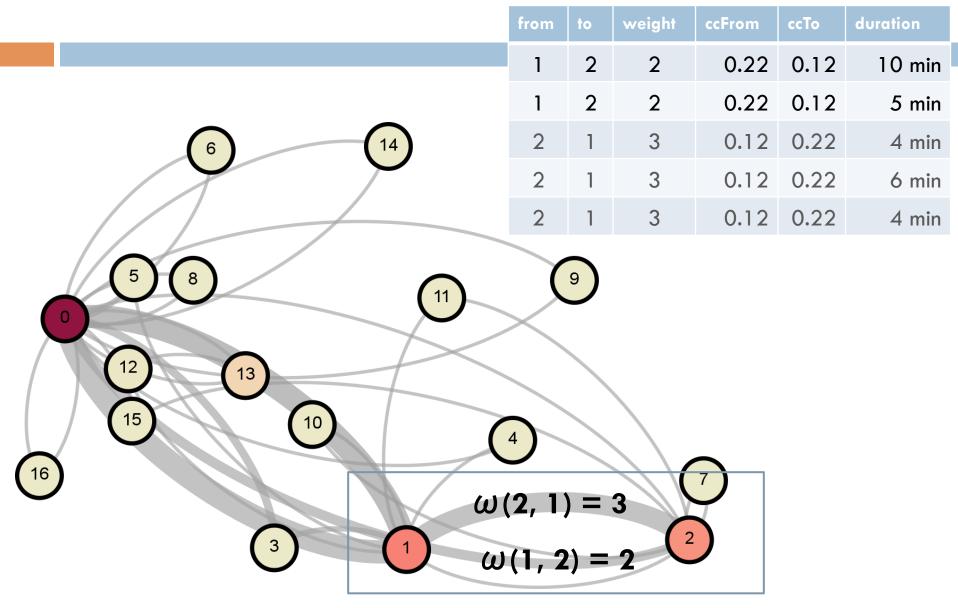
Extracting the IMN



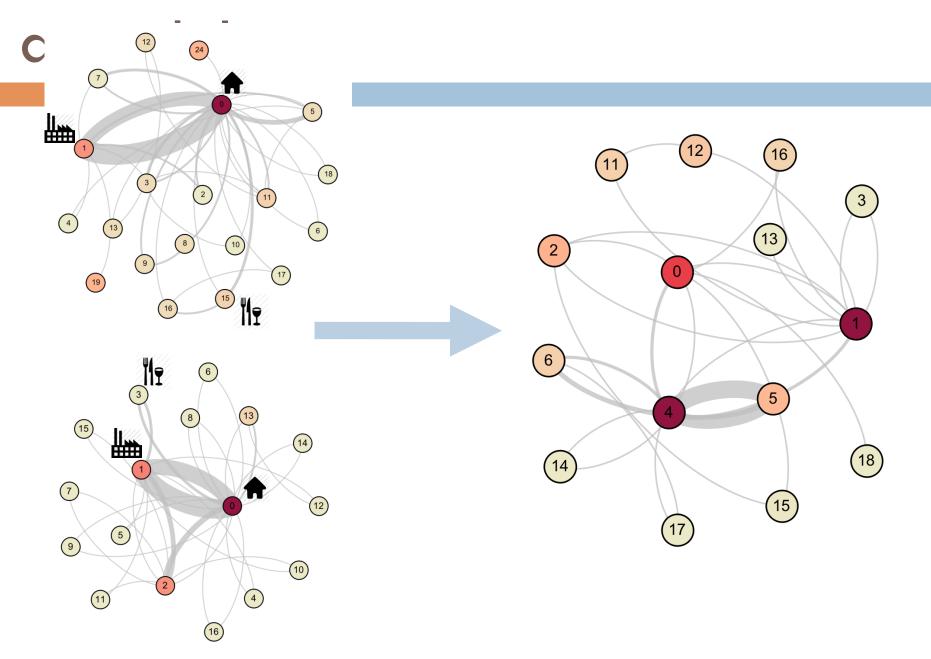
Network Features

centrality	clustering coefficient average path length
predictability	entropy
hubbiness	degree betweenness
volume	edge weight flow per location

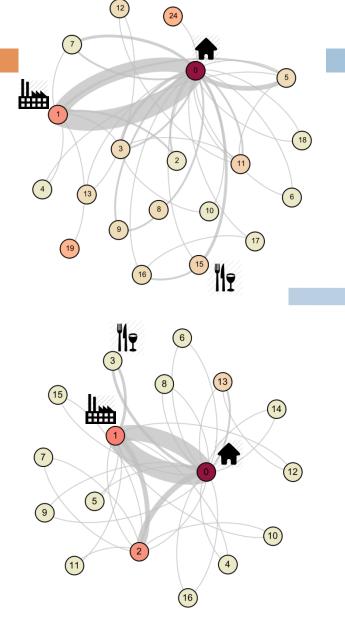
Extracting the IMN

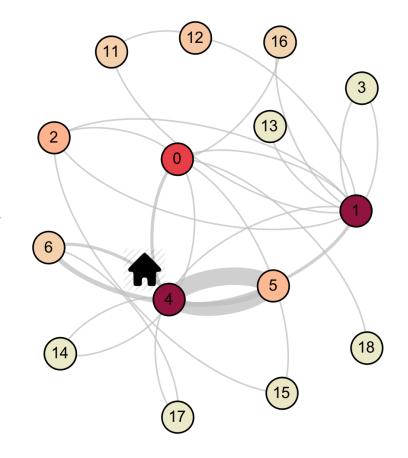


From many annotated IMN learn

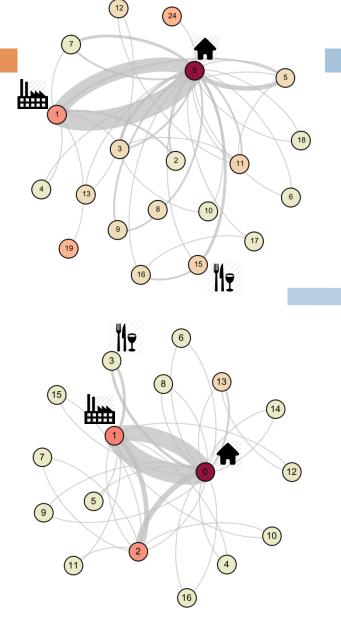


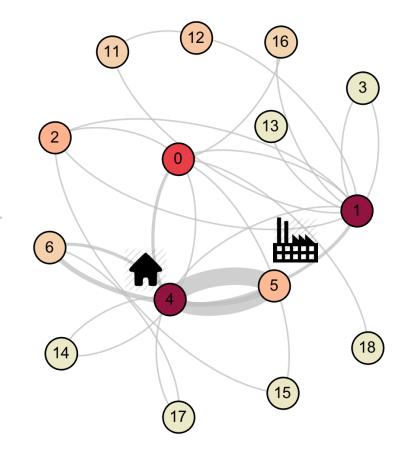
The ABC classifier



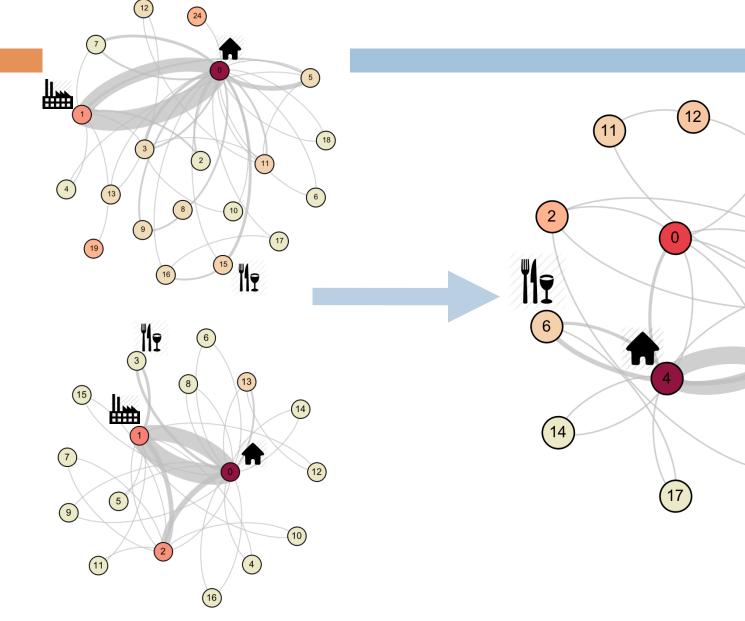


The ABC classifier





The ABC classifier



(16)

(13)

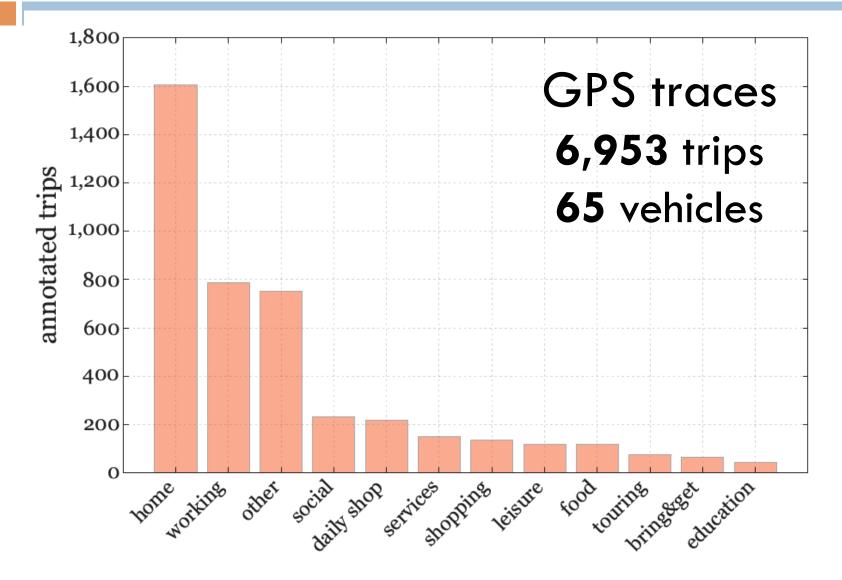
5

15)

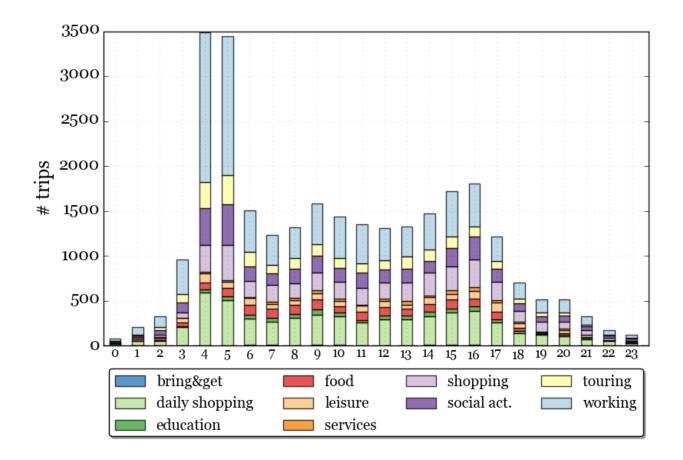
3

(18)

Experiments



Semantic Mobility Analytics Temporal Analysis



CASE STUDIES

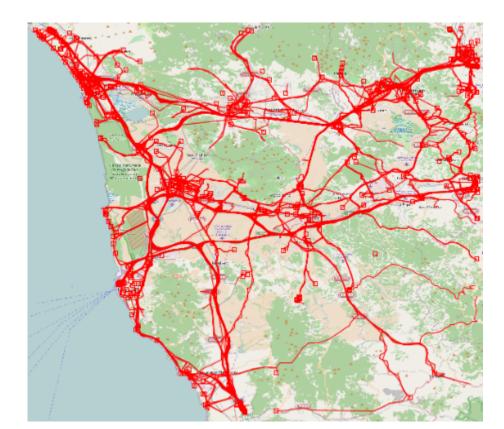
- TOWARDS CORPORATE USERS
 - Geomarketing
 - Monitoring Driving-based Segmentation
- TOWARDS INDIVIDUAL USERS
 - Self-awareness
 - TOWARDS PUBLIC SECTOR USERS
 - Urban Mobility Atlas building territory indicators
 - Studying Actractors' Impact

Services Towards Corporate Users

Geomarketing

Problem definition

Based on the trajectories of a sample of population, what is the best place to open a new shop / mall ?



The "best" place

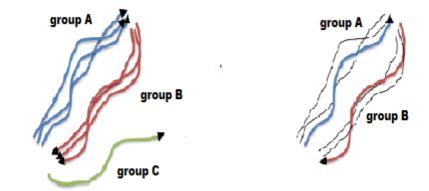
Experts' knowledge: best place to open a mall is where people pass during everyday activities

Area crossed by road segments with a high frequency of systematic travels of people

Systematic movements

Step 1: Map-matching

 See users' movements as sequences of road segments.



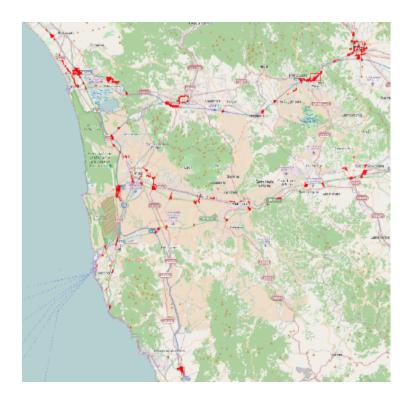
Step 2: Mobility profiles

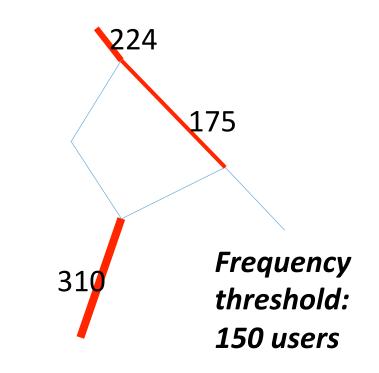
Select only systematic movements.

User's systematic movement: $L1 \rightarrow L2$

Frequently visited road segments

- Aggregate systematic movements by road segments
- Set a threshold to select the frequent ones



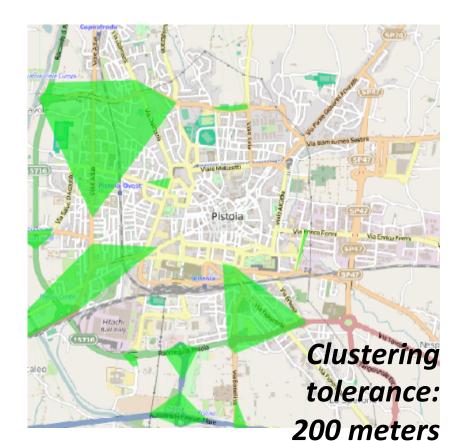


Candidate areas for a mall

Using a spatial clustering we can extract cluster of frequent road segments which are spatially close each other.

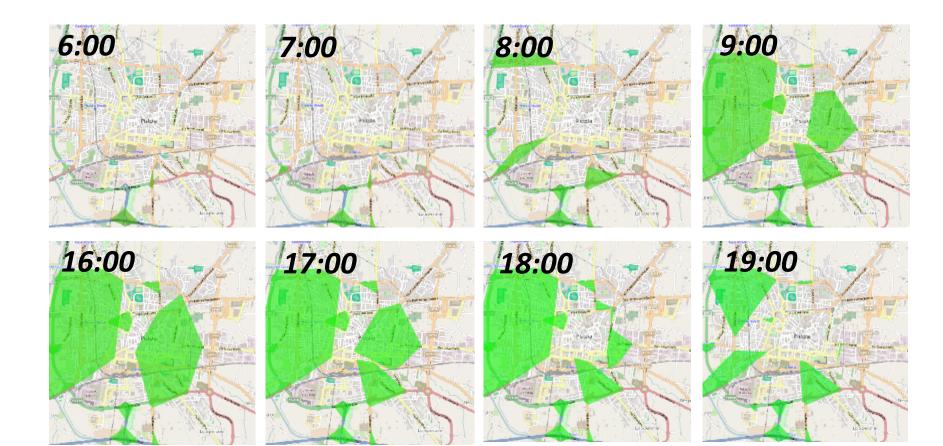
- Distance of 2 segments
 - Compare vertices

• Draw clusters as convex hull



Temporal evolution

Repeat this process for each hour of the day and analyze how they evolve



Monitoring Driving-based Segmentation

Services Towards Corporate Users

Scenario context & motivation

Customer segmentation: a

marketing strategy that involves dividing a broad target market into subsets of consumers who have

- **Needs:** On ingrafice companies would like to define customer segments that capture different driving profiles

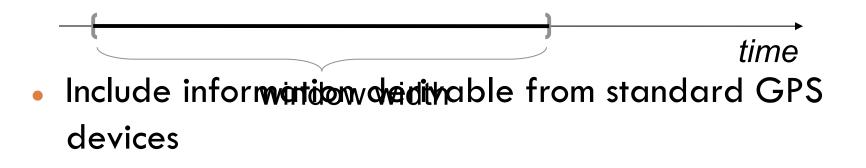
 - http://en.wikipedia.org/wiki/Customer_segmentation Each segment could then be offered suitable contract conditions
- **Opportunities**: the vehicles insured by some companies have on-board GPS devices that can trace their movements
 - They could aggregate such traces into driving habit indicators based on recent history for the driver and transmit them

Scenario description

- Driving indicators
 - **Each vehicle** continuously keeps track of recent movements, compute aggregate indicators and sends them to controller
- Profile extraction
 - The controller uses initial indicator values to build clusters of drivers, each corresponding to a "driving profile"
- Profile monitoring
 - The controller continuously checks updates to verify that the driving profiles extracted are still good enough

Step 1: Features for individual mobility behaviors

- Indicators for recent mobility behaviors
- Computed over recent history \rightarrow sliding window



Step 1: Features for individual mobility behaviors

- Which features?
 - Superset of those currently used by insurance companies

Where I drive How dynamic I drive How fast I drive w.r.t. speed limits w.r.t. road w.r.t. acc-/ categories decelerations I Quality Level in dettaglio 📶 Report 🔻 🖂 Notifiche Dati personali 🖂 Report eventi Livello Prudenza Livello Rischio Livello Attenzione Quality Driver, la polizza che protegge e premia i protagonisti della guida responsabile Panoramica sul tuo stile di guida Cosa misurano questi indicatori? Quality Level: 580/1000 % di sconto: 14,5% al rinnovo Attenzione: % Km oltre i limiti di velocità: 5,1% % Km oltre i limiti di velocità: 5,1% Legenda Eccelle Il tuo giudizio: * Buono Il tuo giudizio: * Molto Buono Il tuo giudizio: * Buono Molto E Livello Prudenza: 222/450 Livello Rischio: 309/450 Livello Attenzione: 49/100 E' calcolato sulla percentuale di km perscorsi nel Considera l'intensità delle accelerazioni e Misura la percentuale di km percorsi nei diversi tipi rispetto dei limiti di velocità, con una tolleranza di di strada durante mattino, pomeriggio/sera e notte. decelerazioni durante la guida. Al momento 10km/h. Le combinazioni meno rischiose migliorano il questo livello viene calcolato in proporzione al Livello Livello Prudenza

Features over sliding window

- Length = traveled distance
- Duration = time spent driving
- Count = number of trips
- Phighway = % km on highways
- Pcity = % km inside cities
- Length_arc_crowded = km on 20% most crowded roads
- Pnight = % km in night time
- Pover = % km over speed limit
- Profile = % of km on systematic trips
- Radius_g = radius of gyration
- Radius_g_L1 = radius of gyration w.r.t. L1
- Avg_Dist_L1 = average distance from L1
- TimeL1L2 = % time spent on L1 and L2
- EntropyArc = entropy on road segment frequencies
- EntropyLocation = entropy on location frequencies
- EntropyTime = entropy on hours of the day

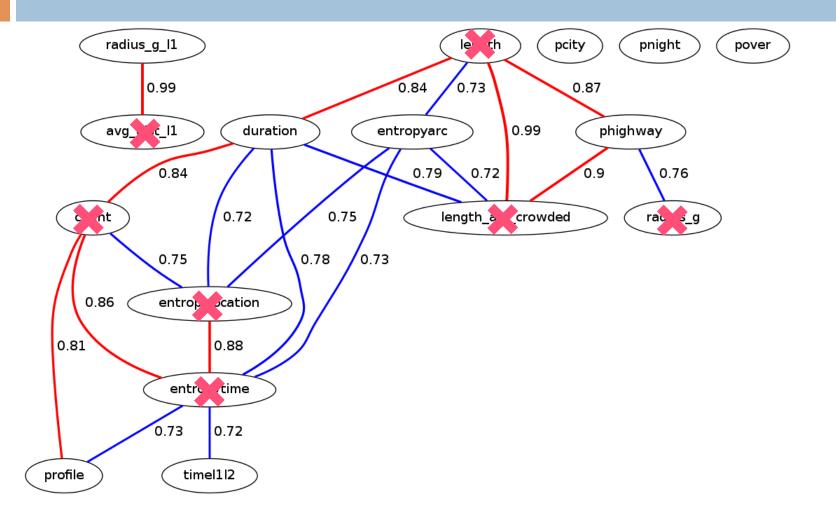
Basic aggregates

Aggregates on spatia temporal selection

Count of events

Spatial/Temporal dist

Correlation analysis



Features over sliding window

- Length = traveled distance
- Duration = time spent driving
- Count = number of trips
- Phighway = % km on highways
- Pcity = % km inside cities
- Length_arc_crowded = km on 20% most crowded roads
- Pnight = % km in night time
- Pover = % km over speed limit
- Profile = % of km on systematic trips
- Radius_g = radius of gyration
- Radius_g_Li = radius of gyration w.r.t. Li
- Avg_Dist_L1 = average distance from L1
- TimeL1L2 = % time spent on L1 and L2
- EntropyArc = entropy on road segment frequencies
- EntropyLocation = entropy on location frequencies
- EntropyTime = entropy on hours of the day

Aggregates on spatia temporal selection

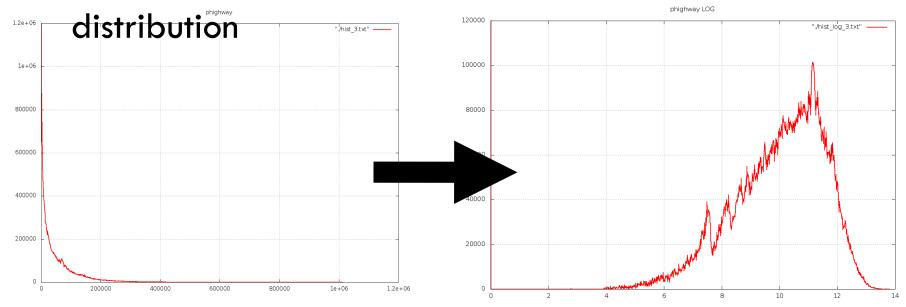
Count of events

Basic aggregates

Spatial/Temporal dist

Features normalization

Log transformation for features with skewed



• Z-score normalization for all features

(2) Compute driving profiles

- Clustering-based definition
 - Profile = representative set of indicators for a large group of drivers with similar behaviors (i.e. similar indicator values)
- Clustering method
 - K-means a partitional, center-based clustering algorithm
 - Euclidean distance over driving indicators
 - Refinements: Iterated K-means & select best solution + Noise removal
- Profile = average point of each cluster

Cluster refinement

- Iterated K-means
 - Run clustering multiple times (\rightarrow initial random seeding)
 - Select output with best quality
 - Based on clusters compactness (\rightarrow SSE see definition later)
- Noise removal
 - Performed at postprocessing
 - From each cluster, remove points p such that

 $d(p,c) > 2 \text{ median} \{ d(x,c) \mid x \text{ in cluster} \}$

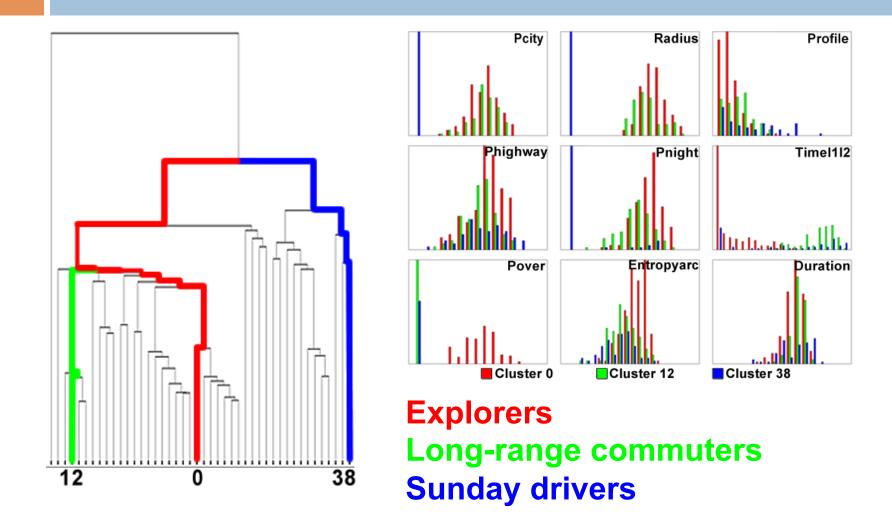
where c is the cluster center

- Alternative solutions are possible
 - e.g.: density-based noise removal

Experimental setting

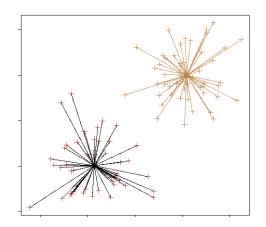
- GSP traces of an insurance company customers
 - 35 days monitoring
- Sample of ~11k vehicles moving in the area
- Short temporal thresholds for testing purposes
 - Compute driving indicators over a sliding window of 3 days
 - Update indicators every 15'
 - Most likely larger in a real application parameter tuning to be done with domain experts

Experiments: clusters inspection



(3) Driving profiles monitoring

- Translated to "cluster quality monitoring"
- Quality measure: SSE = Sum of Squared Errors
 - Given a clustering $C = \{ C_1, \dots, C_k \}$, and average points m_i for each cluster C_i



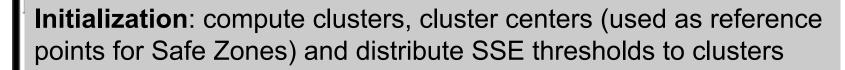
(3) Driving profiles monitoring

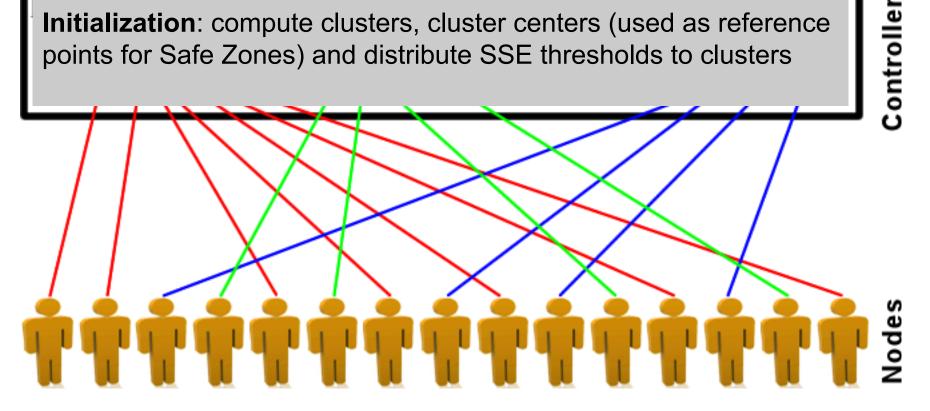
DEFINITION 1 (CLUSTER MONITORING PROBLEM). Given a clustering $C = \{C_1, \ldots, C_k\}$ having initial SSE equal to SSE_0 , and given a tolerance $\alpha \in \mathbb{R}^+$, we require to ensure that at each time instant t the following holds for the SSE of the (dynamic) dataset D_t :

 $SSE_t \le (1+\alpha)SSE_0$

When that does not happen, a recomputation/update of cluster assignments should be performed.

Monitoring process





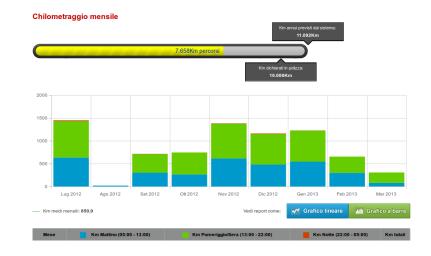
Services Towards Individual Users

Self-awareness services

- Mobility-based specialization of self-awareness services for generic users
 - Provide summary of activity of the user
 - Provide comparison against collectivity
- Summaries based on
 - Temporal statistics
 - Spatial statistics / distributions
 - Movement aggregates

User's activity summaries

• An example within Generali



Il Quality Level in dettaglio

% Km oltre i limiti di velocità: 5,1%

Il tuo giudizio: * Buono Livello Prudenza: 222/450

E' calcolato sulla percentuale di km perscorsi nel rispetto dei limiti di velocità, con una tolleranza di 10km/h.

ll tuo giudizio: * Molto Buono Livello Rischio: 309/450

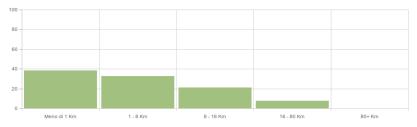
Misura la percentuale di km percorsi nei diversi tipi di strada durante mattino, pomeriggio/sera e notte. Le combinazioni meno rischiose migliorano il Livello.

% Km oltre i limiti di velocità: 5,1%

Il tuo giudizio: * Buono Livello Attenzione: 49/100

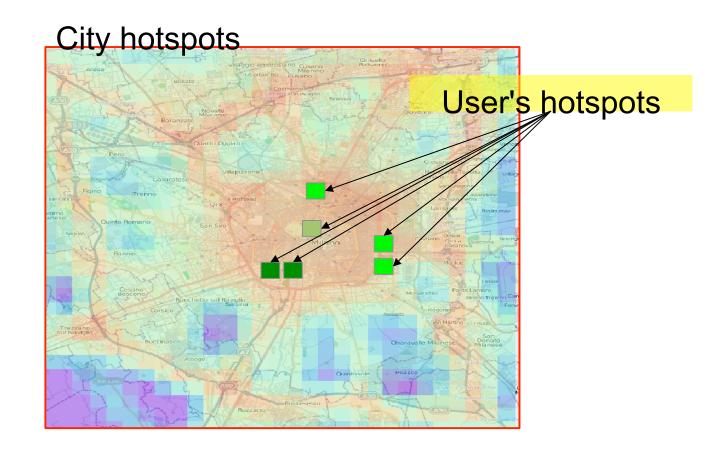
Considera l'intensità delle accelerazioni e decelerazioni durante la guida. Al momento questo livello viene calcolato in proporzione al Livello Prudenza.

Marzo 2013 🛟



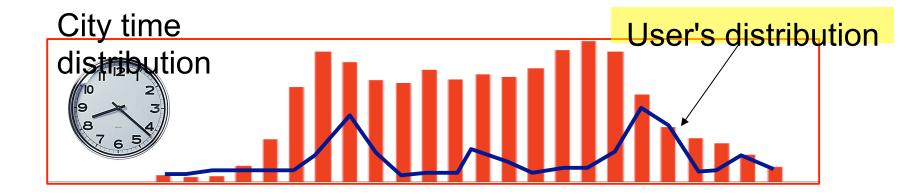
Comparison against collectivity

• In space



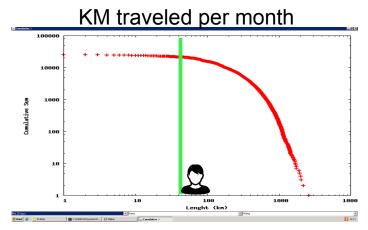
Comparison against collectivity

In time

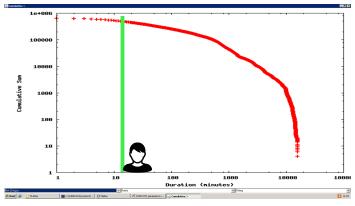


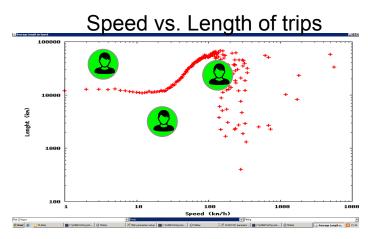
Comparison against collectivity

• On general statistics

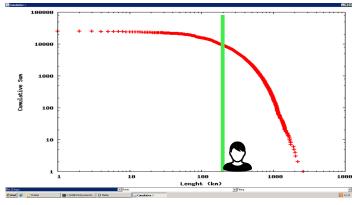


Total duration of travels



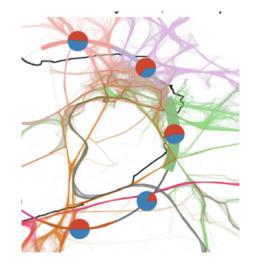


Radius of gyration

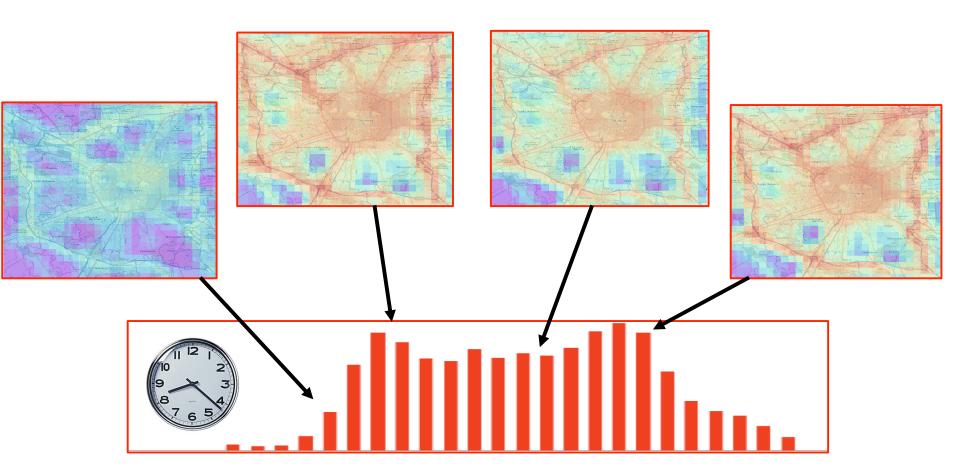


Services Towards Public Sector

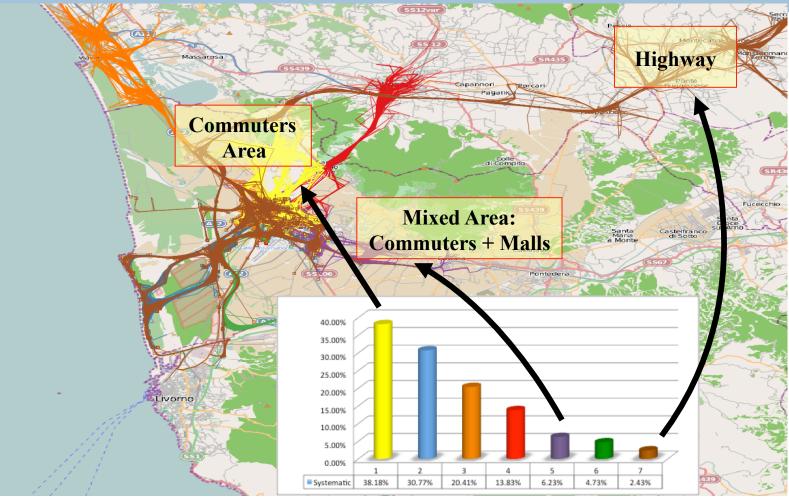
Urban Mobility Atlas



Dynamics of urban mobility



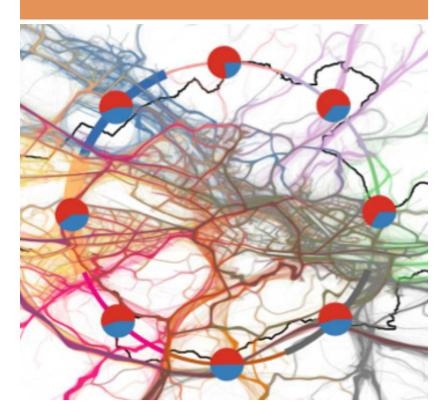
Impact of Systematic Mobility



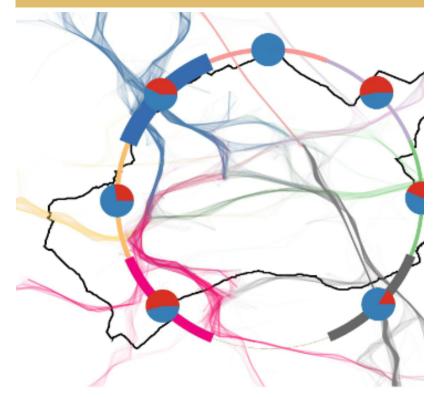
Access Routes Systematic Mobility (%)

Comparing Cities

Florence



Montepulciano



Atlas of Urban Mobility

Electrifiability



In Pisa 90.5% of daily trips are electrifiable: 562.061 km electrificable In Tuscany at least 38% of users have a daily mobility covered at 100% by an electrical vehicle (home to home)

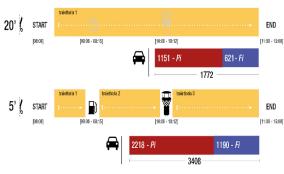
In Florence we notice that in week ends the % of electrifiable trips decreases since people travel further from home

Studying the Airports attraction

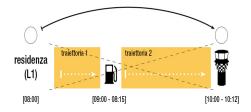
Understand how and how much Pisa and Florence airports attract Tuscany residents

General analysis appraoch

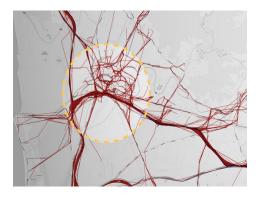
□ 1. From raw GPS point to trajectories



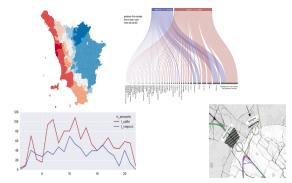
3. Identification of residents: First most frequent location



4. Selection of data



5. Knowledge extraction, Study of the flows and Semantic enrichment



Temporal statistics of the stops at the Airports **Pisa Airport** Florence Airport

50

0

0 Dom

1 Lun

2_Mar

3 Mer

4_Gio

5_Ven

6 Sab

40

20 0 🖊

5

10

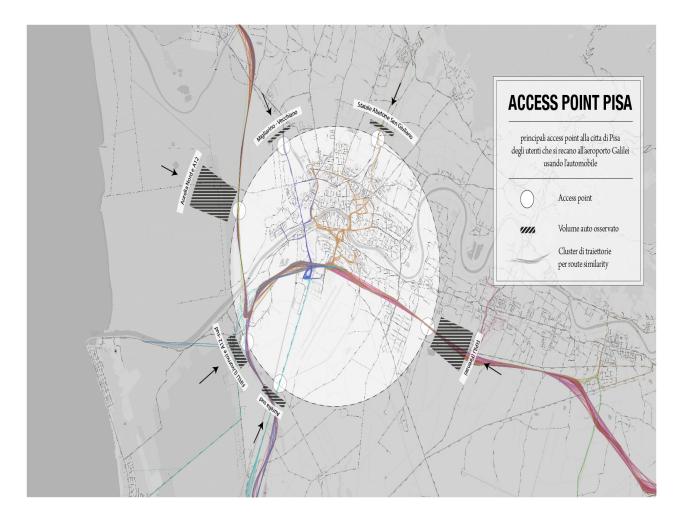
15

20

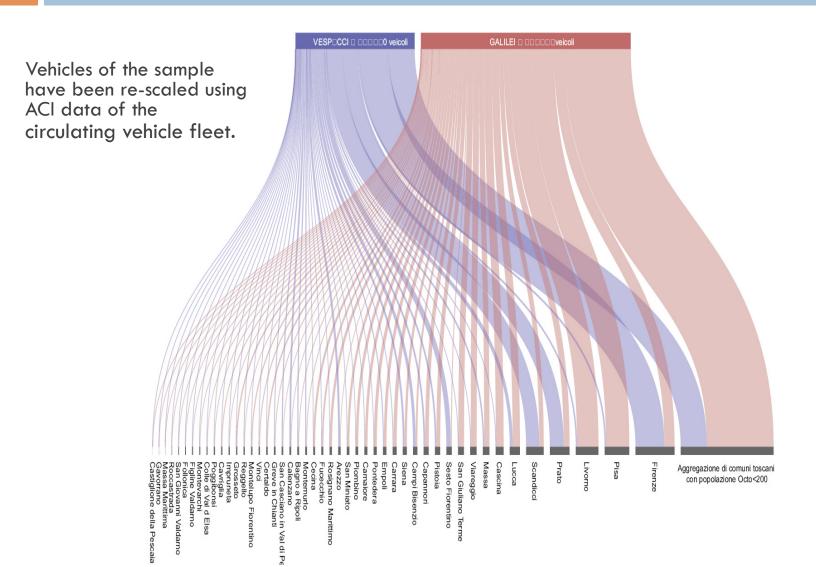
flight airport offer

Distribution of the durations of the stops

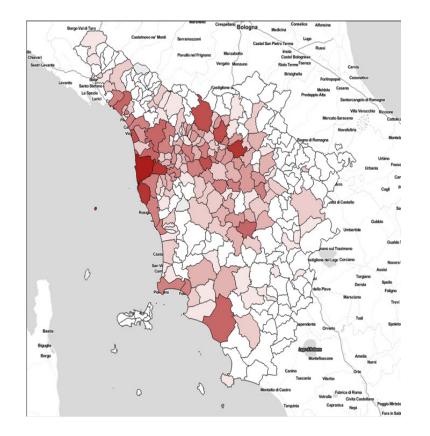
Access pattern to Pisa Airport

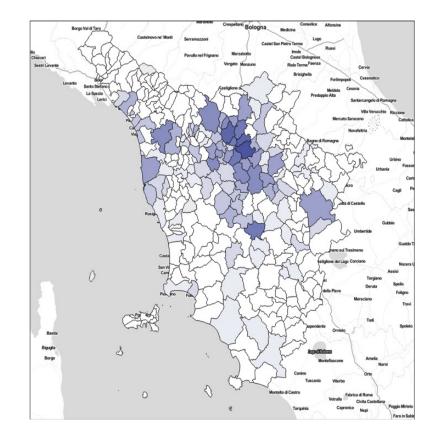


Flows of vehicles to the two airports



Tendency in choosing an Airport: the attractiveness of Galilei vs. Vespucci





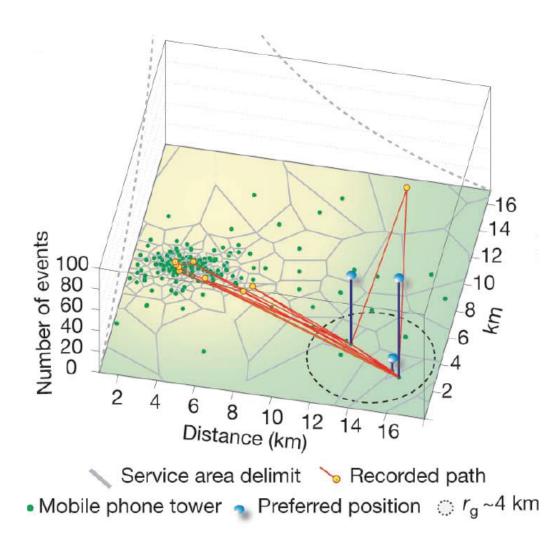
Attractiveness of Pisa Airport

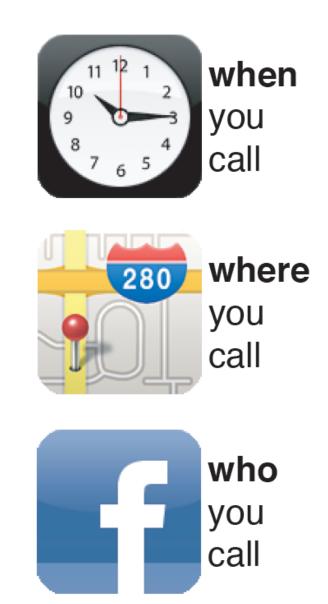
Attractiveness of Florence Airport

SUMMARY

- UNDERSTANDING CITY DYNAMICS WITH MOBILE
 PHONE DATA
 - The data
 - Capturing presence
 - Capturing movement
 - Quantifying city users
 - Building novel demographic and socio-economic indicators
 - Models of human mobility: Explorers&Returners

Focus on country-wide CDR data





GSM data - Description

Call Data Record (CDR)

Data of the users' calls.

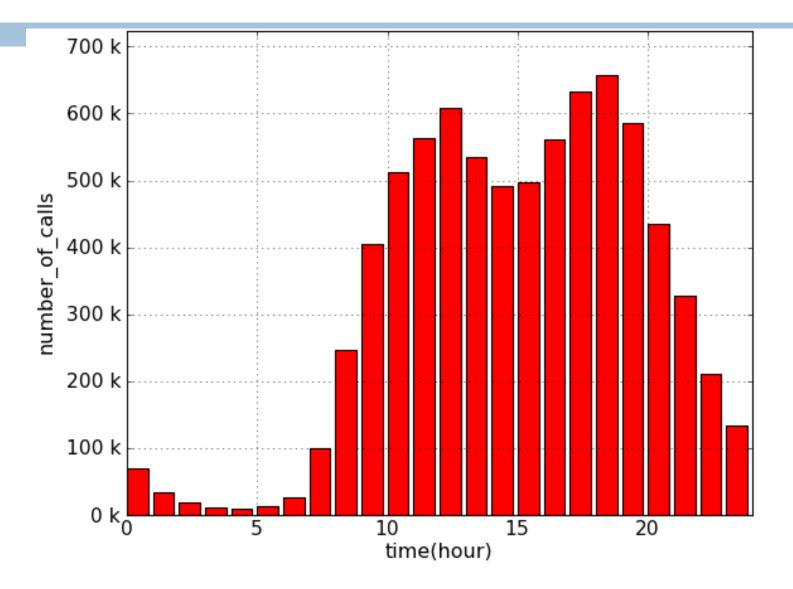


Data gathered from mobile phone operator for billing purpose

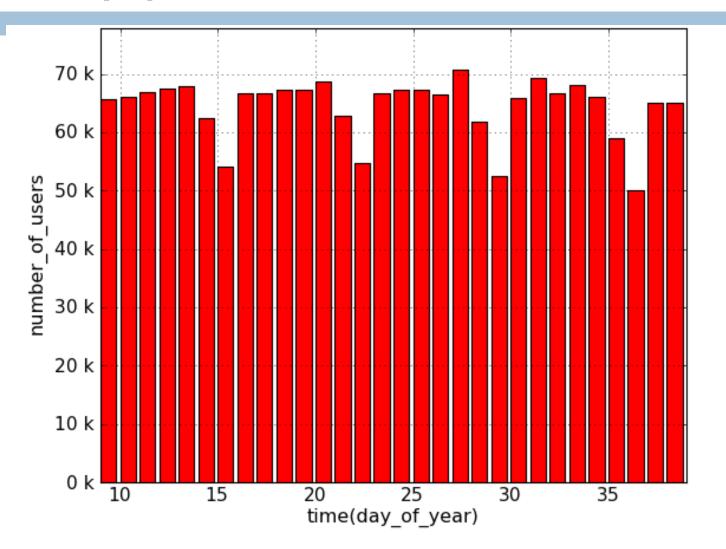
User id	Time start	Cell start	Cell end	Duration
10294595	"2014-02-20 14:24:58"	"PI010U2"	"PI010U1"	48
10294595	"2014-02-20 18:50:22"	"PI002G1"	"PI010U2"	78
10294595	"2014-02-21 09:19:51"	"PI080G1"	"PI016G1"	357

WHICH BASIC INFORMATION CAN BE EXTRACTED FROM CDR?

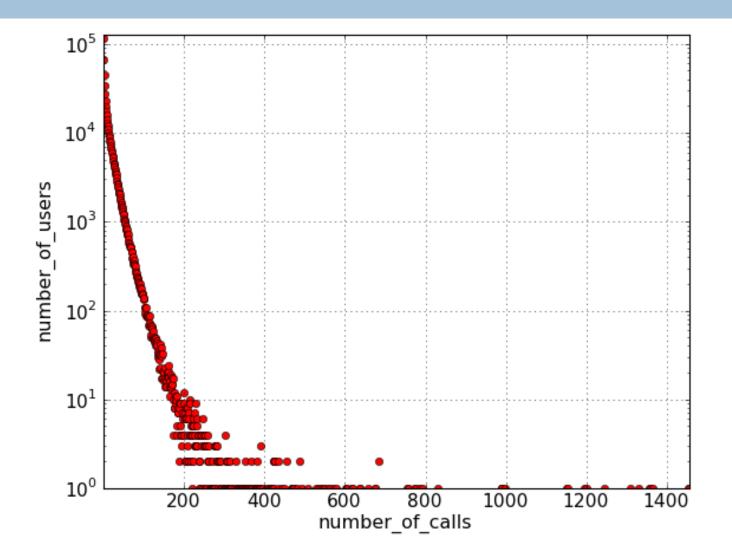
Daily pattern behavior



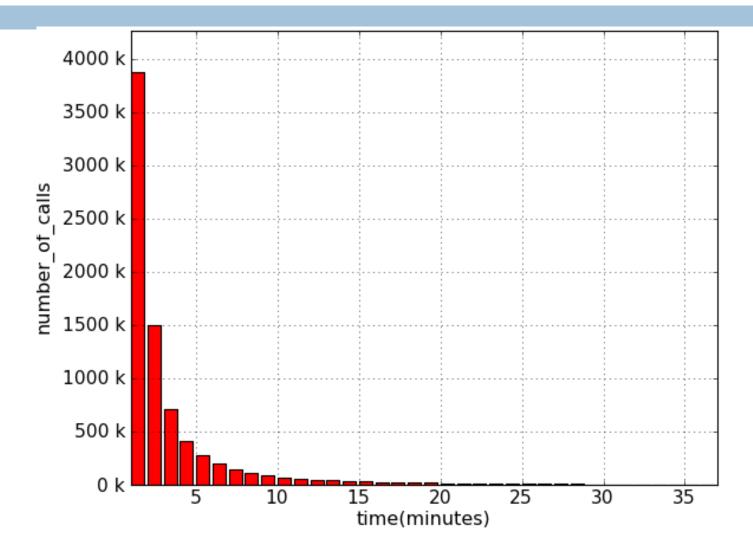
Weekly pattern behavior



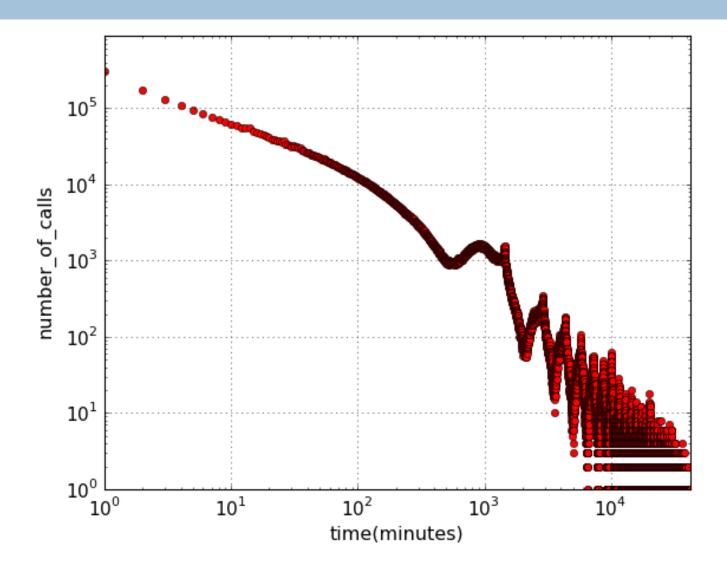
How many times we call?



How long we talk on the phone?

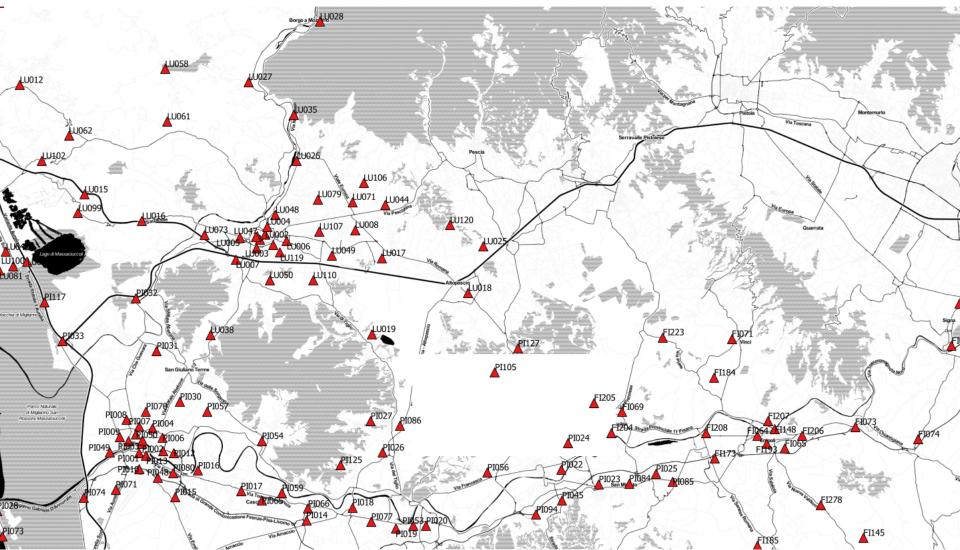


How many minutes goes by a call to the next?

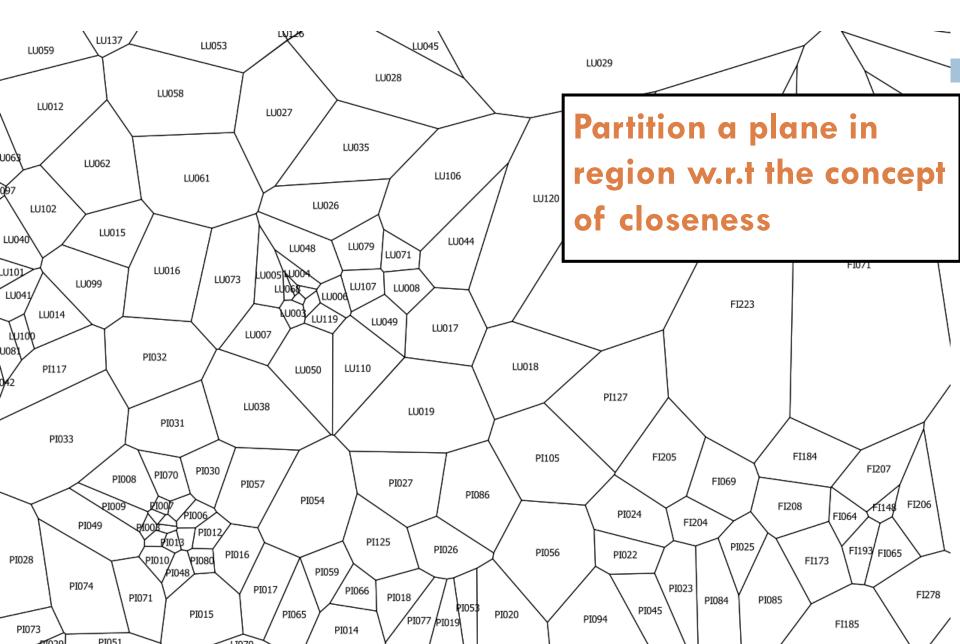


JOIN THE SPATIAL PART OF THE MOBILE PHONE DATA

From CDR to Geography: CDR contains where the calls started



Build the Voronoi tesselation

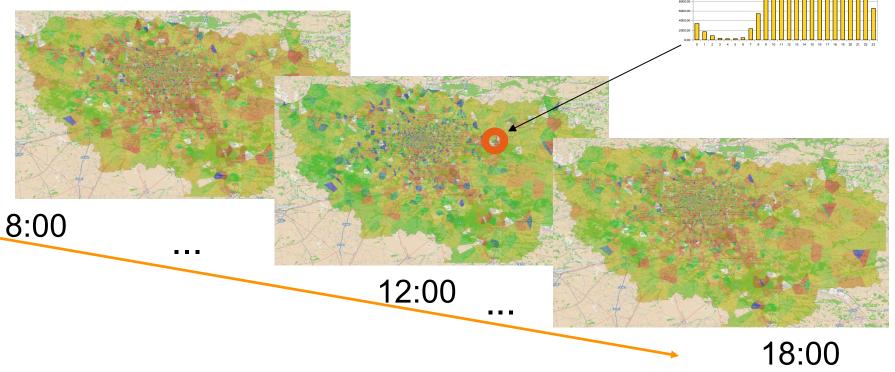


Spatial distribution of calls

presences of people within the working area of Pisa

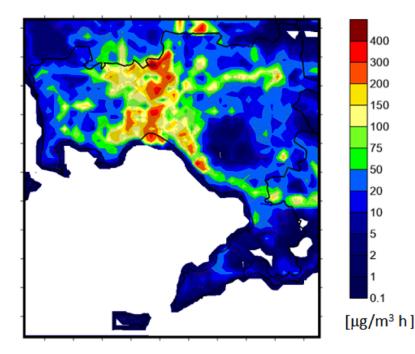
Compute density over a space-time grid

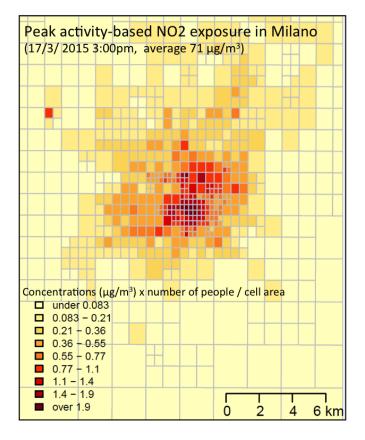
Divide the dataset into days, and days into 24h



Air pollution/ quality models based on Mobile Phone Activity patterns

0.1



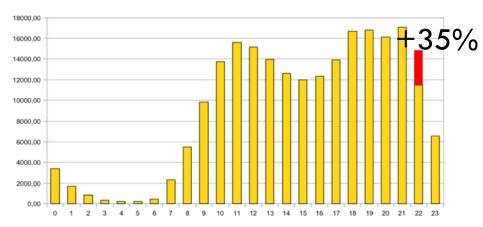


Correletion Patterns: : detect events

1) Detect Event = significant deviation from average

2) Extract correlation patterns

+35%

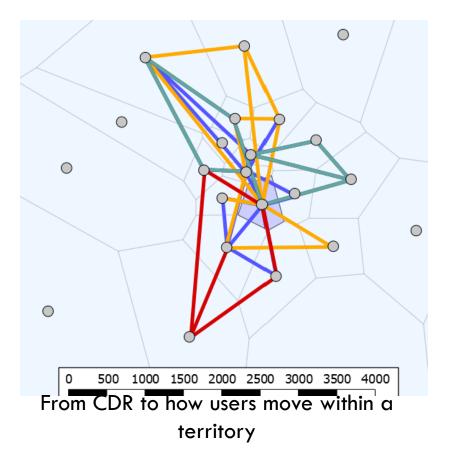


5%

 $\{(Cell27,+35\%)\} \rightarrow \{(Cell7,+15\%),(Cell5,+10\%)\} \rightarrow$

A WAY OF OBSERVING THE MOBILITY OF INDIVIDUALS

Mobility Behaviours



The phone towers are shown as grey dots
 The trajectory describes the user's movements during 4 days (each day in a different color).

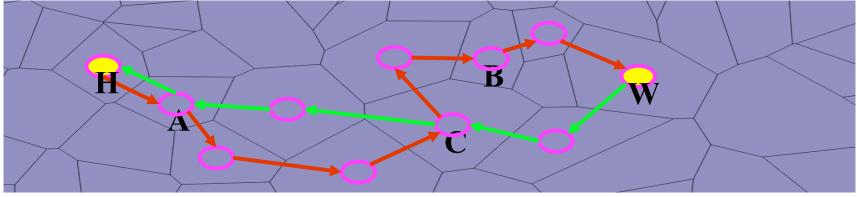
MP4-A Project: Mobility Planning For Africa

orange

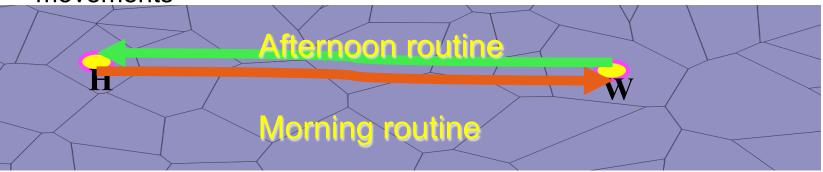
Peter Van Der Mede Joost De Bruiin Frik De

Systematic mobility

 A single trace of an individual can be poorly informative about his/her movements



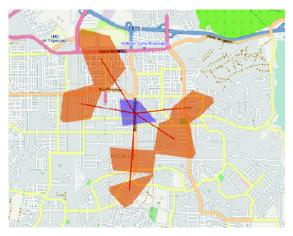
The whole individual mobility is then summarized by its systematic movements



Systematic O/D matrix

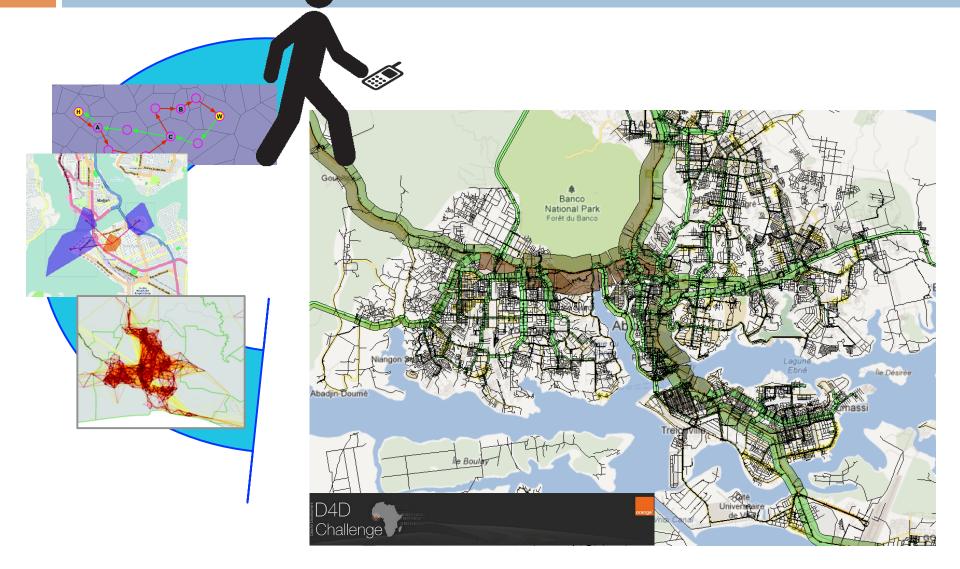
- Combine the ten 2-weeks datasets into one
- \Box For each user, extract significant L1 \rightarrow L2
- Aggregate (individual) systematic movements into (collective) systematic flows
- Examples:

Outgoing traffic



Incoming traffic

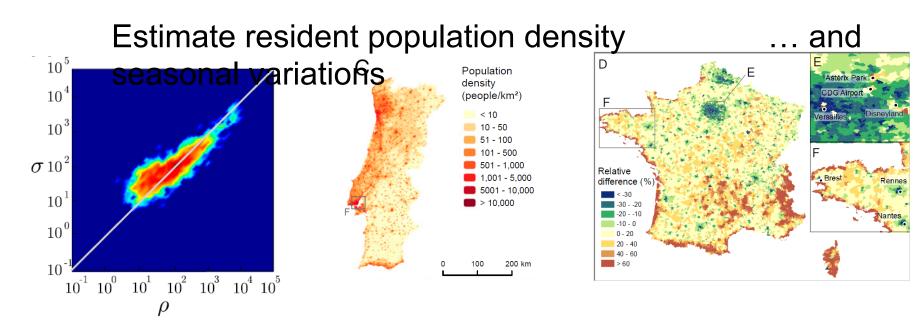
Big Data for Developing Countries



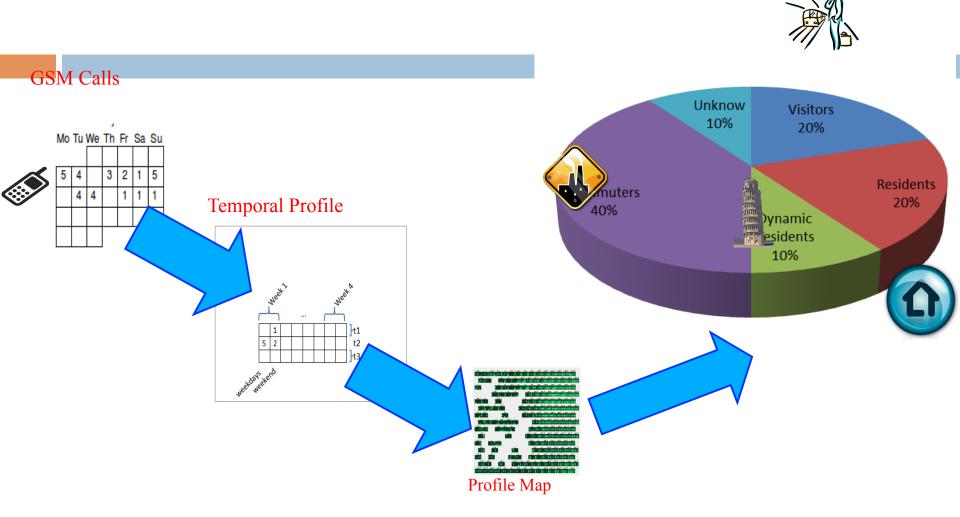
REAL TIME DEMOGRAPHICS

Identifying important locations

- Estimating users' residence through night activity
 - Home = region with highest frequency of calls during nighttime



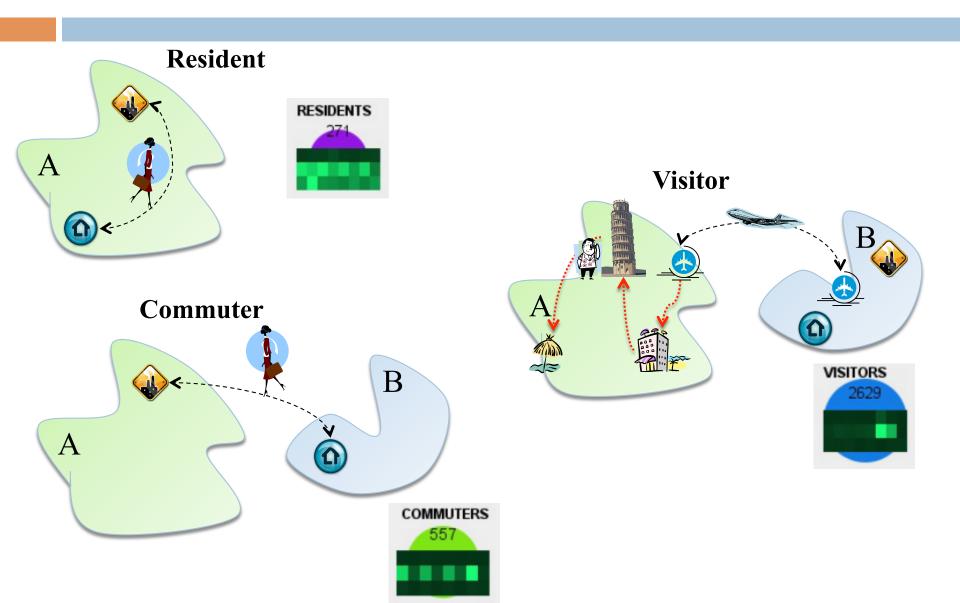
Pierre Deville et al. Dynamic population mapping using mobile phone data. PNAS vol. 111 no. 45, pp. 15888–15893, doi: 10.1073/pnas.1408439111



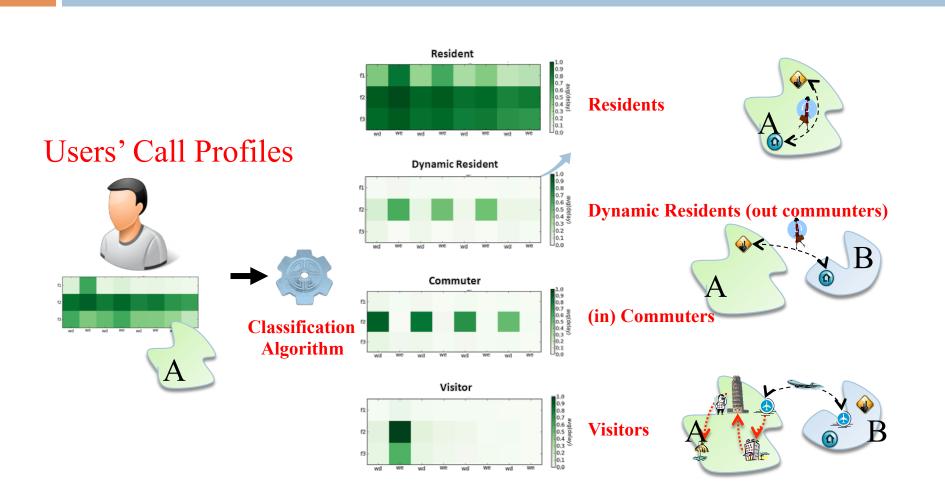
L. Gabrielli, Furletti, B., Trasarti, R., Giannotti, F., and Pedreschi, D., "City users' classification with mobile phone data", in IEEE

Quantifying city users

Calling profiles

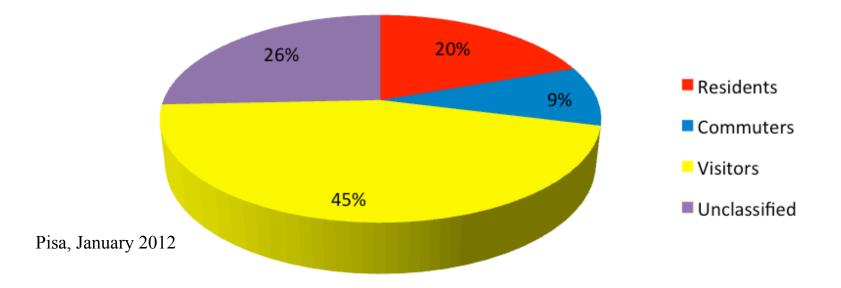


Sociometer with Mobile Phone Data.

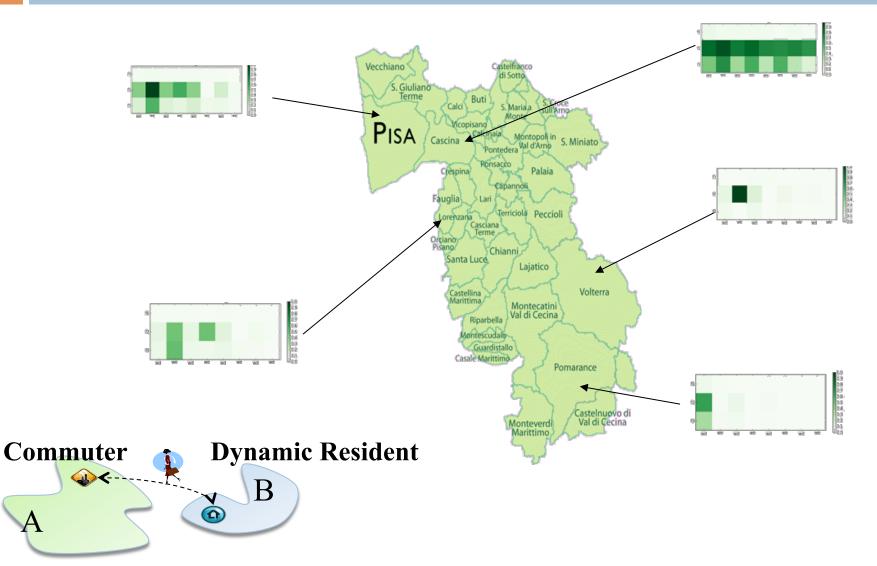


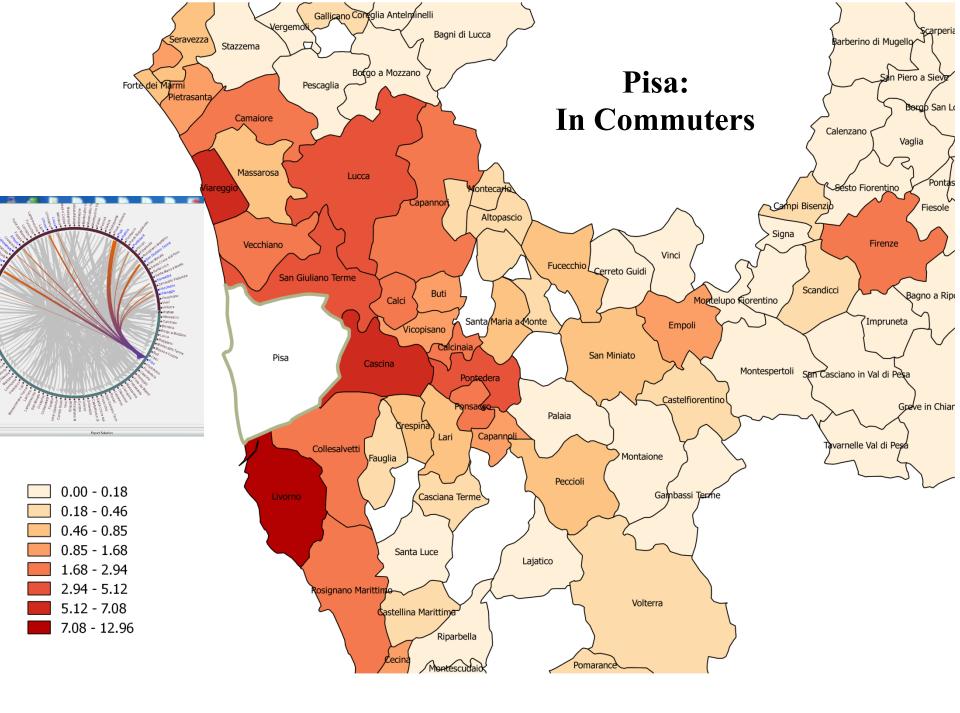
Sociometer: the city user meter

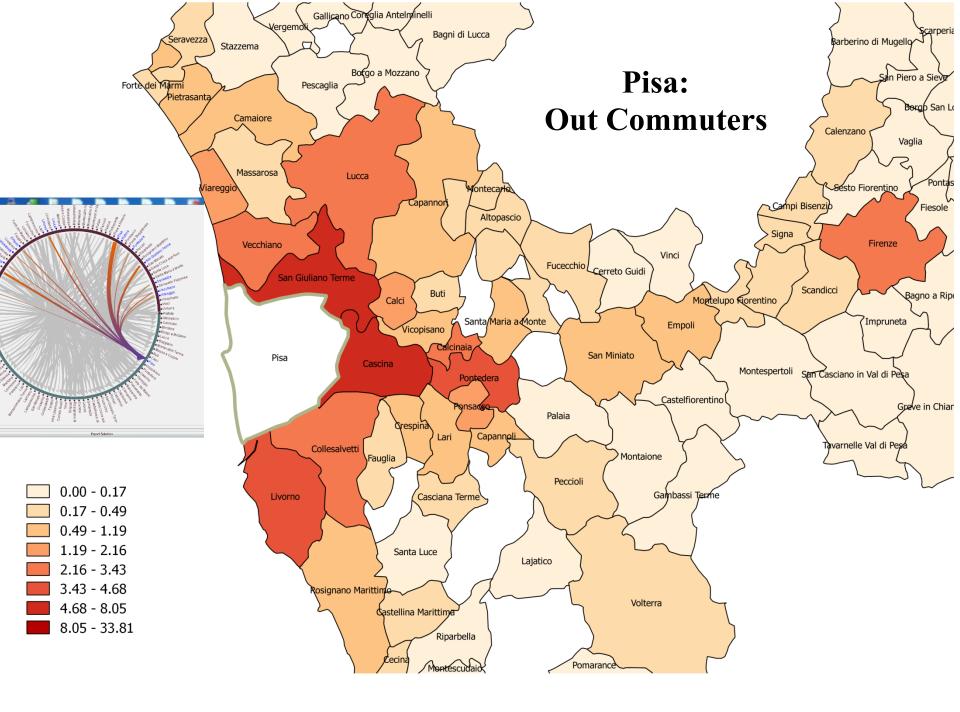
Classification outcome



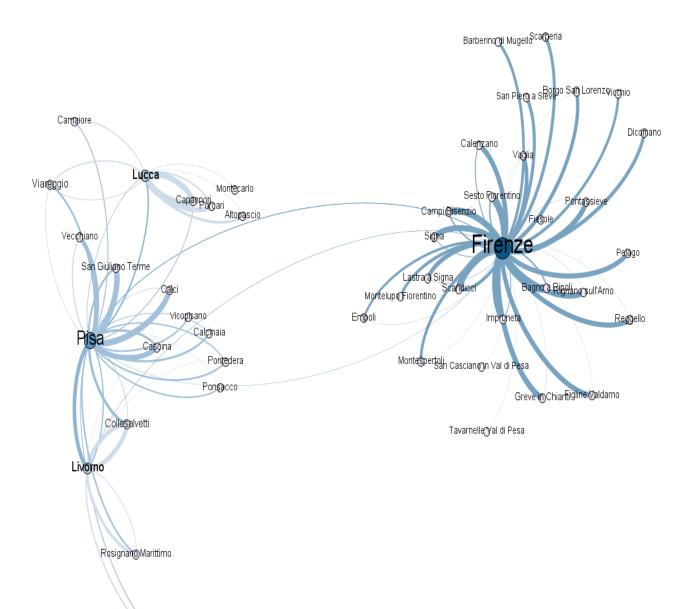
The many profiles of an individual



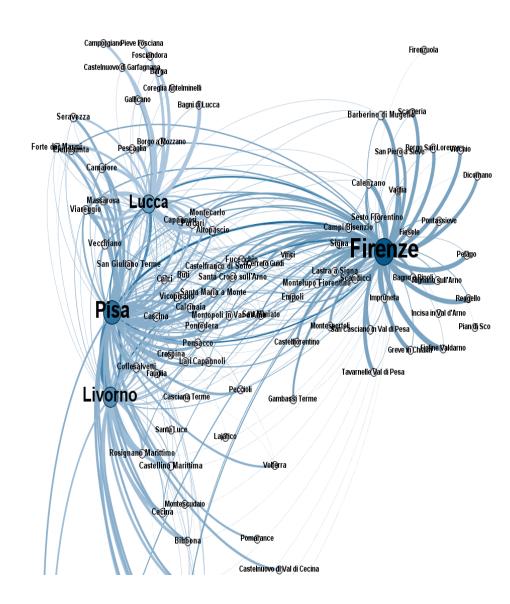




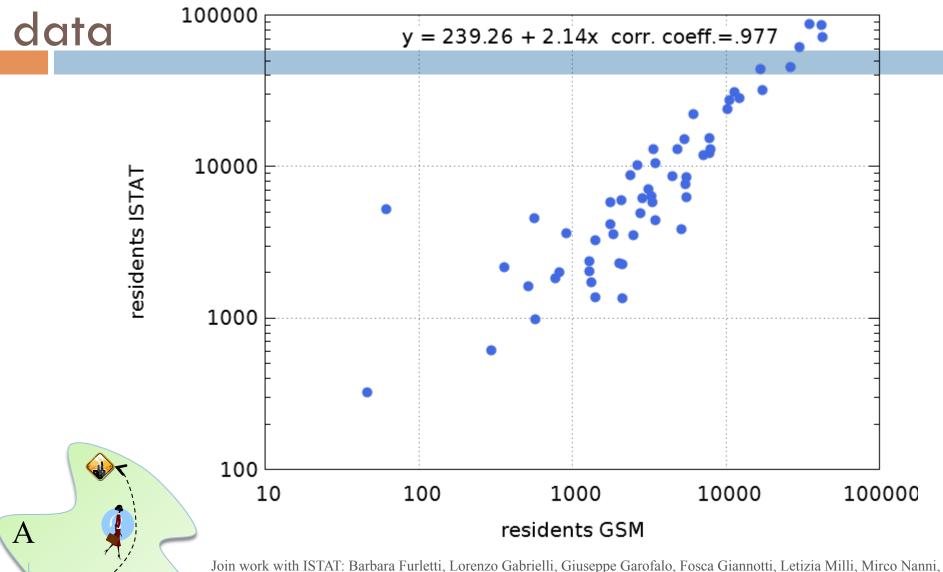
Commuter in-out flows



VISITOR in-out flows

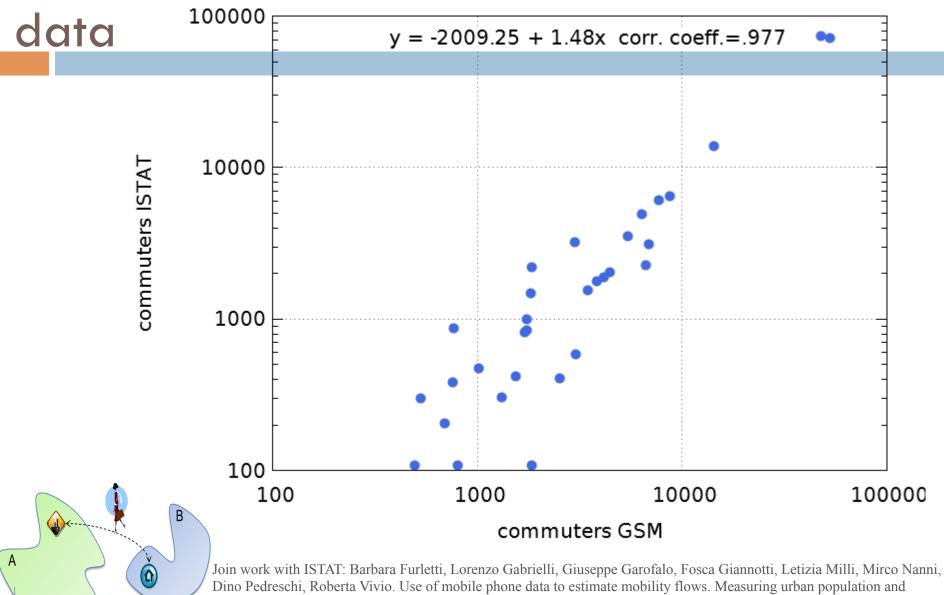


Residents – validation with administrative



Join work with ISTAT: Barbara Furletti, Lorenzo Gabrielli, Giuseppe Garofalo, Fosca Giannotti, Letizia Milli, Mirco Nanni, Dino Pedreschi, Roberta Vivio. Use of mobile phone data to estimate mobility flows. Measuring urban population and intercity mobility using big data in an integrated approach. Italian Symposium on Statistics (2014).

Commuters - Validation with administrative



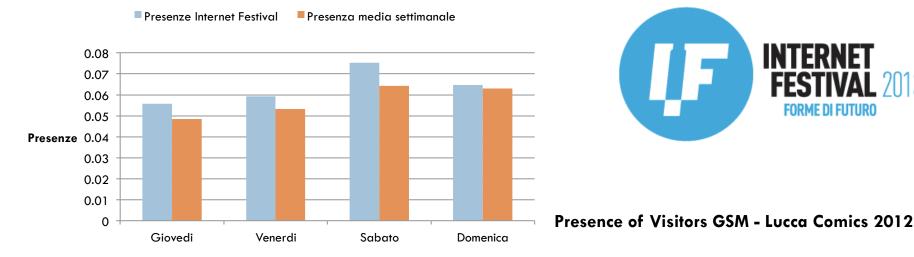
intercity mobility using big data in an integrated approach. Italian Symposium on Statistics (2014).

Inter-city flows – validation with ISTAT 10000 data y = -22.84 + 1.95x corr. coeff. = .989 1000 flows ISTAT 100 10 10 100 1000 10000 flows GSM

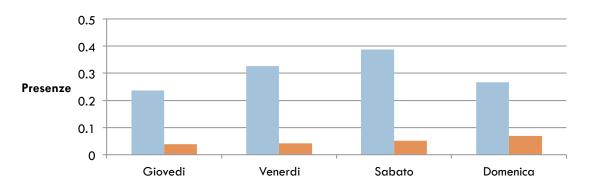
Join work with ISTAT: Barbara Furletti, Lorenzo Gabrielli, Giuseppe Garofalo, Fosca Giannotti, Letizia Milli, Mirco Nanni, Dino Pedreschi, Roberta Vivio. Use of mobile phone data to estimate mobility flows. Measuring urban population and intercity mobility using big data in an integrated approach. Italian Symposium on Statistics (2014).

Measuring PRESENCE during events

Presence of Visitors GSM - Pisa - Historical Center

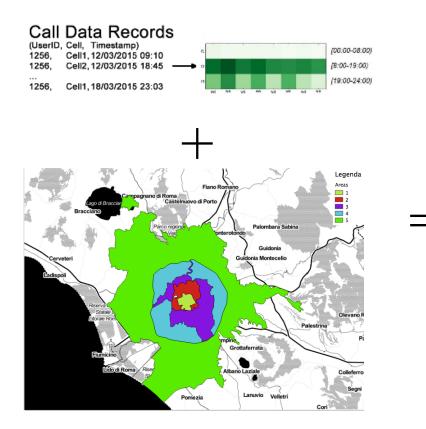


Presenze Comics 2012 Presenza media settimanale



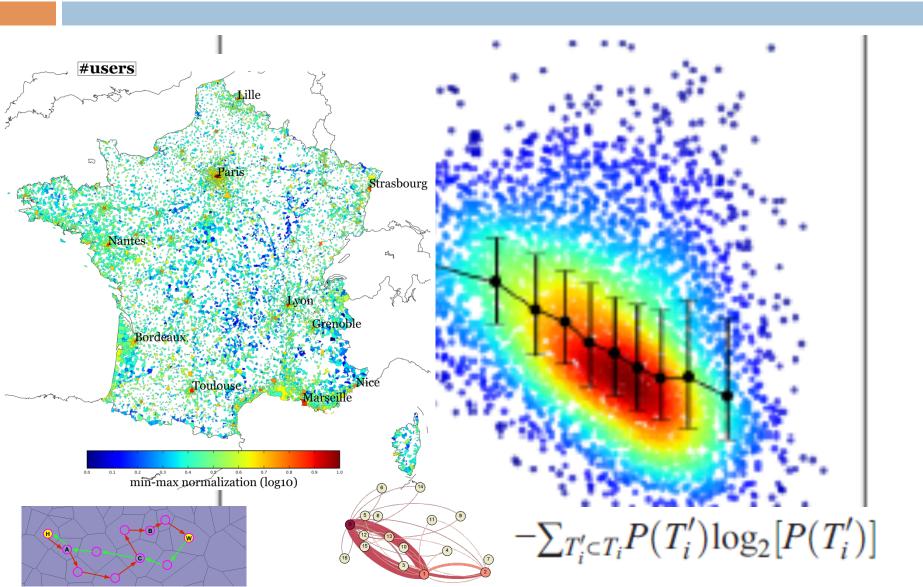
Measuring exceptional events

- Presences during Jubilee in Rome (December 2015)
- Continuous monitoring



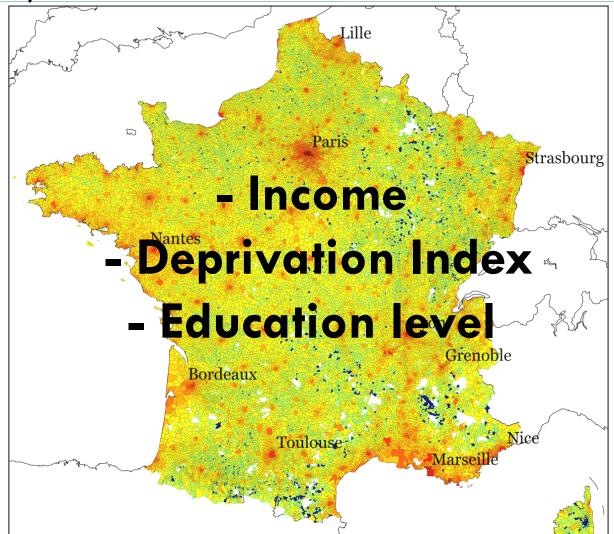
BIG DATA: DIVERSITY AND ECONOMIC DEVELOPMENT

Mobility Diversity and Wellbeing



Economic Measures

7,000 French cities



20 million users200 million calls

6 million users mobility trajs social network

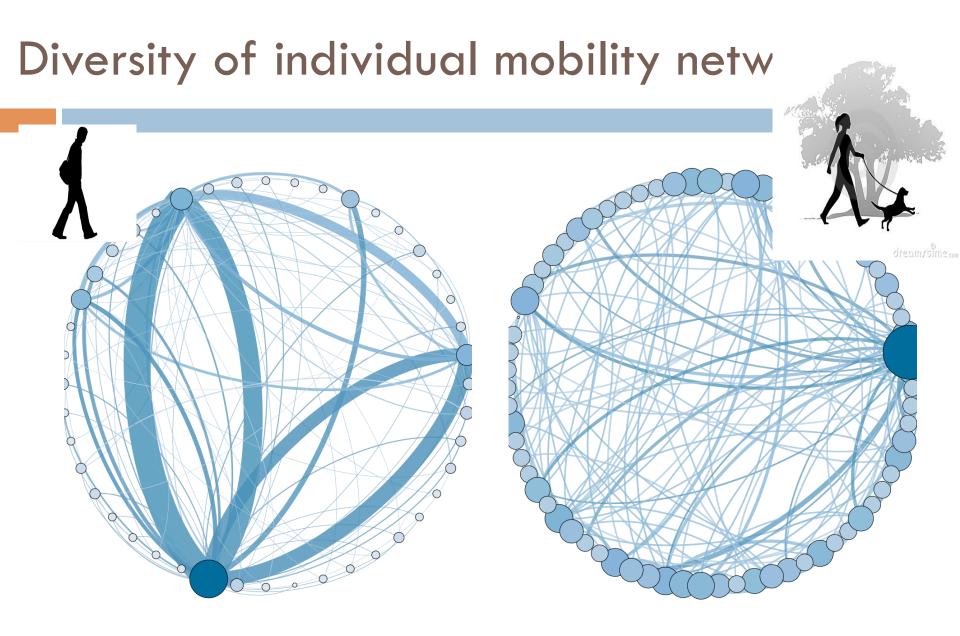
Four individual measures

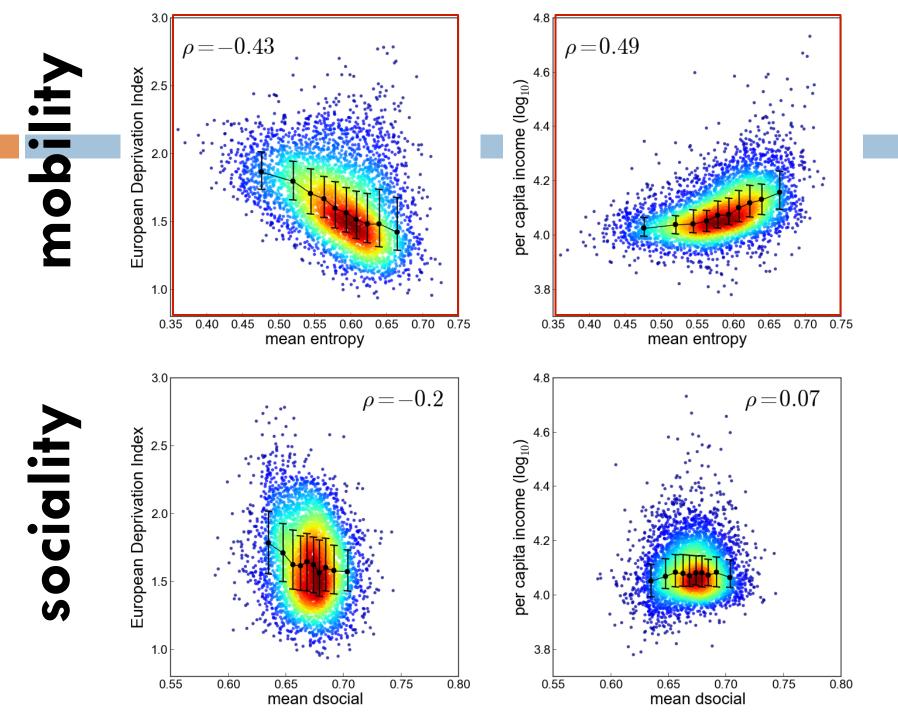
Radius of gyrationSocial degree

diversity

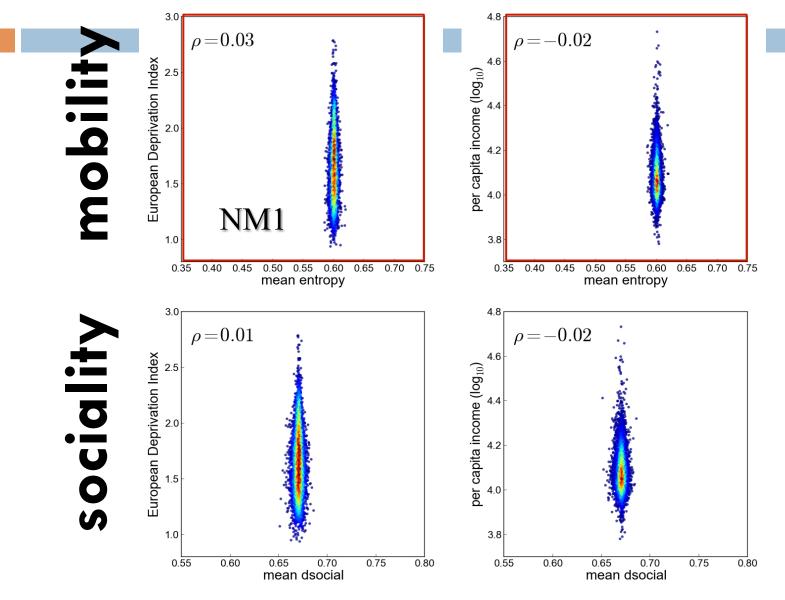
Mobility entropySocial diversity

 $-\sum_{T'_i \subset T_i} P(T'_i) \log_2[P(T'_i)]$

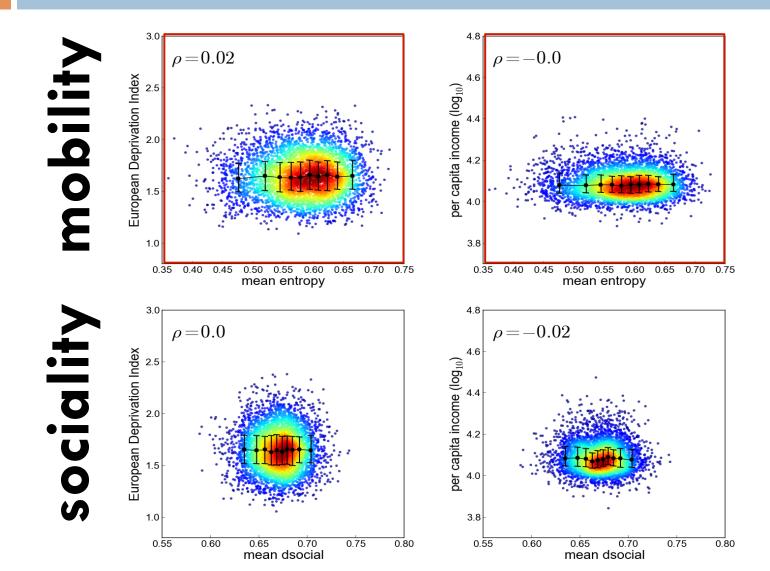




What on a null model: randomizing people

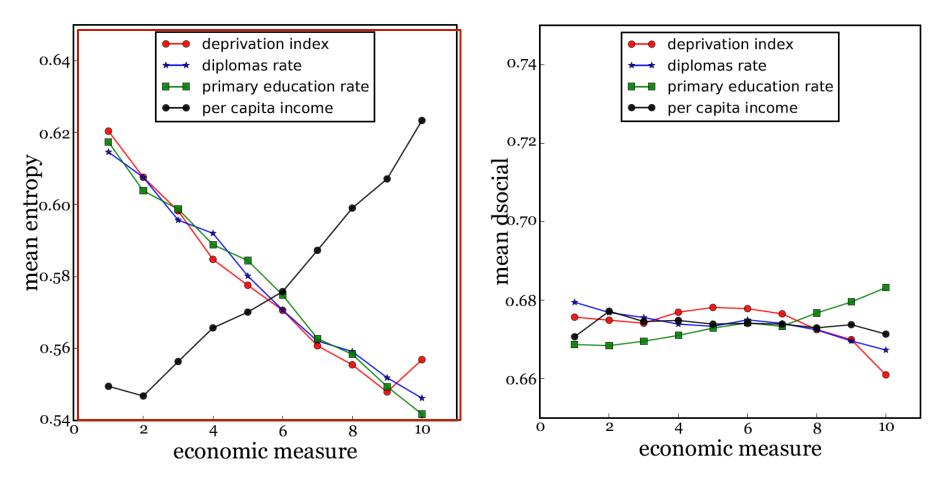


What on a null model: randomizing EDI



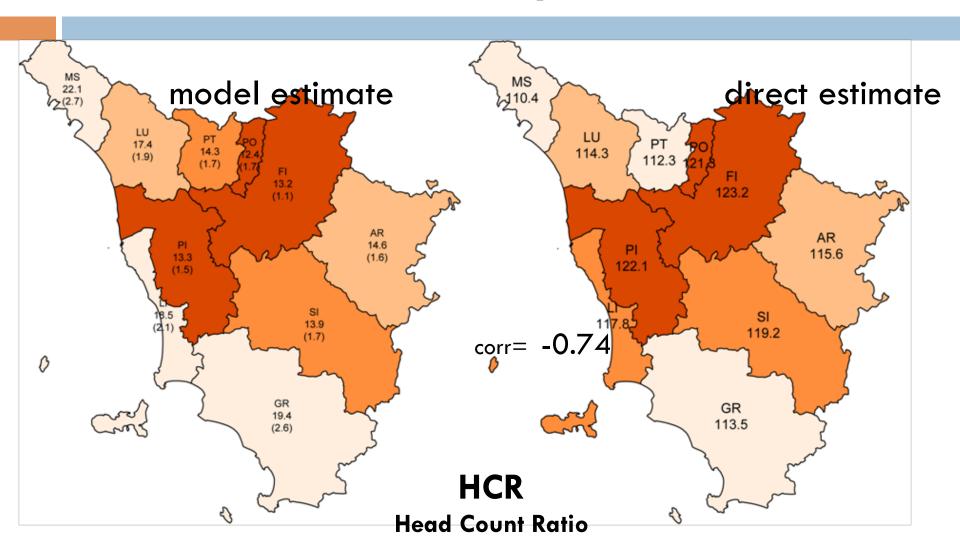
mobility

sociality



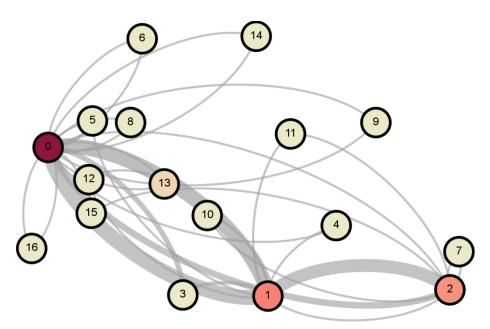
Human Mobility, Social Networks and Economic Development, L. Pappalardo, M. Vanhoof,

...also in Tuscany



Giusti, Marchetti, Pratesi, Salvati, D. Pedreschi, F. Giannotti, Rinzivillo, Pappalardo, Gabrielli. Small area model based estimators usign Big Data Sources. Journal of Official Statistics, vol. 31(2) 2015.

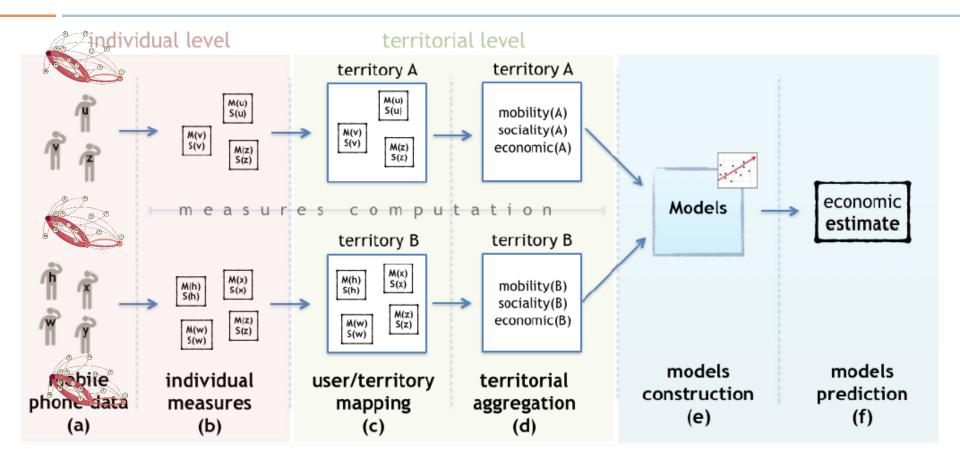
Behind the scene: Individual Mobility Networks



Network Features

centrality	clustering coefficient average path length
predictability	entropy
hubbiness	degree betweenness
volume	edge weight flow per location

Behind the scene



L. Pappalardo, Van Hoof, L. Gabrielli, D. Pedreschi, F. Giannotti, Z. Smoreda. Mobility Diversity & Wellbeing: estimating economic development with mobile phone data. Submitted

Discussion

- 1. Mobility diversity is linked to wellbeing
- Entropy is stable across age/gender but varies with wellbeing
- 3. Geography matters
- Big Data as a pillar for official statistics

Possible project

- Suppose to have CDR for an entire nation or all Europe continuosly available or any other source you think is useful
 - Migration fluxes: how to build migration (in-out) indicator and a monitoring system for fluxes among regions at various scale. (are there other resources to be used)
 - Same for turistic fluxes